JPH03182111A - Surface acoustic wave device - Google Patents

Surface acoustic wave device

Info

Publication number
JPH03182111A
JPH03182111A JP32100489A JP32100489A JPH03182111A JP H03182111 A JPH03182111 A JP H03182111A JP 32100489 A JP32100489 A JP 32100489A JP 32100489 A JP32100489 A JP 32100489A JP H03182111 A JPH03182111 A JP H03182111A
Authority
JP
Japan
Prior art keywords
idt
electrode
surface acoustic
acoustic wave
wave device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32100489A
Other languages
Japanese (ja)
Inventor
Michiaki Takagi
高木 道明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP32100489A priority Critical patent/JPH03182111A/en
Publication of JPH03182111A publication Critical patent/JPH03182111A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase Q value of the surface acoustic wave device by specifying the dimension of a reflector and the electrode dimension of an interdigital electrode. CONSTITUTION:For a pair of reflectors 102, reflection structures 105-107 forming the periodical arrangement of a period length (PR) are equipped with 1/2 PR width. Further, in an interdigital electrode(IDT) 101, with an end part T on the IDT side of a pair of reflectors 102 as the origin, an area [width(s)], where an electrode conductor does not exist from the origin T to the center of the IDT 101, and an area, [electrode width (l)], where the electrode conductor exists, are alternatively arranged with a period length (PT) close to the reflection structures 105-107 PR of the reflector 102 and the ratio of l/PT is 0.5<l/PT<0.8. Thus, the Q value of the surface acoustic wave device can be increased.

Description

【発明の詳細な説明】 〔産業上の利用分野J 本発明は、弾性表面波装置の電極構造に関する。[Detailed description of the invention] [Industrial Application Field J The present invention relates to an electrode structure for a surface acoustic wave device.

[従来の技術] 従来の弾性表面波装置の電極構造としては、先願の一実
施例として、圧電体平板上に形成されたIDTとその両
側の1対の反射器の金属導体の配列を、弾性表面波の波
長をえとじて前記金属導体の電極幅をん/4、かつ電極
導体間の間隔を同一のん/4とした一様な周期的配列と
するか、又は前記金属導体の幅βと電極導体間の間隔S
の比β/Sを1又は1と異ならせて一様に周期的配列す
る例があった。(特許公報子1−33969−9照、) 〔発明が解決しようとする課題〕 しかし、前述の従来技術では、弾性表面波装置の直列共
振抵抗が高いか、共振のQ値が低いという問題点を有す
る。そこで本発明はこのような問題点を解決するちので
、その目的とするところは小型でQ値が高く安定性に優
れたSAW共振子及びSAW共振子より構成された二重
モードフィルタ等の弾性表面波装置を市場に提供するこ
とにある。
[Prior Art] As an example of the electrode structure of a conventional surface acoustic wave device, an arrangement of metal conductors of an IDT formed on a piezoelectric flat plate and a pair of reflectors on both sides of the IDT is described as an example of a prior application. Taking the wavelength of the surface acoustic wave as an example, the electrode width of the metal conductor is 1/4, and the spacing between the electrode conductors is the same 1/4, making a uniform periodic arrangement, or the width of the metal conductor. β and the distance S between the electrode conductors
There was an example in which the ratio β/S of 1 or different from 1 was arranged uniformly and periodically. (See Patent Publication No. 1-33969-9.) [Problems to be Solved by the Invention] However, the above-mentioned conventional technology has problems in that the series resonance resistance of the surface acoustic wave device is high or the resonance Q value is low. has. Therefore, the present invention aims to solve these problems, and its purpose is to improve the elasticity of a SAW resonator that is small, has a high Q value, and has excellent stability, and a double mode filter made of a SAW resonator. The objective is to provide surface wave devices to the market.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の弾性表面波装置は、 (1)圧電体平板の表面中央に弾性表面波を送受する交
差指電極(IDT)と、交差指電極(IDT)の両側に
前記弾性表面波を反射する1対の反射器を形成した弾性
表面波装置に於て、前記反射器は周期長PRの周期的な
配列をなす反射構造体の幅がほぼPRのHであり、さら
に前記1対の反射器の交差指電極(IDT)側の端部を
原点として、反射器の反射構造体の周期PRに近い周期
長PTを6って、原点から交差指電極(IDT)の中央
に向って電極導体が存在しない領域(幅s1.電極導体
の存在する領域(if極幅β)が交互に配置されかつ、
前記12/PTの比が0.5くJ2./PT〈0,8で
ある交差指電極(I DT)を有すること。
The surface acoustic wave device of the present invention includes (1) an interdigital electrode (IDT) that transmits and receives surface acoustic waves at the center of the surface of a piezoelectric flat plate, and electrodes that reflect the surface acoustic wave on both sides of the interdigital electrode (IDT). In a surface acoustic wave device in which a pair of reflectors is formed, the reflector has a periodic array of reflecting structures having a period length PR, and a width of approximately H of PR; With the end on the interdigital electrode (IDT) side as the origin, the electrode conductor exists from the origin toward the center of the interdigital electrode (IDT) with a period length PT close to the period PR of the reflective structure of the reflector as 6. regions (width s1. regions where electrode conductors exist (if pole width β) are arranged alternately, and
The ratio of 12/PT is 0.5 and J2. /Have interdigital electrodes (IDT) with PT<0,8.

(2)前記請求項(1)記載の交差指電極がIDTの中
央部を除く両端部に形成されたことを特徴とする。
(2) The interdigital electrodes according to claim (1) are formed at both ends of the IDT except for the central part.

[作 用〕 本発明の上記構成によれば、弾性表面波を最も良く反射
できる反射器と該反射器からの弾性表面波の位相に位相
整合した交差指電極を構成した上に、発生する分極電荷
を効率良く検出できる交差指電極幅を選択したことから
弾性表面波装置のQ値が高く又共振子の直列共振抵抗R
1を小さくすることができる。
[Function] According to the above configuration of the present invention, a reflector that can best reflect a surface acoustic wave and interdigital electrodes that are phase-matched to the phase of the surface acoustic wave from the reflector are configured, and the generated polarization is Since the width of the interdigital electrodes was selected to enable efficient charge detection, the Q value of the surface acoustic wave device is high and the series resonance resistance R of the resonator is low.
1 can be made smaller.

[実 施 例] 第1図は本発明の弾性表面波装置の実施例に於ける平面
図であって、図中各部値の名称は、100、は圧電体平
板、101は交差指電極(IDT)、102は反射器、
103と104は101交差指電極(I DT)の各々
正と負極性の電極、又105と106,107は反射器
102の反射構造体である反射導体である6本発明の弾
性表面波装置に利用される弾性表面波は、水晶、LiT
aos 、L、1NbOx 、Lf* B40?等の圧
電体平板100上の表面に局在して伝播する弾性波であ
る。又前記101の交差指fitly(IDT)と反射
器102の金属導体は、前記圧電体平板上の面を鏡面仕
上げした上に、AE、Ag、Cn等の導電性金属の薄膜
を蒸着等の手段で形成後、写真食刻法によりパターン形
成してなる。前記交差指電極(I DT)は、正負電極
103.104に交番電圧を印加することにより弾性表
面波を励起できる。又反射器102の機能は、前記ID
Tから両方向に放射される弾性表面波を反射して元にも
どすものであって、前記105.106.107の各導
体が作る弾性表面波伝播路の音響的不整合によって行な
われる0通例、反射器はIDTの両側に構成する0次に
本発明の第1図の詳細な寸法関係をA−A断面図として
第2図に示した6図中各部位の名称は、200は圧電体
平板、201と202.203は交差指電極(IDT)
、204と205等は反射器の反射導体である。同図に
於て反射器は204反射導体の左端部Tより右側の領域
をしめる6反射導体204,205の周期長はPRであ
り、PRは利用する弾性表面波の波長尤のほぼえ/2で
あり、また反射導体の幅寸法WRはほぼ前記入の嵐とし
ている0図中の206と207が、励振されて表面に定
在する弾性表面波の応力波の振幅変化を表わす、206
と207は180°位相の異なる状態を示す、また、前
記反射器の左端部Tから対向して配置された他の反射器
の右端部までが交差指電極(IDT)の領域である0本
発明の交差指電極(IDT)は、反射器の反射構造体で
ある反射導体の周期長PRに近くかつ適切に設定された
周期長PTを6って原点TよりIDTの中央に向ってI
DTの電極導体の存在しない領域(幅S)、電極導体の
存在する領域(電極幅I2)が交互に配置され、かつ前
記電極幅4とPTの比が0.5〈β/PT<0.8であ
る交差指電極(IDT)からなっている、また原点Tか
ら2つ目の電極左端までのえTはほぼ弾性表面波の波長
見に近い長さとなっている。応力波の節は、種々の実験
と計算の結果より、反射器の左端部下と一致する他、交
差指電極の反射器に近い部分に於てち、同様に電極の左
端部で節となっている。ちちろん、IDTの左側に反射
器が配置された場合にあっては、上記記述は、反射器の
左端部下が右端部下に、又電極の左端部が右端部となる
ことはもちろんである。
[Embodiment] FIG. 1 is a plan view of an embodiment of the surface acoustic wave device of the present invention, and the names of the various parts in the figure are as follows: 100 is a piezoelectric flat plate, 101 is an interdigital electrode (IDT). ), 102 is a reflector,
103 and 104 are the positive and negative polarity electrodes of the interdigitated electrode (IDT) 101, respectively, and 105, 106, and 107 are reflective conductors that are the reflective structure of the reflector 102.6 In the surface acoustic wave device of the present invention, The surface acoustic waves used are crystal, LiT
aos, L, 1NbOx, Lf* B40? This is an elastic wave that locally propagates on the surface of the piezoelectric flat plate 100 such as the above. The interdigitated fitly (IDT) 101 and the metal conductor of the reflector 102 are formed by mirror-finishing the surface of the piezoelectric flat plate and then depositing a thin film of a conductive metal such as AE, Ag, or Cn by means of vapor deposition. After formation, a pattern is formed by photolithography. The interdigital electrode (IDT) can excite surface acoustic waves by applying an alternating voltage to the positive and negative electrodes 103 and 104. Further, the function of the reflector 102 is based on the ID
It reflects the surface acoustic waves radiated from T in both directions and returns them to the original state, and is usually caused by the acoustic mismatch of the surface acoustic wave propagation paths created by the respective conductors of 105.106.107. The device is constructed on both sides of the IDT. The detailed dimensional relationship of FIG. 1 of the present invention is shown in FIG. 2 as an A-A cross-sectional view. The names of each part in FIG. 201, 202, 203 are interdigital electrodes (IDT)
, 204, 205, etc. are reflective conductors of the reflector. In the same figure, the period length of the reflector 204 and 6 reflecting conductors 204 and 205, which cover the area on the right side from the left end T of the reflecting conductor, is PR, and PR is approximately the equivalent of the wavelength likelihood of the surface acoustic wave to be used. 206 and 207 in the figure represent the amplitude change of the stress wave of the surface acoustic wave that is excited and stands on the surface.
and 207 indicate a state with a 180° phase difference, and the area from the left end T of the reflector to the right end of another reflector placed opposite to each other is an interdigital electrode (IDT) region. The interdigitated electrode (IDT) has a period length PT that is close to and appropriately set to the period length PR of the reflective conductor that is the reflective structure of the reflector, and extends I from the origin T toward the center of the IDT.
Regions of the DT where no electrode conductor exists (width S) and regions where the electrode conductor exists (electrode width I2) are arranged alternately, and the ratio of the electrode width 4 to PT is 0.5<β/PT<0. The length T from the origin T to the left end of the second electrode is approximately the same as the wavelength of the surface acoustic wave. According to the results of various experiments and calculations, the node of the stress wave coincides with the lower left end of the reflector, and also forms a node at the left end of the interdigital electrode near the reflector. There is. Of course, in the case where the reflector is placed on the left side of the IDT, the above description applies to the case where the lower left end of the reflector becomes the lower right end, and the left end of the electrode becomes the right end.

次に第3図は、反射器の反射構造体が1弾性表面波の伝
播幅(開口長)にわたって掘られた細長い溝、即ちグル
ープである場合について第2図と同様なA−A断面構造
を示す図である0図中各部位の名称は、300は圧電体
平板、301.302.303は交差指電極(IDT)
の電極導体、304と305は反射器の反射構造体であ
るグルブ、さらに306と307が弾性表面波の応力波
を示す、第3図に記入された寸法記号の意味は第2図と
同一である。
Next, Fig. 3 shows the same A-A cross-sectional structure as Fig. 2 for the case where the reflection structure of the reflector is a long and narrow groove, that is, a group, dug over the propagation width (aperture length) of one surface acoustic wave. The names of the parts in Figure 0 are: 300 is a piezoelectric flat plate, 301, 302, and 303 are interdigital electrodes (IDT).
The electrode conductors 304 and 305 are the reflection structure of the reflector, and 306 and 307 are the stress waves of the surface acoustic waves.The meanings of the dimension symbols in Fig. 3 are the same as in Fig. 2. be.

次に本発明の弾性表面波装置がとる寸法関係の妥当性に
ついて第4図と第5図を用いて説明する。まず最初、第
4図によって本発明のとる反射器の妥当性を説明する0
図中、横軸は1反射構造体の周期長PRに対する反射構
造体の輻WRの比であり、縦軸は、反射器のもつ反射係
数γを示す、γが大きい程、反射器に入射する弾性表面
波は大きく反射される6図よりWR与34PHに於てγ
の最大値を示している。但し、この様な特性をとる圧電
体材料としては、水晶、Li*BnO? 、L i T
ags等が知られている。γが最大値をとることにより
弾性表面波装置のQ値は1反射器を透過して失なわれる
波のエネルギーが最小となるために最高値が得られる。
Next, the validity of the dimensional relationship adopted by the surface acoustic wave device of the present invention will be explained using FIGS. 4 and 5. First, the validity of the reflector adopted by the present invention will be explained with reference to FIG.
In the figure, the horizontal axis is the ratio of the radiation WR of a reflecting structure to the periodic length PR of one reflecting structure, and the vertical axis shows the reflection coefficient γ of the reflector.The larger γ is, the more the radiation enters the reflector. Surface acoustic waves are largely reflected.From Figure 6, at WR given 34PH, γ
shows the maximum value of However, piezoelectric materials with such characteristics include crystal, Li*BnO? , L i T
ags etc. are known. When γ takes the maximum value, the Q value of the surface acoustic wave device has the maximum value because the energy of the wave lost after passing through one reflector is minimized.

最後に第4図に交差指電極(IDT)の電極幅βを変え
た場合の弾性表面波装置のとる直列共振抵抗R1と共振
の動的容量CIの特性を示す0図中、横軸は前記IDT
の周期長PTに対するIDTの電極幅2の比!2/PT
であり、縦軸は、直列共振抵抗R1(501)及び共振
の能動的容量C1(502)の相対値である。まず、曲
11502のC1が同図の様な特性をとる理由は次の通
りである。第2図及び第3図の通りに弾性表面波の応力
波が定在することはすでに説明した。この応力波F (
x)に対応して発生する圧電体圧表面上の分極分布を考
えると1弾性表面波にともなう歪み波S (x)は、S
 (x)=eF (x)         (1)但し
く1)式でXは弾性表面波の伝播方向の位置座標である
。上記S (X)に対応して、圧電体表面に発生する分
極波P (x)は、 P (X)=ds (x)         (2)=
edF (x) で与えられる。ここでeは圧電気定数であり、dは圧電
係数であって、材料と方位で与えられる定数である。(
2)式に於てF (x)はkを波数、Bを振幅として、
F (x) =Bs i n (kx)で近似的に与え
られるから、交差指電極1本当たりで集められる総電荷
Mは次の積分で与えられる。
Finally, Figure 4 shows the characteristics of the series resonant resistance R1 and resonance dynamic capacitance CI of the surface acoustic wave device when the electrode width β of the interdigital electrode (IDT) is changed. IDT
The ratio of the IDT electrode width 2 to the period length PT! 2/PT
, and the vertical axis is the relative value of the series resonant resistance R1 (501) and the resonant active capacitance C1 (502). First, the reason why C1 of song 11502 has the characteristics as shown in the figure is as follows. It has already been explained that stress waves of surface acoustic waves are present as shown in FIGS. 2 and 3. This stress wave F (
Considering the polarization distribution on the piezoelectric pressure surface that occurs in response to x), the strain wave S (x) accompanying one surface acoustic wave is S
(x)=eF (x) (1) However, in equation 1), X is the position coordinate in the propagation direction of the surface acoustic wave. Corresponding to the above S (X), the polarization wave P (x) generated on the surface of the piezoelectric body is P (X)=ds (x) (2)=
It is given by edF (x). Here, e is a piezoelectric constant, and d is a piezoelectric coefficient, which is a constant given by the material and orientation. (
2) In the formula, F (x) is expressed as follows, where k is the wave number and B is the amplitude.
Since F (x) = Bs i n (kx) is approximately given, the total charge M collected per interdigital electrode is given by the following integral.

共振子のC1はMに比例すると考えると第5図の502
の特性が説明できる。さらに、直列共振抵抗R1は弾性
表面波装置の共振子のQ値を用いて前記C,からR2=
 1/ (QwC+ )で与えられるから図中501の
R1の特性が説明できる。
Considering that C1 of the resonator is proportional to M, 502 in Figure 5
The characteristics of can be explained. Furthermore, the series resonant resistance R1 is calculated from the above C, using the Q value of the resonator of the surface acoustic wave device, so that R2=
Since it is given by 1/(QwC+), the characteristic of R1 at 501 in the figure can be explained.

但しWは動作周波数である。従ってβ/ P tが0.
5以上に於てR3が減少する。しかしながら(2/ P
 Tが0.8以上にあっては、IDT部の電極バクーン
加工が極めて困難となるので実用的効果がうすれる。実
際に、動作周波数400MHzの水晶STカットX伝播
方法で動作する弾性表面波装置に於て、弾性表面波の波
長えはえ=7.9μmであって前記交差指電極の存在し
ない領域の長さs*0.8μmとなって写真食刻による
加工が極めて困難になる。
However, W is the operating frequency. Therefore, β/Pt is 0.
5 or more, R3 decreases. However (2/P
If T is 0.8 or more, it will be extremely difficult to process the electrodes in the IDT portion, and the practical effect will be diminished. In fact, in a surface acoustic wave device that operates using the crystal ST cut s*0.8 μm, making processing by photoetching extremely difficult.

最後に、交差指電極が0.5(J2/PT <0゜8を
とるIDTの領域についてであるが、かならずし6弾性
表面波の応力波は、IDTの中央部に於て電極の端部で
節とならないので、IDTの中央部を除く両サイドに前
述のI2/PTの値の電極幅を認定することにより一層
の効果が認められる。
Finally, regarding the region of the IDT where the interdigital electrodes take 0.5 (J2/PT < 0°8), the stress waves of at least 6 surface acoustic waves are generated at the ends of the electrodes at the center of the IDT. Since there is no knot in the IDT, a further effect can be recognized by approving the electrode width of the above-mentioned value of I2/PT on both sides of the IDT except for the central part.

〔発明の効果] 以上述べたように本発明によれば1反射器の寸法及びI
DTの電極寸法を適切に設定したことにより弾性表面波
装置のQ値が高く又、弾性表面波との電気機械結合が大
きくとれる結果、共振子の動的容量C1が大きく、さら
に直列共振抵抗Rの小さなちのが実現できるので、共振
子とした場合にはQ及びR1が優れるために安定な発振
の維持ができる他、素子の小型化も可能となる。さらに
本発明を二重モードフィルタに用いた場合には、R+が
小さいために押入損失の小さい良好なフィルタが実現で
きる。
[Effect of the invention] As described above, according to the present invention, the dimensions and I
By appropriately setting the electrode dimensions of the DT, the Q value of the surface acoustic wave device is high, and as a result, the electromechanical coupling with the surface acoustic wave is large, the dynamic capacitance C1 of the resonator is large, and the series resonance resistance R is also large. Since a small power can be realized, when used as a resonator, stable oscillation can be maintained due to excellent Q and R1, and the device can also be made smaller. Furthermore, when the present invention is applied to a dual mode filter, a good filter with low intrusion loss can be realized because R+ is small.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の弾性表面波装置の一実施例の示す平
面図、第2図は第1図のA−A断面を示す断面図、第3
図は本発明の他の実施例の示すA−A断面図、第4図反
射器のが有する反射特性を示す図。 第5図は本発明の弾性表面波装置が示す直列共振抵抗R
1 と動的容量C1 の特性図であ る。 00 ・圧電体平板 0 ・交差指電極(I DT) 02 ・反射器 以 上
FIG. 1 is a plan view showing an embodiment of the surface acoustic wave device of the present invention, FIG. 2 is a sectional view taken along the line AA in FIG. 1, and FIG.
The figure is a sectional view taken along the line A-A of another embodiment of the present invention, and FIG. 4 is a diagram showing the reflection characteristics of a reflector. Figure 5 shows the series resonance resistance R shown by the surface acoustic wave device of the present invention.
1 and dynamic capacitance C1. 00 ・Piezoelectric flat plate 0 ・Interdigital electrode (IDT) 02 ・Reflector or more

Claims (2)

【特許請求の範囲】[Claims] (1)圧電体平板の表面中央に弾性表面波を送受する交
差指電極(IDT)と、交差指電極(IDT)の両側に
前記弾性表面波を反射する1対の反射器を形成した弾性
表面波装置に於て、前記反射器は周期長PRの周期的な
配列をなす反射構造体の幅がほぼPRの1/2であり、
さらに前記1対の反射器の交差指電極(IDT)側の端
部を原点として、反射器の反射構造体の周期長PRに近
い周期長PTをもって、原点から交差指電極(IDT)
の中央に向かって電極導体が存在しない領域(幅s)、
電極導体の存在する領域(電極幅l)が交互に配置され
かつ、前記E/PTの比が0.5<l/PT<0.8で
ある交差指電極(IDT)を有することを特徴とする弾
性表面波装置。
(1) An elastic surface formed with an interdigital electrode (IDT) that transmits and receives surface acoustic waves at the center of the surface of a piezoelectric flat plate, and a pair of reflectors that reflect the surface acoustic wave on both sides of the interdigital electrode (IDT). In the wave device, the reflector has reflective structures arranged periodically with a period length PR, and the width thereof is approximately 1/2 of PR;
Furthermore, with the end of the pair of reflectors on the interdigital electrode (IDT) side as the origin, the interdigital electrode (IDT) is
a region (width s) where no electrode conductor exists toward the center of
It is characterized by having interdigital electrodes (IDT) in which regions where electrode conductors exist (electrode width l) are arranged alternately and the ratio of E/PT is 0.5<l/PT<0.8. surface acoustic wave device.
(2)前記請求項1記載の交差指電極がIDTの中央部
を除く両端部に形成されたことを特徴とする弾性表面波
装置。
(2) A surface acoustic wave device characterized in that the interdigital electrodes according to claim 1 are formed at both ends of the IDT except for the central part.
JP32100489A 1989-12-11 1989-12-11 Surface acoustic wave device Pending JPH03182111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32100489A JPH03182111A (en) 1989-12-11 1989-12-11 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32100489A JPH03182111A (en) 1989-12-11 1989-12-11 Surface acoustic wave device

Publications (1)

Publication Number Publication Date
JPH03182111A true JPH03182111A (en) 1991-08-08

Family

ID=18127715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32100489A Pending JPH03182111A (en) 1989-12-11 1989-12-11 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JPH03182111A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993072A (en) * 1995-09-26 1997-04-04 Fujitsu Ltd Surface acoustic wave filter
US6369674B1 (en) * 1998-02-27 2002-04-09 Toyo Communication Equipment Co., Ltd. Broad-band surface acoustic wave filter with specific ratios of transducer electrode period to reflector period

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993072A (en) * 1995-09-26 1997-04-04 Fujitsu Ltd Surface acoustic wave filter
US6369674B1 (en) * 1998-02-27 2002-04-09 Toyo Communication Equipment Co., Ltd. Broad-band surface acoustic wave filter with specific ratios of transducer electrode period to reflector period

Similar Documents

Publication Publication Date Title
US4081769A (en) Acoustic surface wave resonator with suppressed direct coupled response
JPS5831767B2 (en) Hiyomenhayoudenki - Kikaihenkansouchi
KR100299087B1 (en) Surface acoustic wave device
JP2000183681A (en) Surface acoustic wave device
JPH05347535A (en) Surface acoustic wave filter device
JPH03182111A (en) Surface acoustic wave device
JP4059147B2 (en) Surface acoustic wave resonator
JP3379383B2 (en) Surface acoustic wave device
JP3154402B2 (en) SAW filter
TWI751407B (en) Transducer structure for source suppression in saw filter devices
JPH02295212A (en) Surface acoustic wave resonator
JPS58687B2 (en) Electrical power supply
JPS6147010B2 (en)
JPS61281612A (en) Surface acoustic wave resonator
JPH0537533Y2 (en)
JPH03128517A (en) Surface acoustic wave resonator
JP2753352B2 (en) Surface acoustic wave double mode filter and communication device using the same
JP3035085B2 (en) Unidirectional surface acoustic wave converter
JPS60263505A (en) Elastic surface wave reflector and resonator having positive and negative reflection coefficients
JPS6346605B2 (en)
JP4158289B2 (en) Method for manufacturing surface acoustic wave device
JPH04259109A (en) Two-port saw resonator
JPH02220510A (en) Saw resonator
JPH0322702A (en) Electrode structure of saw resonator
JPH02270416A (en) Saw resonator