JPH03182056A - Lithium cell with highpolymer solid electrolyte - Google Patents

Lithium cell with highpolymer solid electrolyte

Info

Publication number
JPH03182056A
JPH03182056A JP1319608A JP31960889A JPH03182056A JP H03182056 A JPH03182056 A JP H03182056A JP 1319608 A JP1319608 A JP 1319608A JP 31960889 A JP31960889 A JP 31960889A JP H03182056 A JPH03182056 A JP H03182056A
Authority
JP
Japan
Prior art keywords
lithium
lithium ions
solid electrolyte
electrode
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1319608A
Other languages
Japanese (ja)
Other versions
JP3041864B2 (en
Inventor
Shigeru Sano
茂 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP1319608A priority Critical patent/JP3041864B2/en
Publication of JPH03182056A publication Critical patent/JPH03182056A/en
Application granted granted Critical
Publication of JP3041864B2 publication Critical patent/JP3041864B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To provide a battery which excels in the discharge capacity at the time of high rate discharging, by forming a pos. electrode, neg. electrode, and electrolyte from respective specified substances. CONSTITUTION:A pos. electrode is made of a material in which lithium ions are intercalated while a neg. electrode is made of lithium or its alloy, and the electrolyte shall consist of inorganic salt incl. lithium ions and organic solid highpolymer having ion conductivity. Further the conductivity of this inorganic salt incl. lithium ions shall be half the lithium concentration in the highest conductivity, which is measured by the AC impedance method.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高分子固体電解質リチウム電池に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to polymer solid electrolyte lithium batteries.

従来技術とその問題点 従来の高分子固体電解質リチウム電池tこおいては、高
分子固体電解質の伝導度が低いために、最も伝導度が高
くなる時のリチウム塩量を用い、これは添加量を種々に
変えた実験により求めていた。しかしこれでも高率放電
時の電池の放電容量が非常に小さく、問題であった。
Conventional technology and its problems In conventional polymer solid electrolyte lithium batteries, since the conductivity of the polymer solid electrolyte is low, the amount of lithium salt at which the conductivity is highest is used, and this is the amount of addition. was determined through experiments with various changes. However, even with this, the discharge capacity of the battery during high rate discharge was very small, which was a problem.

発明の目的 本発明は上記従来の問題点に鑑みなされたものであり、
高率放電時の放電容量の優れた高分子固体電解質リチウ
ム電池を提供することを目的とするものである。
Purpose of the Invention The present invention has been made in view of the above-mentioned conventional problems.
The object of the present invention is to provide a polymer solid electrolyte lithium battery with excellent discharge capacity during high rate discharge.

発明の構成 本発明は上記目的を遠戚するべく、 正極がリチウムイオンをインターカレー!/替ンできる
材料であり、負極がリチウムまたはリチウム合金であり
、電解質がイオン伝導度を有する有機固体高分子とリチ
ウムイオンを含む無a塩からなり、該リチウムイオンを
含む無機塩が交流インピーダンス法で測定した最も高い
伝導度にあるリチウムイオン濃度C対し、1/2の濃度
であることを特徴とする高分子固体電解質リチウム電池
である。
Structure of the Invention In order to achieve the above object, the present invention has the following features: The positive electrode intercalates lithium ions! The negative electrode is made of lithium or a lithium alloy, the electrolyte is made of an organic solid polymer with ionic conductivity and an aluminous salt containing lithium ions, and the inorganic salt containing lithium ions is used in the alternating current impedance method. This is a polymer solid electrolyte lithium battery characterized by a lithium ion concentration 1/2 of the lithium ion concentration C at the highest conductivity measured in .

実施例 負極にリチウム箔、圧積に二酸化マンガン、高分子固体
電解質にポリエーテル系のコポリマーを架橋してネット
ワーク構造とした高分子を用いて電池を構成した。支持
塩にはリチウムパークロレイトを添加した。
Example A battery was constructed using a lithium foil for the negative electrode, manganese dioxide for the pressure, and a polymer solid polymer electrolyte crosslinked with a polyether copolymer to form a network structure. Lithium perchlorate was added to the supporting salt.

@2図にリチウムバークロレイトの添加量とイオン伝導
度の関係を示した。尚、第1図は後述のjg9式と第1
0式を図示したものである。
Figure @2 shows the relationship between the amount of lithium chlorate added and the ionic conductivity. In addition, Figure 1 shows the jg9 formula and the first
This is a diagram illustrating Equation 0.

第2図からリチウムバークロレイトの添加量が9N量坏
の時が最も高いイオン伝導度である。
From FIG. 2, the ionic conductivity is highest when the amount of lithium chlorate added is 9N.

リチウムバークロレイトの添加量が9重量%(従来品)
と4.5重量%(本発明)の電池を各々作成した。
The amount of lithium chlorate added is 9% by weight (conventional product)
and 4.5% by weight (invention), respectively.

表 各々の電池を放電4流密度100μA/−と10μA/
。dの高率放!試験と低率放電試験を実施した。この結
果を第3図に示した。本発明の電池は高率放電における
容量低下がほとんどない。
Table 4 discharge current density of each battery 100μA/- and 10μA/
. d's high rate release! Tests and low rate discharge tests were conducted. The results are shown in FIG. The battery of the present invention exhibits almost no capacity loss during high rate discharge.

尚、この理由は以下の如くに考察される。The reason for this will be considered as follows.

リチウム塩としてリチウムバークロレイトを添加した高
分子固体電解質中では、電池を定電流で放電すると、リ
チウムイオン、パークロレイトイオンは以下のような移
動C関する連立微分方程式に従って移動する・ δX O−−D−f−p−nX (El +に2)y; リチ
ウムイオンの濃度 ハ;  リチウムイオンの移動度 D; リチウムイオンの拡散定数 工;放電電流 X;パークロレイトイオンの濃度 μス;バークロレイトイオンの移動度 DX=パークロレイトイオン拡散定数 S;高分子固体電解質の断面積 (3) El;両[に発生する電池起電力による電場E2;両イ
オンの間で電気的中性を保つための電場消去法Cより未
知数を整理すると この微分方程式は解析的には解けないので、巨視的には
リチウムイオンとパークロレイトイオンの濃度はすべて
の位置で電気的中性を保つために濃度は等しくなってい
ると近似して、濃度yをx:O〜1で積分し、最初に添
加されたリチウムイオン量M(0)から積分定数を求め
ると、 イオンの移動度と拡散定数とは比例するというアインシ
ュタインの近似法則により、−に−D −に−D これらを代入すると、 (6)式より、 負・正極表面のリチウムイオンの 濃度は 電池の放電容量が非常に小さいということは、定常状態
が得られないということであり、(7)式が成立できな
い、つまり負極表面でのリチウムイオン濃度が高分子固
体電解質中のリチウムイオンを受は入れられるサイトの
濃度より高くなってしまったということである。
In a polymer solid electrolyte to which lithium perchlorate is added as a lithium salt, when the battery is discharged at a constant current, lithium ions and perchlorate ions move according to the following simultaneous differential equations related to movement C: δX O− -D-f-p-n Mobility of chlorate ion DX = Perchlorate ion diffusion constant S; Cross-sectional area of polymer solid electrolyte (3) El; Electric field E2 due to battery electromotive force generated between both ions; Electrical neutrality between both ions If we organize the unknowns using electric field elimination method C to maintain this differential equation, this differential equation cannot be solved analytically, so macroscopically, the concentrations of lithium ions and perchlorate ions are determined to maintain electrical neutrality at all positions. Approximating that the concentrations are equal, we integrate the concentration y over x:O~1 and find the integral constant from the initially added amount of lithium ions M(0).The ion mobility and diffusion constant According to Einstein's law of approximation that is proportional to -D - to -D Substituting these values, we can see from equation (6) that the concentration of lithium ions on the negative and positive electrode surfaces means that the discharge capacity of the battery is extremely small. This means that a steady state cannot be obtained, and equation (7) cannot be established.In other words, the lithium ion concentration at the negative electrode surface is higher than the concentration at the site in the polymer solid electrolyte that can accept lithium ions. That is to say.

交流インピーダンス法で測定した時鵡最も高い伝導度を
与えるリチウムイオン濃度が、高分子固体電解質中のリ
チウムイオンを受は入れられるサイトの最大濃度を示し
ている。この時の濃度をM−とすると、臨界条件は(9
)式になる。
The lithium ion concentration that gives the highest conductivity when measured by the AC impedance method indicates the maximum concentration of sites that can accept lithium ions in the solid polymer electrolyte. If the concentration at this time is M-, the critical condition is (9
) becomes the formula.

また、正極表面でリチウムイオン濃度が0になっても、
熱論放電は継続できないので、その臨界条件は(10)
式になる。
Moreover, even if the lithium ion concentration becomes 0 on the surface of the positive electrode,
Since thermal discharge cannot continue, its critical condition is (10)
It becomes a ceremony.

L M (m+ > M (01+ 4eSD      
  (9)(9)、 (10)式を図示すると第1図の
斜線部となり、イオン伝導度の面からは、M(0)は高
い方か良いのであるから・ M (01−M (m)/ 2 発明の効果 上述した如く、本発明は高率放電時の放電容量の優れた
高分子固体電解質リチウム電池を提供することが出来る
ので、その工業的価値は極めて大である。
L M (m+ > M (01+ 4eSD
(9) (9) and (10) are shown in the shaded area in Figure 1. From the perspective of ionic conductivity, the higher M(0) is, the better. M (01-M (m )/2 Effects of the Invention As described above, the present invention can provide a polymer solid electrolyte lithium battery with excellent discharge capacity during high rate discharge, and therefore has extremely great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第9式と第10式を図示したもの、第2図はリ
チウムパークロレイトの添加量とイオン伝4度の関係を
示したもの、第3図は本発明の電池と従来品電池の放電
特性比較図である。
Figure 1 shows equations 9 and 10, Figure 2 shows the relationship between the amount of lithium perchlorate added and ion conductivity, and Figure 3 shows the battery of the present invention and the conventional battery. FIG. 3 is a comparison diagram of discharge characteristics of batteries.

Claims (1)

【特許請求の範囲】[Claims]  正極がリチウムイオンをインターカレーションできる
材料であり、負極がリチウムまたはリチウム合金であり
、電解質がイオン伝導度を有する有機固体高分子とリチ
ウムイオンを含む無機塩からなり、該リチウムイオンを
含む無機塩が交流インピーダンス法で測定した最も高い
伝導度にあるリチウムイオン濃度に対し、1/2の濃度
であることを特徴とする高分子固体電解質リチウム電池
The positive electrode is a material capable of intercalating lithium ions, the negative electrode is lithium or a lithium alloy, and the electrolyte is composed of an organic solid polymer having ionic conductivity and an inorganic salt containing lithium ions, and the inorganic salt containing the lithium ions. A polymer solid electrolyte lithium battery characterized in that the concentration of lithium ions is 1/2 of the lithium ion concentration at the highest conductivity measured by an AC impedance method.
JP1319608A 1989-12-08 1989-12-08 Polymer solid electrolyte lithium battery Expired - Fee Related JP3041864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1319608A JP3041864B2 (en) 1989-12-08 1989-12-08 Polymer solid electrolyte lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1319608A JP3041864B2 (en) 1989-12-08 1989-12-08 Polymer solid electrolyte lithium battery

Publications (2)

Publication Number Publication Date
JPH03182056A true JPH03182056A (en) 1991-08-08
JP3041864B2 JP3041864B2 (en) 2000-05-15

Family

ID=18112176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1319608A Expired - Fee Related JP3041864B2 (en) 1989-12-08 1989-12-08 Polymer solid electrolyte lithium battery

Country Status (1)

Country Link
JP (1) JP3041864B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8447561B2 (en) 2008-06-06 2013-05-21 Canon Kabushiki Kaisha Shape measurement method of synthetically combining partial measurements

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102009288B1 (en) * 2017-09-18 2019-08-09 한국정보공학 주식회사 Apparatus for holding fishing rod

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8447561B2 (en) 2008-06-06 2013-05-21 Canon Kabushiki Kaisha Shape measurement method of synthetically combining partial measurements

Also Published As

Publication number Publication date
JP3041864B2 (en) 2000-05-15

Similar Documents

Publication Publication Date Title
CA2169484C (en) Rechargeable non-aqueous lithium battery having stacked electrochemical cells
An et al. Correlation of electrolyte volume and electrochemical performance in lithium-ion pouch cells with graphite anodes and NMC532 cathodes
Niitani et al. Synthesis of Li+ ion conductive PEO-PSt block copolymer electrolyte with microphase separation structure
Xia et al. Comparative study on prop-1-ene-1, 3-sultone and vinylene carbonate as electrolyte additives for Li (Ni1/3Mn13Co1/3) O2/graphite pouch cells
Kotobuki et al. Fabrication of three-dimensional battery using ceramic electrolyte with honeycomb structure by sol–gel process
Chen et al. Symmetric cell approach and impedance spectroscopy of high power lithium-ion batteries
Wang et al. Polymer gel electrolyte supported with microporous polyolefin membranes for lithium ion polymer battery
Chen et al. Tris (pentafluorophenyl) borane as an additive to improve the power capabilities of lithium-ion batteries
Sawai et al. Factors affecting rate capability of graphite electrodes for lithium-ion batteries
EP3043402A1 (en) Protective film, separator using same, and secondary battery
CA2458253A1 (en) Vanadium / polyhalide redox flow battery
TW367305B (en) Lithium aluminum manganese oxy-fluorides for Li-ion rechargeable battery electrodes
US20120251891A1 (en) Lithium-Ion Battery
Doeff et al. Thin film rechargeable room temperature batteries using solid redox polymerization electrodes
TW200501479A (en) Negative electrode for nonaqueous electrolyte secondary battery, method for manufacturing same and nonaqueous electrolyte secondary battery
Morita et al. Rechargeable magnesium batteries using a novel polymeric solid electrolyte
Moy et al. Mixed conduction membranes suppress the polysulfide shuttle in lithium-sulfur batteries
JPH0869793A (en) Zinc secondary battery and zinc electrode
Zhang et al. Inhibition of lithium dendrites by fumed silica-based composite electrolytes
Burns et al. The impact of intentionally added water to the electrolyte of Li-ion cells: II. Cells with lithium titanate negative electrodes
Rubino et al. A study of capacity fade in cylindrical and prismatic lithium-ion batteries
Naderi et al. The influence of anode/cathode capacity ratio on cycle life and potential variations of lithium-ion capacitors
Shi Coke vs. graphite as anodes for lithium-ion batteries
Ariyoshi et al. Comparative measurements of side-reaction currents of Li [Li1/3Ti5/3] O4 and Li [Li0. 1Al0. 1Mn1. 8] O4 electrodes in lithium-ion cells and symmetric cells
Dai et al. A sodium ion based organic radical battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees