JPH03182013A - Superconductive wire and superconductive coil using it - Google Patents

Superconductive wire and superconductive coil using it

Info

Publication number
JPH03182013A
JPH03182013A JP1319698A JP31969889A JPH03182013A JP H03182013 A JPH03182013 A JP H03182013A JP 1319698 A JP1319698 A JP 1319698A JP 31969889 A JP31969889 A JP 31969889A JP H03182013 A JPH03182013 A JP H03182013A
Authority
JP
Japan
Prior art keywords
superconducting
wire
coil
current
superconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1319698A
Other languages
Japanese (ja)
Other versions
JP3154711B2 (en
Inventor
Eriko Shimizu
清水 えり子
Daisuke Ito
伊藤 大佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP31969889A priority Critical patent/JP3154711B2/en
Publication of JPH03182013A publication Critical patent/JPH03182013A/en
Application granted granted Critical
Publication of JP3154711B2 publication Critical patent/JP3154711B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To lower the transition temperature of a superconductive wire and improve quenching transmitting speed by containing a ferromagnetic material in a core wire in preparation of a superconductive wire by burying a superconductive core wire of a Nb-Ti alloy in a metal matrix having high resistance. CONSTITUTION:In this preparation method, a metal having high resistance is used as a matrix for a superconductive wire so as to lower bonding loss, and thus quenching is transmitted at extremely high speed and burning loss is prevented even at large current is applied. For this, a superconductive core for superconductive wire is made of Nb-Ti alloy containing a ferromagnetic material. As the ferromagnetic material, there are used metals such as Fe, Ni, Co, Gd, etc., ferromagnetic alloys such as Fe-Ni-based alloys, Fe-Ni-Co-based alloys, Fe-Ni-Cr-based alloys, etc., and further ferromagnetic compounds, and to be dispersed uniformly, metal-based ferromagnetic material is preferable. The content of the ferromagnetic material is set to be 0.2-1wt.% and the content of Ni is at least 0.2wt.%.

Description

【発明の詳細な説明】 E発11JIの1−1的] (産業上の利用分野) 本発明は、クエンチ伝播速度を向上させた超電導線材お
よび超電導コイルに関する。
DETAILED DESCRIPTION OF THE INVENTION 1-1 of E-issue 11JI] (Industrial Application Field) The present invention relates to a superconducting wire and a superconducting coil with improved quench propagation speed.

(従来の技術) Nb−Ti合金のような超電導体を用いた超電導線材は
、電気抵抗が非常に小さく、直流的には非常に小さいジ
ュール損で電流を流すことが可能な線材として知られて
いる。また、このような超電導線材は、各種電力機器な
どとして実際に使用するにあたっては、コイル化して用
いることが一般的である。
(Prior art) Superconducting wires using superconductors such as Nb-Ti alloys have very low electrical resistance and are known as wires that can conduct current with very small Joule loss in direct current terms. There is. Furthermore, when such superconducting wires are actually used in various power devices, they are generally used in the form of coils.

ところで、上述したような超電導線材に変動磁場中で電
流を流そうとすると、主にヒステリシス損失と結合損失
とからなる交流損失が生じることが知られている。この
ため、パルス運転や商用周波数(5011zまたは(i
oHz)での運転を目指した交流用超電導線材の開発に
あたっては、上記交流損失を低減することが重要である
By the way, it is known that when a current is caused to flow through the above-mentioned superconducting wire in a fluctuating magnetic field, an alternating current loss mainly consisting of hysteresis loss and coupling loss occurs. For this reason, pulse operation and commercial frequency (5011z or (i
In developing AC superconducting wires aimed at operation at (oHz), it is important to reduce the AC loss.

上述した交流損失のうち粘合損失は、Nb−r+i金な
どの超電導芯線を埋設するマトリックスとして、比抵抗
の大きい金属たとえばCu−Ni合金を用いることによ
りへ減できるため、最近、交流で使用する超電導コイル
では、マトリックスとして比抵抗の大きい金属を用いた
超電導線材が多用されつつある。
Of the AC losses mentioned above, the viscosity loss can be reduced by using a metal with a high resistivity, such as a Cu-Ni alloy, as a matrix in which the superconducting core wire is buried, such as Nb-r+i gold. In superconducting coils, superconducting wires using metals with high specific resistance as a matrix are increasingly being used.

(発明が解決しようとする課題) しかしながら、上記マトリックスとして比抵抗の大きい
金属を用いた超電導線材は、結合損失を低減することが
可能である半面、以下に示すような難点があった。
(Problems to be Solved by the Invention) However, although the superconducting wire using a metal with a high specific resistance as the matrix can reduce coupling loss, it has the following drawbacks.

すなわち、上述したような超電導コイルに大電流を流し
て運転した場合、超電導線材がクエンチした際に、ジュ
ール熱によって超電導線材が焼き切れるr11能性が商
いという難点がある。これは、たとえばNb−Tl超電
導体のクエンチ広幅速度は数low/秒f′i度と迦い
ため、結合損失を低減するために比抵抗の大きい金属を
超電導線材のマトリックスとして使用すると、クエンチ
によってマトリックス側に転流した電流をすみやかに拡
散させることができなくなり、局部的に過大なジュール
熱の発生を招いてしまうためである。
That is, when a superconducting coil as described above is operated with a large current flowing through it, there is a problem in that when the superconducting wire is quenched, the r11 ability to burn out the superconducting wire due to Joule heat is a problem. This is because, for example, the wide quenching speed of Nb-Tl superconductors is several low/second f'i degrees, so if a metal with high resistivity is used as the matrix of the superconducting wire to reduce coupling loss, the quenching This is because the current commutated to the side cannot be quickly diffused, resulting in locally excessive Joule heat generation.

このように、マトリックスとして比抵抗の大きい金属を
用いた場合に、超電導体のクエンチ広幅速度が辻いと、
超電導線材が焼損する危険性が高いために、超電導体の
クエンチ広幅速度をρiめることか強く望まれている。
In this way, when a metal with high resistivity is used as the matrix, the quenching speed of the superconductor crosses over a wide range.
Since there is a high risk of burning out the superconducting wire, it is strongly desired to increase the quench wide speed ρi of the superconductor.

また、超電゛導コイルを用いた限流器などにおいては、
直接クエンチ広幅速度が特性を左右するために、同番1
にクエンチを極めて速く広幅させることが強く望まれて
いる。
In addition, in current limiters etc. using superconducting coils,
Since the direct quench wide speed affects the characteristics, the same number 1
It is strongly desired to make the quench extremely fast and wide.

本発明は、上述したような課題に対処するためになされ
たもので、マトリックス材として比抵抗の大きい金属し
か用いていない超電導線材において、たとえば焼損など
を防止するために、クエンチを極めて速く広幅させるこ
とを可能にした超電導線材を提供することを目的として
おり、またこのような超電導線材を用いることによって
実用性を高めるとともに、特性の向上を図った超電導コ
イルを提供することを[1的としている。
The present invention has been made to address the above-mentioned problems, and in order to prevent burnout, for example, in a superconducting wire that uses only a metal with a high specific resistance as a matrix material, it is possible to make the quench extremely fast and wide. The purpose of this research is to provide superconducting wires that make it possible to perform the .

[発明の構成] (課題を解決するための手段) すなわち本発明の超電導線材は、高電気抵抗を有する金
属マトリックス内に、Nb−Tl合金からなる超電導芯
線を埋設してなる超電導線材において、前記超電導芯線
が強磁性体を含有することを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) That is, the superconducting wire of the present invention is a superconducting wire comprising a superconducting core wire made of an Nb-Tl alloy embedded in a metal matrix having high electrical resistance. It is characterized in that the superconducting core wire contains a ferromagnetic material.

また、本発明の超電導コイルは、上記超電導線材を巻回
してなることを特徴としている。
Moreover, the superconducting coil of the present invention is characterized in that it is formed by winding the above-mentioned superconducting wire.

本発明の超電導線材における超電導芯線は、強磁性体を
含有するNb−Tl合金からなるものである。
The superconducting core wire in the superconducting wire of the present invention is made of a Nb-Tl alloy containing a ferromagnetic material.

本発明に使用する強磁性体としては、たとえばFClN
l、Co、 Gdなどの金属元素、re−Ni系、Fe
−N1−C。
Examples of the ferromagnetic material used in the present invention include FClN
Metal elements such as L, Co, and Gd, re-Ni system, Fe
-N1-C.

系、Fe−N1−Cr系などの強磁性合金や、さらには
化合物系強磁性体などの各種強磁性体を用いることが可
能であるが、芯線中への均一分散を考慮した場合、金属
系の強磁性体が好ましく用いられる。
It is possible to use various ferromagnetic materials such as ferromagnetic alloys such as ferromagnetic alloys, Fe-N1-Cr-based ferromagnetic materials, and even compound-based ferromagnetic materials, but when considering uniform dispersion in the core wire, metal-based ferromagnetic materials are preferably used.

これら強磁性体は、超電導体としてのNb−Tl合金の
臨界温度を低下させ、これにより超電導線材のクエンチ
広幅速度が上昇する。
These ferromagnetic substances lower the critical temperature of the Nb-Tl alloy as a superconductor, thereby increasing the quenching speed of the superconducting wire.

これら強磁性体は、マトリックス材を含めた超電導線材
中に 1重量%〜0.2重量%程度の範囲で含Hさせる
ことが好ましい。強磁性体の含有量が0.2重量%未満
であると、臨界温度低下効果が充分に11#られず、ま
た 1重量%を超えると超電導特性に悪影響を及はす恐
れがあるためである。
It is preferable that these ferromagnetic substances contain H in the superconducting wire including the matrix material in a range of about 1% by weight to 0.2% by weight. This is because if the content of ferromagnetic material is less than 0.2% by weight, the critical temperature lowering effect will not be sufficiently reduced, and if it exceeds 1% by weight, it may adversely affect the superconducting properties. .

また、本発明の超電導線材におけるマトリックス材とし
ては、一般的に用いられているCu−Ni系合金やCu
−Mnn系全会どの比抵抗の大きい金属が用いられる。
In addition, as the matrix material in the superconducting wire of the present invention, commonly used Cu-Ni alloys and Cu
-Mnn-based metals with high resistivity are used.

(作 用) 本発明の超電導線材においては、Nb−Tl合金からな
る超電導芯線が強磁性体を含有している。
(Function) In the superconducting wire of the present invention, the superconducting core wire made of Nb-Tl alloy contains a ferromagnetic material.

このNb−Ti芯線中に拡散した強磁性体は、Nb−T
i中のクーパ一対を破壊するように作用し、これによっ
て超電導線材の臨界温度が低下する。ただし、臨界電流
や臨界磁場はほとんど変動しない。
The ferromagnetic material diffused in this Nb-Ti core wire is Nb-T
This acts to destroy the pair of Coopers in i, thereby lowering the critical temperature of the superconducting wire. However, the critical current and critical magnetic field hardly change.

ここで、超電導体の臨界温度を低下させることによって
、超電導体のクエンチ広幅速度を高められることが知ら
れている。したがって、本発明の超電導線材は、マトリ
ックスとして高電気抵抗を有する金属を用い、結合損失
を低減した上で、クエンチを極めて速く広幅させること
が可能となるため、大電流通電峙などにおいても焼損な
どが防止される。
It is known that the quenching speed of a superconductor can be increased by lowering the critical temperature of the superconductor. Therefore, the superconducting wire of the present invention uses a metal with high electrical resistance as a matrix, reduces coupling loss, and can achieve extremely fast and wide quenching. is prevented.

また、上述したような超電導線材を用いて構成した本発
明の超電導コイルは、結合損失を低減してたとえば交流
での使用に適合させた上で、焼損などが生じる危険性が
極めて小さくなり、実用性が向上する。また、クエンチ
伝播速度が速いことを利用した超電導電力機器などへの
応用が可能となる。
In addition, the superconducting coil of the present invention constructed using the above-mentioned superconducting wire material reduces coupling loss and is suitable for use in, for example, alternating current, and the risk of burnout is extremely small, making it suitable for practical use. Improves sex. In addition, it becomes possible to apply it to superconducting power equipment, etc., which takes advantage of the high quench propagation speed.

(実施例) 次に、本発明の超電導線材および超電導コイルの実施例
について説明する。
(Example) Next, examples of the superconducting wire and superconducting coil of the present invention will be described.

まず、本発明の超電導線材および超電導コイルの具体的
製造例とその特性評価について説明する。
First, specific manufacturing examples of the superconducting wire and superconducting coil of the present invention and evaluation of their characteristics will be described.

実施例 外径50−■×内径40■−の10%N1−Cu合金か
らなるバイブ内に、強磁性体としてNlを0.5重量%
含Hする外径40■■のNb−T1合金からなる超電導
芯線を神人し、これに減面加工を施しつつ断面六角形状
に加工した。次に、これを多数本束ね、同様な10%N
1−Cu合金からなるパイプ内に押入して線引き加工を
行った。そして、これらを繰り返し行って、外径0.9
■で10%N1−Cuvトリックス内にN1含有Nb−
Tl芯線を多数埋設した( Nb−Tl芯線数:数百本
、Nb−Tl芯線平均径二0.5μm)多芯超電導線材
を作製した。
0.5% by weight of Nl as a ferromagnetic material is placed in a vibrator made of a 10% N1-Cu alloy with a diameter of 50mm and an inner diameter of 40mm.
A H-containing superconducting core wire made of Nb-T1 alloy with an outer diameter of 40 mm was processed into a hexagonal cross-section while undergoing surface reduction processing. Next, bundle many of these together and use the same 10% N
It was inserted into a pipe made of a 1-Cu alloy and subjected to wire drawing. Then, by repeating these steps, the outer diameter was 0.9.
■ Nb- containing N1 in 10% N1-Cuv trix
A multicore superconducting wire in which a large number of Tl core wires were embedded (number of Nb-Tl core wires: several hundred, Nb-Tl core wire average diameter 20.5 μm) was produced.

このようにして得た多芯超電導線材の臨界温度・Tcを
測定したところ8.6にと、Nb−Ti合金の臨界温度
9.3により低下していることを確認した。
When the critical temperature Tc of the multicore superconducting wire thus obtained was measured, it was found to be 8.6, which was lower than the critical temperature of the Nb-Ti alloy, which was 9.3.

ここで、上述した超電導線材の製造工程において、Nb
−Tl芯線径を変化させることによって、超電導線材中
におけるNiの相対的な含有量を変化させた多芯超電導
線材を複数作製し、これらの臨界温度・Tcをそれぞれ
測定した。その結果を第1図に示す。
Here, in the manufacturing process of the superconducting wire mentioned above, Nb
-Tl A plurality of multicore superconducting wires were produced in which the relative content of Ni in the superconducting wire was changed by changing the core wire diameter, and the critical temperature/Tc of each was measured. The results are shown in FIG.

同図から明らかなように、Nlの含有量すなわち強磁性
体の含有量が増大することによって臨界温度・Tcがよ
り低下し、Nlの含有量を0.2重量%以上とすること
が臨界温度の低下に有効であることが分る。
As is clear from the figure, as the content of Nl, that is, the content of ferromagnetic material increases, the critical temperature/Tc decreases further. It is found that this method is effective in reducing the

次に、上記多芯超電導線材を巻枠に無誘導巻きし、超電
導コイルを作製した。
Next, the multicore superconducting wire was non-inductively wound around a winding frame to produce a superconducting coil.

このようにして得た超電導コイルを用いて交流運転(5
011z) L、クエンチ試験を行った。第2図に上記
超電導コイルのクエンチ時の電流、電圧および抵抗値の
時間変化を示す。
Using the superconducting coil obtained in this way, AC operation (5
011z) L. A quench test was conducted. FIG. 2 shows the temporal changes in the current, voltage, and resistance value of the superconducting coil during quenching.

第2図からも分るように、この実施例による超電導コイ
ルは、!、5kg/秒と極めて速いクエンチ伝播速度で
クエンチし、またクエンチ時に焼損することもなかった
As can be seen from Fig. 2, the superconducting coil according to this embodiment is! , quenched at an extremely fast quench propagation speed of 5 kg/sec, and was not burnt out during quenching.

このように、この実施例の超電導コイルは、超電導線材
のNb−Tl芯線中に強磁性体としてNlを含(i−し
ていることから、第1図からも明らかなように臨界温度
が低下し、これによってクエンチを極めて速い速度で伝
播させることが可能となる。よって、大電流通電時など
においても焼損が生じることを防止することが可能とな
る。また、超電導線材のマトリックス材として、比抵抗
が大きい10%N1−Cu合金(1,4XlO−5Ω・
c−)を用いていることから結合J!失も低減されてお
り、交流での使用に適合したものである。
In this way, the superconducting coil of this example contains Nl as a ferromagnetic material in the Nb-Tl core wire of the superconducting wire, so as is clear from FIG. 1, the critical temperature is lowered. This makes it possible to propagate the quench at an extremely high speed.Therefore, it is possible to prevent burnout even when a large current is applied.In addition, as a matrix material for superconducting wires, it is possible to 10%N1-Cu alloy with high resistance (1,4XlO-5Ω・
c-), the combination J! It also has reduced losses and is suitable for use in alternating current.

比較例 上記実施例におけるNb−Tl芯線径を0.5μ−とす
ることによってNl含有量を0.2重量%以下とした以
外は同様の多芯超電導線材を作製し、これを用いて同様
に超電導コイルを作製した。
Comparative Example A multifilamentary superconducting wire similar to that of the above example was prepared except that the Nb-Tl core wire diameter was set to 0.5 μ- to reduce the Nl content to 0.2% by weight or less, and the same procedure was carried out using this. We created a superconducting coil.

このようにして得た超電導コイルについても、上記実施
例と同様に交流運転(50Hz)下でクエンチ試験を行
ったところ、クエンチ伝播速度はIJs/秒と極めて遅
く、またかなりの確率で焼損が発生した。
When the superconducting coil obtained in this way was also subjected to a quench test under AC operation (50 Hz) in the same manner as in the above example, the quench propagation velocity was extremely slow at IJs/sec, and there was a high probability of burnout. did.

次に、本発明の超電導コイルの一使用例として、交流用
限流器について説明する。
Next, as an example of the use of the superconducting coil of the present invention, an AC current limiter will be described.

第3図は、本発明の一実施例の超電導コイルを用いた交
流用限流器およびそれを組み込んだ試験回路の等価図で
ある。
FIG. 3 is an equivalent diagram of an AC current limiter using a superconducting coil according to an embodiment of the present invention and a test circuit incorporating the same.

同図において、1は交流用限流器であり、この交流用限
流器1は、互いに無誘導に巻き、かつ並列に接続した限
流コイル2とトリガコイル3とによって構成されている
。これら限流コイル2およびトリガコイル3ともに、本
発明の超電導コイルによって形成したものであり、前述
した実施例と同様に、10%N1−Cu7トリツクス内
にNl含有Nb−Ti芯線を多数挫設した多芯超電導線
材で形成されている。
In the figure, reference numeral 1 denotes an AC current limiter, and this AC current limiter 1 is composed of a current limiting coil 2 and a trigger coil 3 that are wound non-inductively and connected in parallel. Both the current limiting coil 2 and the trigger coil 3 are formed by the superconducting coil of the present invention, and as in the above-mentioned embodiment, a large number of Nl-containing Nb-Ti core wires are stranded in a 10% N1-Cu7 trix. It is made of multicore superconducting wire.

ここで、トリがコイル3を構成する超電導線材は、交流
用限流器1にこれを作動させるべき電流i が流れる際
に、トリがコイル3に流れる電流p i2がその臨界電流となるように設定されている。
Here, the superconducting wire of which the bird constitutes the coil 3 is such that when the current i that should activate the current limiter 1 flows through the AC current limiter 1, the current p i2 flowing through the bird coil 3 becomes its critical current. It is set.

上記交流用限流器1は、以下のように動作する。The AC current limiter 1 operates as follows.

すなわち、交流用限流器1は限流コイル2およびトリガ
コイル3が超電導状態にあるかぎり、外部から見たイン
ピーダンスは零となり、回路中には負荷4の抵抗に応じ
て電流が流れる。そして、交流用限流器1に流れる電流
がこれを作動させるべき電流i を超えると、トリガコ
イル3がクエンp チし、限流コイル2の無誘導性が失われる。したがって
、限流コイル2のインダクタンスで決まるインピーダン
スが瞬時に短絡回路中に現れ、短絡電流が限流される。
That is, as long as the current limiting coil 2 and the trigger coil 3 are in a superconducting state, the AC current limiter 1 has zero impedance when viewed from the outside, and a current flows in the circuit according to the resistance of the load 4. Then, when the current flowing through the AC current limiter 1 exceeds the current i that should activate it, the trigger coil 3 is quenched, and the non-inductive property of the current limiter coil 2 is lost. Therefore, an impedance determined by the inductance of the current limiting coil 2 appears instantaneously in the short circuit, and the short circuit current is limited.

上記構成の交流用限流器1を第3図に示した回路中組み
込み、以下の方法にしたがって動作試験を行った。
The AC current limiter 1 having the above configuration was installed in the circuit shown in FIG. 3, and an operation test was conducted according to the following method.

まず、負荷4としてlOΩの抵抗を回路中に入れ、これ
と並列にスイッチ5を接続しておく。そして、電源6か
ら電圧toovの交流電力を供給し、回路中に負荷4に
基づ< IOAの電流を流す。
First, a resistor of 10Ω is inserted into the circuit as the load 4, and a switch 5 is connected in parallel with it. Then, AC power of voltage toov is supplied from the power source 6, and a current of <IOA is caused to flow in the circuit based on the load 4.

ここで、スイッチ5を投入して短絡電流を流し、その際
の交流用限流器1の動作状態を調べた。試験結果として
、トリガコイル3における電流の変化を第4図に示す。
Here, the switch 5 was turned on to cause a short circuit current to flow, and the operating state of the AC current limiter 1 at that time was examined. As a result of the test, changes in the current in the trigger coil 3 are shown in FIG.

第4図から明らかなように、スイッチ5を投入しトリガ
コイル3の電流が28A(設定臨界電流)に達した際に
、トリガコイル3はクエンチし、111秒以下でトリガ
コイル3の電流がIA以下に減衰していることが分る。
As is clear from FIG. 4, when the switch 5 is turned on and the current in the trigger coil 3 reaches 28A (set critical current), the trigger coil 3 is quenched, and within 111 seconds the current in the trigger coil 3 is reduced to IA. It can be seen that the attenuation is shown below.

そして、この時限流コイル2には、設定どうりの200
4の電流が流れていることを確認した。
Then, this time-limited current coil 2 has 200
It was confirmed that the current of 4 was flowing.

上記実施例の交流用限流器1の動作特性は、トリがコイ
ル3のクエンチ伝播速度が大きく関与する。つまり、ト
リガコイル3を1−秒以下というような速さでクエンチ
させることより、瞬時に限流コイル2によるインピーダ
ンスを短絡回路中に出現させることが可能となる。そし
て、上記実施例の交流用限流器1においては、トリがコ
イル3として10%N1−Cuマトリックス内にNl含
有Nb−Tl芯線を多数理設した多芯超電導線材で構成
した超電導コイルを用いていることから、クエンチ伝播
速度が極めて大きく、よって瞬時に短絡電流を限流する
ことが可能となる。
The operating characteristics of the AC current limiter 1 of the above embodiment are largely influenced by the quench propagation speed of the coil 3. That is, by quenching the trigger coil 3 at a speed of 1 second or less, it is possible to instantaneously cause impedance due to the current limiting coil 2 to appear in the short circuit. In the AC current limiter 1 of the above embodiment, a superconducting coil made of a multicore superconducting wire in which a large number of Nb-Tl core wires containing Nl are provided in a 10% N1-Cu matrix is used as the coil 3. Because of this, the quench propagation speed is extremely high, making it possible to instantaneously limit the short-circuit current.

なお、上記各実施例では強磁性体としてN1を含Gする
Nb−Tl芯線をマトリックス中に多数理設した超電導
線材を用いた例について説明したが、他の強磁性体たと
えばPcやcoなどを用いた際にも同様の効果が得られ
た。
In each of the above embodiments, an example using a superconducting wire in which a large number of Nb-Tl core wires containing N1 and G as a ferromagnetic material was provided in the matrix was explained, but other ferromagnetic materials such as Pc and co A similar effect was obtained when using

[発明の効果] 以上説明したように本発明によれば、Nb−Ti超電導
芯線中に添加された強磁性体が超電導線材の臨界温度を
低下させ、これによってクエンチ伝播速度を著しく向上
させることが可能となる。よって、高電気抵抗をHする
金属マトリックスによって結合損失を代減した上で、大
電流通電時などにおいても焼損などを防止することが可
能となる。
[Effects of the Invention] As explained above, according to the present invention, the ferromagnetic material added to the Nb-Ti superconducting core lowers the critical temperature of the superconducting wire, thereby significantly improving the quench propagation speed. It becomes possible. Therefore, it is possible to reduce the coupling loss by using the metal matrix with high electrical resistance and to prevent burnout even when a large current is applied.

また、超電導コイルにあっては、クエンチを極めて速く
広幅させることが可能となることから、特性の向上が図
れる。
Furthermore, in the case of superconducting coils, it is possible to widen the quench extremely quickly, thereby improving the characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例による超電導線材のNl含有量
と臨界温度との関係を示すグラフ、第2図は本発明の一
実施例による超電導コイルのクエンチ時の電流、電圧お
よび抵抗値の時間変化を示すグラフ、第3図は本発明の
超電導コイルを用いて構成した交流用限流器およびそれ
を組み込んだ試験回路の等価図、第4図はそれを用いた
試験結果を示すグラフである。 1・・・・・・交流用限流器、2・・・・・・本発明の
超電導コイルからなる限流コイル、3・・・・・・本発
明の超電導コイルからなるトリガコイル、4・・・・・
・抵抗、5・・・・・・スイッチ、6・・・・・・交流
電源。
FIG. 1 is a graph showing the relationship between the Nl content and critical temperature of a superconducting wire according to an embodiment of the present invention, and FIG. 2 is a graph showing the relationship between the current, voltage, and resistance during quenching of a superconducting coil according to an embodiment of the present invention. A graph showing changes over time, Figure 3 is an equivalent diagram of an AC current limiter constructed using the superconducting coil of the present invention and a test circuit incorporating it, and Figure 4 is a graph showing test results using the same. be. 1... AC current limiter, 2... Current limiting coil made of the superconducting coil of the present invention, 3... Trigger coil made of the superconducting coil of the present invention, 4...・・・・・・
・Resistor, 5...Switch, 6...AC power supply.

Claims (2)

【特許請求の範囲】[Claims] (1)高電気抵抗を有する金属マトリックス内に、Nb
−Ti合金からなる超電導芯線を埋設してなる超電導線
材において、 前記超電導芯線が強磁性体を含有することを特徴とする
超電導線材。
(1) Nb in a metal matrix with high electrical resistance
- A superconducting wire comprising a buried superconducting core wire made of a Ti alloy, characterized in that the superconducting core wire contains a ferromagnetic material.
(2)請求項1記載の超電導線材を巻回してなることを
特徴とする超電導コイル。
(2) A superconducting coil characterized by being formed by winding the superconducting wire according to claim 1.
JP31969889A 1989-12-08 1989-12-08 Superconducting wire and superconducting coil using the same Expired - Fee Related JP3154711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31969889A JP3154711B2 (en) 1989-12-08 1989-12-08 Superconducting wire and superconducting coil using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31969889A JP3154711B2 (en) 1989-12-08 1989-12-08 Superconducting wire and superconducting coil using the same

Publications (2)

Publication Number Publication Date
JPH03182013A true JPH03182013A (en) 1991-08-08
JP3154711B2 JP3154711B2 (en) 2001-04-09

Family

ID=18113185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31969889A Expired - Fee Related JP3154711B2 (en) 1989-12-08 1989-12-08 Superconducting wire and superconducting coil using the same

Country Status (1)

Country Link
JP (1) JP3154711B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7193854B2 (en) 2019-06-17 2022-12-21 株式会社東和電機製作所 fishing light device

Also Published As

Publication number Publication date
JP3154711B2 (en) 2001-04-09

Similar Documents

Publication Publication Date Title
EP0724274A2 (en) Superconductive fault current limiters
EP1524748A1 (en) Superconducting current limiting device with magnetic field assisted quenching
Ito et al. 6.6 kV/1.5 kA-class superconducting fault current limiter development
JPH02174523A (en) Fault current limiter
Thieme et al. Nb-Al powder metallurgy processed multifilamentary wire
JPH03182013A (en) Superconductive wire and superconductive coil using it
Verhaege et al. A new class of AC superconducting conductors
JP3866926B2 (en) Powder method Nb (3) Superconducting connection structure manufacturing method using Sn superconducting wire
Amemiya et al. Stability analysis of multi-strand superconducting cables
Karasev et al. Study of low loss experimental superconducting Nb-Ti wires to be used in FAIR magnets
US5168125A (en) Superconductor protected against partial transition
Verhaege et al. Protection of superconducting AC windings
JPH06150993A (en) Nbti alloy superconducting wire with connection section
Honcharov et al. Consideration of Appliance Superconductors in Inductive Short Circuit Current Limiter
Scanlan et al. Multifilamentary Nb 3 Sn for superconducting generator applications
Gregory et al. Some properties of NbTiTa ternary alloys
JPH0384815A (en) Nb3 sn multicore superconductive wire for alternating current
Duchateau et al. Coupling losses in cables for fusion application: influence of the strand
Lacaze et al. Coil performances of superconducting cables of AC applications
Potanina et al. Recent progress of low temperature superconducting materials at Bochvar Institute
Eckert et al. AV 3 Ga-NbTi magnet system with different currents from one power supply
Kajikawa et al. Magnetic‐shield type superconducting fault current limiter with high Tc superconductors
Okada et al. Strain effects in cabled and braided" in situ" formed Nb 3 Sn conductors
JPH07122133A (en) Oxide superconductor and manufacture thereof
Vedernikov et al. NbTi superconductors designed for AC operation

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees