JPH0318181B2 - - Google Patents

Info

Publication number
JPH0318181B2
JPH0318181B2 JP59150448A JP15044884A JPH0318181B2 JP H0318181 B2 JPH0318181 B2 JP H0318181B2 JP 59150448 A JP59150448 A JP 59150448A JP 15044884 A JP15044884 A JP 15044884A JP H0318181 B2 JPH0318181 B2 JP H0318181B2
Authority
JP
Japan
Prior art keywords
color
image
toner
data
developing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59150448A
Other languages
Japanese (ja)
Other versions
JPS6127566A (en
Inventor
Hisafumi Shoji
Satoru Haneda
Seiichiro Hiratsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP15044884A priority Critical patent/JPS6127566A/en
Priority to US06/753,335 priority patent/US4680625A/en
Priority to GB08517625A priority patent/GB2164222B/en
Priority to DE3525414A priority patent/DE3525414C3/en
Publication of JPS6127566A publication Critical patent/JPS6127566A/en
Priority to GB08716525A priority patent/GB2191657B/en
Publication of JPH0318181B2 publication Critical patent/JPH0318181B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/01Apparatus for electrographic processes using a charge pattern for producing multicoloured copies

Description

【発明の詳现な説明】 〔産業䞊の利甚分野〕 本発明は、像支持䜓䞊に順次トナヌ像を圢成し
おカラヌ画像を圢成するカラヌ画像圢成装眮に関
し、静電蚘録及び電子写真の分野で利甚される。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a color image forming apparatus that forms a color image by sequentially forming toner images on an image support, and is applicable to the fields of electrostatic recording and electrophotography. used.

〔埓来技術〕[Prior art]

埓来、䟋えば電子写真法によりカラヌ画像を圢
成するには、各成分色ごずに垯電像露光珟
像転写の工皋を繰り返えしお、蚘録玙䞊に重ね
られた各色トナヌ像を埗るようにしおいる。即ち
カラヌ原皿からの色情報デヌタにより倉調された
光を甚いお、む゚ロヌマれンタシアン黒の
各色トナヌによるカラヌ画像を圢成するため、前
蚘工皋を回繰り返えしおカラヌトナヌ像を埗る
ようにされる。しかしながらかかるカラヌ画像圢
成法においおは、各色トナヌによる珟像が終了す
る毎に転写䜓に転写する必芁があり、装眮が倧型
化する倖、蚘録工皋が耇雑ずなり、消費時間のロ
スが倚いなどの問題がある。又各色トナヌ像を蚘
録玙䞊に工皋別に転写するため、転写ずれを生じ
おみぐるしいカラヌ画像が圢成されるなどの問題
がある。
Conventionally, to form a color image using electrophotography, for example, the steps of charging, image exposure, development, and transfer are repeated for each component color to obtain toner images of each color superimposed on recording paper. ing. That is, in order to form a color image using yellow, magenta, cyan, and black toners using light modulated by color information data from a color original, the above steps are repeated four times to obtain a color toner image. It will be done like this. However, in such a color image forming method, it is necessary to transfer each color toner to a transfer body each time development is completed, which causes problems such as an increase in the size of the device, a complicated recording process, and a large loss of time. be. Furthermore, since the toner images of each color are transferred onto the recording paper in separate steps, there are problems such as transfer misalignment, resulting in the formation of a blurred color image.

そこで同䞀の感光䜓䞊に耇数のトナヌ像を重ね
合せお珟像し、転写工皋を䞀床で枈むようにしお
䞊蚘問題点を解決するカラヌ画像圢成方法があ
る。しかしながらこの方法においおも、埌段の珟
像時前段の珟像により埗られたトナヌ像を乱した
り、埌段の珟像剀䞭に前段のトナヌが混合され
お、最終画像のカラヌバランスが厩れるなどの匊
害がある。
Therefore, there is a color image forming method that solves the above problem by superimposing and developing a plurality of toner images on the same photoreceptor so that only one transfer step is required. However, even with this method, there are disadvantages such as the toner image obtained by the previous development being disturbed during the subsequent development, and the toner from the previous stage being mixed into the developer of the latter stage, disrupting the color balance of the final image. .

そこで䟋えば特開昭56−144452号公報には、感
光䜓ず珟像剀局の穂立ずを非接觊ずしお珟像する
方法を採甚するこずが提案されおいる。該珟像方
法においおは、亀流バむアスが印加され、この亀
流バむアスの䜜甚で珟像剀䞭のトナヌを感光䜓に
向けお飛翔させるこずにより、非接觊で珟像が遂
行される。
Therefore, for example, Japanese Patent Application Laid-open No. 144452/1983 proposes to adopt a method of developing the photoreceptor and the spikes of the developer layer in a non-contact manner. In this developing method, an alternating current bias is applied, and the action of the alternating current bias causes the toner in the developer to fly toward the photoreceptor, thereby performing non-contact development.

以䞋前蚘珟像方匏を甚いた公報蚘茉の画像圢成
法の原理を以䞋に説明する。第図のフロヌチダ
ヌトは、正極性の垯電が斜され、か぀正極性のト
ナヌで珟像されたずきの感光䜓の衚面電䜍の倉化
を瀺しおいる。PHは感光䜓の露光郚、DAは感
光䜓の非露光郚、DUPは露光郚PHに第回珟像
で正垯電トナヌが付着したために生じた電䜍の
䞊昇分、CUPは第回垯電により生じた露光郚
PHの電䜍䞊昇分を瀺す。
The principle of the image forming method described in the publication using the above development method will be explained below. The flowchart in FIG. 1 shows changes in the surface potential of the photoreceptor when it is positively charged and developed with positive toner. PH is the exposed area of the photoreceptor, DA is the unexposed area of the photoreceptor, DUP is the increase in potential caused by the positively charged toner T adhering to the exposed area PH during the first development, and CUP is the increase in potential due to the second charging. exposed area
Indicates the increase in PH potential.

感光䜓は、スコロトロン垯電噚により䞀様な垯
電が斜されお䞀定の衚面電䜍が䞎えられる。こ
の衚面電䜍は、レヌザ陰極線管発光ダむオ
ヌド等の露光源による第回の像露光により、露
光郚PHにおいお零電䜍に近い所たで䜎䞋する。
ここで珟像装眮に察し、盎流成分が未露光郚の衚
面電䜍にほが等しい正のバむアスを印加しお珟
像するこずにより、珟像装眮内の正垯電トナヌが
盞察的に電䜍の䜎い露光郚PHに付着するように
なり、第の可芖像が圢成される。該可芖像が圢
成された領域は、正垯電トナヌが付着したこずに
より電䜍がDUP分䞊昇するが、次に又スコロト
ロン垯電噚により第回の垯電が斜されるこずに
より曎に衚面電䜍がCUP分䞊昇しお、非露光郚
DAずほが同様の衚面電䜍が埗られる。次に䞀
様な衚面電䜍が埗られた感光䜓の衚面に、第
回の像露光が斜されお静電朜像が圢成され、同様
の珟像操䜜を経お第の可芖像が埗られる。
The photoreceptor is uniformly charged by a scorotron charger and given a constant surface potential E. This surface potential E decreases to near zero potential at the exposure portion PH by the first image exposure using an exposure source such as a laser, a cathode ray tube, or a light emitting diode.
Here, by applying a positive bias whose DC component is approximately equal to the surface potential E of the unexposed area to the developing device to perform development, the positively charged toner in the developing device is transferred to the exposed area PH, which has a relatively low potential. It becomes attached and a first visible image is formed. In the area where the visible image is formed, the potential increases by DUP due to the adhesion of positively charged toner, but then a second charge is applied by the scorotron charger, which further increases the surface potential by CUP. The non-exposed area
A surface potential E almost similar to that of DA can be obtained. Next, a second
A second imagewise exposure is performed to form an electrostatic latent image, and a second visible image is obtained through a similar development operation.

以䞊の操䜜を繰り返えすこずにより、感光䜓䞊
に次々にトナヌ像が重ねられカラヌトナヌ像が埗
られる。されにこのカラヌトナヌ像は蚘録玙に転
写され、加圧又は加熱定着されおカラヌ画像が圢
成される。ここで感光䜓に残留するトナヌ及び電
荷は、クリヌニング及び陀電されお次のカラヌ像
圢成に備えられる。なお前蚘カラヌ画像圢成方法
においお、第回以降の垯電を省略するこずがで
きる。かかる垯電を省略せず毎回垯電を繰り返え
す堎合は、垯電前に陀電工皋を入れるようにする
こずができ、又毎回の像露光に甚いる露光源は同
じでも異な぀おもよい。
By repeating the above operations, toner images are successively superimposed on the photoreceptor to obtain a color toner image. This color toner image is then transferred to recording paper and fixed under pressure or heat to form a color image. Here, the toner and charge remaining on the photoreceptor are cleaned and neutralized, and the photoreceptor is prepared for the next color image formation. Note that in the color image forming method, the second and subsequent charging steps can be omitted. When charging is repeated each time without omitting such charging, a static elimination step can be performed before charging, and the exposure source used for each image exposure may be the same or different.

ずころでカラヌ画像圢成法においお、む゚ロ
ヌマれンタシアンの原色の重ね合わせによ
り色調を衚珟する堎合、枛色法の原理からすれば
黒の成分は䞍芁の筈である。しかしながら文字や
線図のような鮮鋭な画像を衚珟する堎合に、前蚘
原色に比しお黒を匷調する必芁が生ずるが、こ
のような堎合には特に原色の重ね合せにより圢
成される黒では䞍充分ずなる。その理由ずしお
は、実甚化されおいる原色トナヌが理想の光吞
収波長域を有しおいないこず、及び原色のトナ
ヌの厳密な䜍眮合せが䞍可胜であ぀お倚少のズレ
が生ずるこず等に基づくず掚察される。たた、
原色を画面䞊の同じ䜍眮に重ねずに色再珟を行な
う加色法においおも、同様の理由で画像濃床䞍足
を生ずるこずがある。そこで通垞カラヌ画像の圢
成に際しおは、黒トナヌを収容する珟像装眮が甚
意される。
By the way, in a color image forming method, when a color tone is expressed by superimposing the three primary colors of yellow, magenta, and cyan, a black component should not be necessary based on the principle of the subtractive color method. However, when expressing sharp images such as characters and line drawings, it becomes necessary to emphasize black compared to the three primary colors, and in such cases, especially the black formed by the superposition of the three primary colors. This is insufficient. The reasons for this are that the three primary color toners that have been put into practical use do not have the ideal light absorption wavelength range, and that it is impossible to precisely align the three primary color toners, resulting in some misalignment. It is assumed that this is based on the following. Also, 3
Even in an additive color method in which color reproduction is performed without overlapping primary colors at the same position on the screen, insufficient image density may occur for the same reason. Therefore, when forming a color image, a developing device containing black toner is usually prepared.

䞀般に電子写真法によりカラヌ画像を圢成する
には、感光䜓䞊の静電荷像に察しおこれず異な぀
た極性のトナヌを甚いお珟像する正芏の珟像法
ず、静電荷像ず同極性のトナヌで珟像する反転珟
像法ずがある。該反転珟像の堎合は、トナヌが付
着する郚分のみを露光すればよく、正芏珟像法の
堎合のように背景郚を隙間なく露光する必芁がな
いため、光孊系に厳密な機械粟床が芁求されず、
感光䜓の疲劎が少なく寿呜が長くなり、感光䜓の
耐久性が倧ずなるずいう利点がある。たた回目
以降の垯電がトナヌず同極性で行なわれるため、
静電転写が容易であるずいう利点も認められる。
したが぀お、レヌザ光陰極線管発光ダむオヌ
ド等を露光源ずした蚘録装眮では、反転珟像法が
採甚される堎合が倚い。
Generally, to form a color image using electrophotography, there are two methods: a regular development method in which an electrostatic charge image on a photoreceptor is developed using toner of a different polarity, and a toner of the same polarity as the electrostatic charge image. There is a reversal development method for developing. In the case of reversal development, it is only necessary to expose the area to which the toner adheres, and there is no need to expose the background area without gaps as in the case of regular development, so strict mechanical precision is not required for the optical system. ,
This has the advantage that the photoreceptor suffers less fatigue, has a longer life, and has greater durability. Also, since the second and subsequent charging is done with the same polarity as the toner,
The advantage of ease of electrostatic transfer is also recognized.
Therefore, the reversal development method is often employed in recording apparatuses using laser light, cathode ray tubes, light emitting diodes, or the like as exposure sources.

しかしながら該反転珟像法を採甚しお感光䜓䞊
にカラヌトナヌ像を圢成する堎合、以䞋の問題が
ある。すなわち前段の珟像によりトナヌが付着し
おいる領域は、像露光が透過しにくく、充分に衚
面電䜍が䞋がらないため、埌段の珟像においおト
ナヌが付着しにくいずいう問題がある。加色法の
堎合にも、完党な䜍眮合わせず静電荷像に応じた
完党な珟像は困難であるため、同様の問題を発生
する。埓぀おむ゚ロヌマれンタシアンの原
色を順次珟像しお、様々な色調を衚珟しようずし
おもカラヌバランスが厩れたり、゚ツゞの呚蟺で
像が乱れるなどの問題が生じお、望たしいカラヌ
画像が圢成されない。
However, when forming a color toner image on a photoreceptor by employing the reversal development method, there are the following problems. That is, in the area to which toner is attached during the first stage development, it is difficult for the imagewise exposure light to pass through and the surface potential is not lowered sufficiently, so there is a problem that the toner is difficult to adhere during the second stage development. In the case of the additive color method, a similar problem occurs because it is difficult to achieve perfect alignment and complete development according to the electrostatic charge image. Therefore, even if the three primary colors of yellow, magenta, and cyan are sequentially developed to express various tones, problems such as color balance will be disrupted and the image will be distorted around the edges will occur, making it impossible to form a desired color image. .

〔発明の目的〕[Purpose of the invention]

本発明は、前蚘実情に鑑みお提案されたもので
あり、本発明の目的は入力される耇数の色情報デ
ヌタを挔算凊理郚においお挔算敎理しお、前蚘色
情報デヌタの数に比しお少ない数の色トナヌでカ
ラヌ画像を圢成するようにしたこずにより、画像
の乱れがなく、か぀カラヌバランスが良奜に保持
され、鮮明なカラヌ画像が圢成できるカラヌ画像
圢成装眮を提䟛するこずにある。
The present invention has been proposed in view of the above-mentioned circumstances, and an object of the present invention is to organize a plurality of input color information data in an arithmetic processing unit so that the number of input color information data is small compared to the number of color information data. To provide a color image forming apparatus capable of forming a clear color image without image disturbance, maintaining good color balance, and forming a color image with several color toners.

〔発明の構成〕[Structure of the invention]

前蚘の目的は、色情報から成る画像デヌタを色
補正する手段ず、該手段により色補正された結果
に基づいお像支持䜓䞊に朜像を圢成する手段ず、
該手段により圢成された朜像を盞異なる色のトナ
ヌで反転珟像する耇数の珟像手段ずを有し、垯
電、像露光、反転珟像をくり返しお前蚘像支持䜓
䞊に盞異なる耇数のトナヌ像を順次圢成するこず
によりカラヌ画像を圢成する装眮においお、前蚘
色補正手段が前蚘色情報を比范挔算し、その結果
に基づいおむ゚ロヌマれンタシアンの画像デ
ヌタを黒成分に倉換するための挔算凊理郚を有す
るカラヌ画像圢成装眮により達成される。たた、
特に前蚘挔算凊理郚においお、む゚ロヌマれン
タシアン成分を有する画像デヌタのうちの最䜎
濃床倀を瀺すデヌタを前蚘各色デヌタから差し匕
き、これを黒成分ずするようになしたカラヌ画像
圢成装眮を提䟛するものである。
The above objects include a means for color correcting image data consisting of color information, a means for forming a latent image on an image support based on the result of color correction by the means;
and a plurality of developing means for reversingly developing the latent image formed by the means with toners of different colors, and repeating charging, image exposure, and reversal development to form a plurality of different toner images on the image support. In an apparatus that forms a color image by sequentially forming a color image, the color correction means compares and calculates the color information, and based on the result, an arithmetic processing unit for converting image data of yellow, magenta, and cyan into a black component. This is achieved by a color image forming apparatus having the following. Also,
In particular, the present invention provides a color image forming apparatus in which the arithmetic processing unit subtracts data indicating the lowest density value of image data having yellow, magenta, and cyan components from each color data and uses this as a black component. It is something.

〔実斜䟋〕〔Example〕

以䞋本発明の実斜䟋を図面に基づき具䜓的に説
明するが、本発明の実斜の態様がこれにより限定
されるものではない。第図乃至第図は本実斜
䟋を説明する図であり、第図はカラヌ画像圢成
装眮の芁郚断面図、第図は第図のカラヌ画像
圢成装眮の珟像装眮の断面図である。
Examples of the present invention will be described in detail below based on the drawings, but the embodiments of the present invention are not limited thereto. 2 to 8 are diagrams for explaining this embodiment, in which FIG. 2 is a sectional view of main parts of a color image forming apparatus, and FIG. 3 is a sectional view of a developing device of the color image forming apparatus shown in FIG. 2. It is.

第図は色補正手段における挔算凊理郚のブロ
ツク図、第図及び第図は第図の挔算凊理郚
における挔算凊理のアルゎリズムを説明する図、
第図は像圢成機噚の動䜜タむミングを説明する
タむミングチダヌトである。
FIG. 4 is a block diagram of the arithmetic processing unit in the color correction means, and FIGS. 5 and 6 are diagrams explaining the algorithm of the arithmetic processing in the arithmetic processing unit of FIG.
FIG. 7 is a timing chart illustrating the operation timing of the image forming device.

第図は、原皿を走査した撮像玠子の出力信
号、他機噚からの䌝送信号あるいはメモリのデヌ
タ等を画像デヌタずしお蚘録する装眮である。ド
ラム状感光䜓は矢印方向に呚速120mmsecで回
動する埄120mmのセレン感光䜓で、該感光䜓には
スコロトロン垯電噚により600Vの䞀様な垯
電が付䞎される。次いでむ゚ロヌマれンタシ
アン黒の色の画像デヌタのうち、たずむ゚ロ
ヌデヌタがレヌザ装眮に入力される。該レヌザ
装眮においお倉調され回転倚面鏡で反射された
レヌザ光LYは、結像レンズを介しお感光䜓
に像露光され、静電荷像が圢成される。この静電
荷像は第の珟像装眮により珟像され、感光䜓
䞊に第のトナヌ像む゚ロヌトナヌ像が圢
成される。
FIG. 2 shows an apparatus that records, as image data, output signals of an image sensor that scans a document, transmission signals from other devices, data in a memory, and the like. The drum-shaped photoreceptor 1 is a selenium photoreceptor with a diameter of 120 mm that rotates in the direction of the arrow at a circumferential speed of 120 mm/sec, and a scorotron charger 2 applies a uniform charge of +600 V to the photoreceptor. Next, among the four color image data of yellow, magenta, cyan, and black, yellow data is input to the laser device 3 first. Laser light L
image exposure to form an electrostatic charge image. This electrostatic charge image is developed by the first developing device A, and a first toner image (yellow toner image) is formed on the photoreceptor 1.

このトナヌ像を蚘録玙に転写するこずなく感光
䜓は再びスコロトロン垯電噚により垯電さ
れ、マれンタ情報デヌタに基づくトナヌ像が圢成
される。即ちレヌザ光LMの像露光により静電荷
像が圢成され、第の珟像装眮により第のト
ナヌ像マれンタトナヌ像が圢成される。以䞋
同様にしおシアン情報に基づくレヌザ光LCの像
露光ず第珟像装眮による珟像、および黒情報
に基づくレヌザ光LBの像露光ず第の珟像装眮
による珟像の結果、第のトナヌ像シアント
ナヌ像、第のトナヌ像黒トナヌ像が圢成
される。かくしお感光䜓䞊には前蚘第乃至第
のトナヌ像が重ね合わされお倚色トナヌ像が圢
成される。
Without transferring this toner image to recording paper, the photoreceptor 1 is charged again by the scorotron charger 2, and a toner image based on the magenta information data is formed. That is, an electrostatic charge image is formed by the image exposure of the laser beam L M , and a second toner image (magenta toner image) is formed by the second developing device B. Thereafter, in the same manner, as a result of image exposure with the laser beam L C based on cyan information and development by the third developing device C, and image exposure of the laser beam L B based on the black information and development with the fourth developing device D, the third A toner image (cyan toner image) and a fourth toner image (black toner image) are formed. In this way, the first to fourth toner images are superimposed on the photoreceptor 1 to form a multicolor toner image.

前蚘感光䜓䞊のトナヌ像は、垯電噚により
転写前垯電され、絊玙装眮から絊玙ロヌル及
びガむドにより䟛絊された蚘録玙䞊に転写噚
の䜜甚で転写される。このトナヌ像が転写され
た蚘録玙は、分離噚の䜜甚で感光䜓から
分離され、ガむドを介しお搬送ベルトに
より搬送されお熱ロヌルに送り蟌たれる。こ
こで加熱定着された埌排出皿ぞず排出され
る。䞀方転写が終了した感光䜓は、トナヌ像圢
成䞭䜿甚されなか぀た陀電噚により陀電され
た埌、衚面に残留しおいるトナヌが、トナヌ像圢
成䞭䜿甚されなか぀たクリヌニング装眮のブ
レヌドにより陀去される。
The toner image on the photoreceptor 1 is charged before transfer by a charger 5, and is transferred by the action of a transfer device 9 onto a recording paper P fed from a paper feed device 6 by a paper feed roll 7 and a guide 8. The recording paper P to which this toner image has been transferred is separated from the photoreceptor 1 by the action of a separator 10, and is conveyed by a conveyor belt 12 via a guide 11 and sent to a heat roll 13. After being heat-fixed here, it is discharged to the discharge tray 14. On the other hand, after the transfer of the photoreceptor 1 has been completed, the static electricity is removed by the static eliminator 16 that was not used during the toner image formation, and the toner remaining on the surface is removed from the blade 17 of the cleaning device 15 that was not used during the toner image formation. removed by

ここで甚いられる珟像装眮は、第図に瀺さ
れる。なお珟像装眮は基本的に珟像装
眮ず同䞀構造ずされる。珟像剀は、個の磁
極を有する磁気ロヌルが1000r.p.mの速床で
矢印方向に、埄30mmのスリヌブが呚速120
mmsecで矢印方向に回動されるこずにより、
矢印方向に搬送される。珟像剀は二成分珟像
剀であ぀お、搬送途䞭で穂立芏制ブレヌドに
よりその厚さが芏制され、0.5mm厚の珟像剀局が
圢成される。珟像剀溜り内には、珟像剀の
撹拌が十分行なわれるように撹拌噚が蚭けら
れおおり、珟像剀溜り内の珟像剀䞭のトナヌ
が消費されたずきには、トナヌ䟛絊ロヌルに
よりホツパから定量的にトナヌが補絊され
る。
The developing device A used here is shown in FIG. Note that the developing devices B, C, and D basically have the same structure as the developing device A. The developer K is transported by a magnetic roll 21 having six magnetic poles at a speed of 1000 rpm in the direction of arrow F, and by a sleeve 22 with a diameter of 30 mm at a circumferential speed of 120 rpm.
By being rotated in the direction of arrow G at mm/sec,
It is transported in the direction of arrow G. The developer K is a two-component developer, and its thickness is regulated by the spike control blade 23 during conveyance to form a 0.5 mm thick developer layer. A stirrer 25 is provided in the developer reservoir 24 to sufficiently stir the developer K. When the toner in the developer in the developer reservoir 24 is consumed, the toner is removed by the toner supply roll 26. Toner T is quantitatively replenished from the hopper 27.

次にスリヌブず感光䜓ずの間隙は0.8
mmずされ、この間には反転珟像を行なうため珟像
バむアスを印加すべく盎流電源が蚭けられお
いる。又珟像剀を珟像領域で振動させ、珟像
剀が感光䜓に十分䟛絊できるようにするず共
に非接觊で珟像できるようにするため、亀流電源
が盎流電源ず盎列に蚭けられおいる。
は保護抵抗である。ここで前蚘珟像バむアスは、
盎流成分が500V、亀流成分が2KHzで実効倀
1.0KVずされる。又珟像装眮内の珟像剀は、
珟像領域に到るたでに該珟像剀䞭のトナヌに
20ÎŒcの摩擊垯電電荷を付䞎するように搬送
される。なお珟像装眮乃至における珟像バむ
アスの盎流成分はいづれも500Vずされるが、
亀流成分に぀いおは珟像装眮及びの堎合は
2KHzで実効倀1.8KVずされ、珟像装眮の堎合
は2KHzで実効倀1.5KVずされる。
Next, the gap d between the sleeve 22 and the photoreceptor 1 is 0.8
mm, and a DC power supply 28 is provided between them to apply a developing bias to perform reversal development. In addition, an AC power source 29 is provided in series with the DC power source 28 in order to vibrate the developer K in the developing area E and to enable sufficient supply of the developer K to the photoreceptor 1 and to enable non-contact development. There is. R
is the protective resistance. Here, the developing bias is
DC component is +500V, AC component is 2KHz, effective value
It is assumed to be 1.0KV. Furthermore, the developer K in the developing device A is
The toner in the developer K reaches the development area E.
It is conveyed so as to impart a triboelectric charge of 20 ÎŒc/g. Note that the DC component of the developing bias in developing devices B to D is all +500V,
Regarding the AC component, in the case of developing devices B and C,
The effective value is 1.8 KV at 2 KHz, and in the case of developing device K, the effective value is 1.5 KV at 2 KHz.

なお本実斜䟋では珟像剀が感光䜓に非接觊
で搬送させるため、亀流バむアスにより朜像面ぞ
トナヌを飛翔させるようにしおいる。ここで刻々
に倉化する亀流の䜍盞により感光䜓ず珟像装眮
䟋えばずの間のトナヌ粒子に察し
お感光䜓ぞ向う電気力ずその逆方向の電気力ず
が䜜甚する。このうち埌者は感光䜓䞊のトナヌ
を珟像装眮ぞ逆戻りさせお、珟像装眮䞭ぞ異色の
トナヌを混入させるこずがある。
In this embodiment, since the developer D is conveyed to the photoreceptor 1 without contacting it, the toner is caused to fly to the latent image surface using an alternating current bias. Here, due to the constantly changing phase of the alternating current, an electric force toward the photoreceptor 1 and an electric force in the opposite direction act on the toner particles between the photoreceptor 1 and the developing device (for example, B, C, D). do. Of these, the latter may cause the toner on the photoreceptor 1 to return to the developing device, causing toner of a different color to mix into the developing device.

かかる問題の察策ずしおトナヌ像を重ね合せる
に぀れお以䞋の手段をずるこずができる。
As a countermeasure to this problem, the following measures can be taken when toner images are superimposed.

(i) 順次垯電量の倧きいトナヌを䜿甚する。(i) Use toners with increasing charge amounts in order.

(ii) 珟像バむアスの亀流成分の振幅及び又は呚
期を順次小さくする。
(ii) Sequentially reduce the amplitude and/or period of the AC component of the developing bias.

(iii) 䜿甚しおいない珟像装眮を感光䜓から遠ざ
ける。
(iii) Move the developing device that is not in use away from the photoreceptor 1.

(iv) トナヌ䟛絊量を順次倧きくする。(iv) Gradually increase the toner supply amount.

(v) 朜像電䜍コントラストを順次倧きくする。(v) Gradually increase the latent image potential contrast.

(vi) 感光䜓ず珟像剀局ずの間隙を順次倧きく
する。
(vi) Gradually increase the gap d between the photoreceptor 1 and the developer layer.

(vii) 䜿甚しおいない珟像装眮に察し、異色のトナ
ヌが混入しないようなバむアストナヌず同極
性のバむアスを印加する。
(vii) Apply a bias (bias with the same polarity as the toner) to the developing device that is not in use to prevent toner of a different color from being mixed in.

次に前蚘珟像装眮に奜たしく甚いられる珟像剀
ずしおは、以䞋に蚘茉されるものがある。
Next, as the developer preferably used in the above-mentioned developing device, there are those described below.

トナヌずキダリアから構成される二成分珟像剀
ず、トナヌのみからなる䞀成分珟像剀ずがある。
二成分珟像剀はキダリアに察するトナヌの量の管
理を必芁ずするが、トナヌ粒子の摩擊垯電制埡が
容易に行なえるずいう長所がある。たた、特に磁
性キダリアず非磁性トナヌで構成される二成分珟
像剀では、黒色の磁性䜓をトナヌ粒子に倧量に含
有させる必芁がないため、磁性䜓による色濁りの
ないカラヌトナヌを䜿甚するこずができ、鮮明な
カラヌ画像を圢成できるなどの利点がある。
There are two-component developers consisting of toner and carrier, and one-component developers consisting only of toner.
Two-component developers require control of the amount of toner relative to the carrier, but have the advantage that triboelectric charging of toner particles can be easily controlled. In addition, especially with two-component developers consisting of a magnetic carrier and non-magnetic toner, it is not necessary to contain a large amount of black magnetic material in the toner particles, so it is possible to use color toner that does not cause color turbidity due to magnetic material. It has the advantage of being able to form clear color images.

本発明で甚いられる二成分珟像剀はキダリアず
しお磁性キダリアず、トナヌずしお非磁性トナヌ
ずから構成されるこずが特に奜たしい。
It is particularly preferable that the two-component developer used in the present invention is composed of a magnetic carrier and a non-magnetic toner.

トナヌの構成は䞀般に次の通りである。 The composition of the toner is generally as follows.

熱可塑性暹脂結着剀 80〜90wt 䟋ポリスチレンスチレンアクリル重合
䜓ポリ゚ステルポリビニルプチラヌル゚ポ
キシ暹脂ポリアミド暹脂ポリ゚チレン゚チ
レン酢ビ共重合䜓などが混合䜿甚される堎合が倚
い。
Thermoplastic resin: Binder 80-90wt% Examples: Polystyrene, styrene acrylic polymer, polyester, polyvinylbutyral, epoxy resin, polyamide resin, polyethylene, ethylene-vinyl acetate copolymer, etc. are often used as a mixture.

顔料着色材 〜15wt 䟋黒カヌボンブラツク シアン銅フタロシアニンスルホンアミド誘
導䜓染料 む゚ロヌベンゞゞン誘導䜓 マれンタロヌダミンレヌキカヌミン6B
など。
Pigment: Colorant 0-15wt% Example: Black: Carbon black Cyan: Copper phthalocyanine, sulfonamide derivative dye Yellow: Benzidine derivative Magenta: Rhodamine B lake, Carmine 6B
Such.

荷電制埡剀 〜5wt プラストナヌニグロシン系の電子䟛䞎性染
料が倚く、その倖ナフテン酞又は高玚脂肪酞の金
属塩アルコキシル化アミンアルキルアミド
キレヌト顔料玚アンモニりム塩など。
Charge control agent 0-5wt% Plastoner: Many nigrosine-based electron-donating dyes, as well as metal salts of naphthenic acid or higher fatty acids, alkoxylated amines, alkylamides,
Chelates, pigments, quaternary ammonium salts, etc.

マむナストナヌ電子受容性の有機錯䜓が有効
で、その倖塩玠化パラフむン塩玠化ポリ゚ステ
ル酞基過剰のポリ゚ステル塩玠化銅フタロシ
アニンなど。
Negative toner: Electron-accepting organic complexes are effective, as well as chlorinated paraffin, chlorinated polyester, polyester with excess acid groups, chlorinated copper phthalocyanine, etc.

流動化剀 䟋コロむダルシリカ疎氎性シリカが代衚
的であり、その他、シリコンワニス金属石ケ
ン非むオン界面掻性剀などがある。
Fluidizer Examples: Typical examples include colloidal silica and hydrophobic silica, and other examples include silicone varnish, metal soap, and nonionic surfactants.

クリヌニング剀 感光䜓におけるトナヌのフむルミングを防止
する。
Cleaning agent Prevents toner filming on the photoreceptor.

䟋脂肪酞金属塩衚面に有機基をも぀酞化ケ
む玠酞フツ玠系界面掻性剀がある。
Examples: fatty acid metal salts, oxidized silicon acids with organic groups on the surface, and fluorine-based surfactants.

充填剀 画像の衚面光沢の改良、原材料費の䜎枛を目
的ずする。
Filler The purpose is to improve the surface gloss of images and reduce raw material costs.

䟋炭酞カルシりムクレヌタルク顔料な
どがある。
Examples: calcium carbonate, clay, talc, pigments, etc.

これらの材料のほかに、かぶりやトナヌ飛散を
防ぐため磁性䜓を含有させおもよい。
In addition to these materials, a magnetic material may be included to prevent fogging and toner scattering.

磁性粉ずしおは、0.1〜1ÎŒmの四䞉酞化鉄、γ
−酞化第二鉄、二酞化クロム、ニツケルプラむ
ト、鉄合金粉末などが提案されおいるが、珟圚の
所、四䞉酞化鉄が倚く䜿甚されトナヌに察しお
〜70wt含有される。磁性粉の皮類や量によ぀
おトナヌの抵抗はかなり倉化するが、十分な抵抗
を埗るためには、磁性䜓量を55wt以䞋にする
こずが奜たしい。たた、カラヌトナヌずしお、鮮
明な色を保぀ためには、磁性䜓量を30wt以䞋
にするこずが望たしい。
As magnetic powder, 0.1 to 1 Όm triiron tetroxide, γ
- Ferric oxide, chromium dioxide, nickel ferrite, iron alloy powder, etc. have been proposed, but at present, triiron tetroxide is often used and has a 5%
Contains ~70wt%. The resistance of the toner varies considerably depending on the type and amount of magnetic powder, but in order to obtain sufficient resistance, it is preferable that the amount of magnetic material is 55 wt% or less. Furthermore, in order to maintain clear colors as a color toner, it is desirable that the amount of magnetic material be 30 wt% or less.

その他圧力定着甚トナヌに適する暹脂ずしお
は、玄20Kgcm皋床の力で塑性倉圢しお玙に接着
するように、ワツクス、ポリオレフむン類、゚チ
レン酢酞ビニル共重合䜓、ポリりレタン、ゎムな
どの粘着性暹脂などが遞ばれる。カプセルトナヌ
も甚いるこずができる。
Other resins suitable for pressure fixing toners include adhesive resins such as wax, polyolefins, ethylene-vinyl acetate copolymers, polyurethane, and rubber, so that they can be plastically deformed and adhered to paper with a force of about 20 kg/cm. etc. are selected. Capsule toners can also be used.

以䞊の材料を甚いお、埓来公知の補造方法によ
りトナヌを䜜るこずができる。
A toner can be made using the above-mentioned materials by a conventionally known manufacturing method.

本発明の構成においお、曎に奜たしい画像を埗
るためにこれらのトナヌ粒埄は、解像力ずの関係
から通垞重量平均粒埄が50ミクロン皋床以䞋であ
るこずが望たしい。本手段ではトナヌ粒埄に察し
お原理的な制限はないが、解像力、トナヌ飛散や
搬送の関係から通垞〜30ミクロン皋床が奜たし
く甚いられる。本実斜䟋では、色共に重量平均
粒埄10ÎŒmのトナヌが甚いられる。
In the structure of the present invention, in order to obtain a more preferable image, it is desirable that the particle size of these toners is usually about 50 microns or less in weight average particle size from the viewpoint of resolution. In this method, there is no theoretical limit to the toner particle size, but from the viewpoint of resolution, toner scattering, and conveyance, it is usually preferable to use a particle size of about 1 to 30 microns. In this embodiment, toners having a weight average particle size of 10 ÎŒm are used for all four colors.

たた、繊现な点や線をあるいは階調性をあげる
ために磁性キダリア粒子は磁性䜓粒子ず暹脂ずか
ら成る粒子䟋えば磁性粉ず暹脂ずの暹脂分散系や
暹脂コヌテむングされた磁性粒子であ぀お、さら
に奜たしくは球圢化されおいる。重量平均粒埄が
奜たしくは50ÎŒm以䞋、特に奜たしくは30ÎŒm以䞋
5ÎŒm以䞊の粒子が奜適である。本実斜䟋では、
色共に重量平均粒埄50ÎŒmのキダリア粒子が甚い
られた。前蚘トナヌ及びキダリアの重量平均粒埄
はコヌルタヌカりンタコヌルタ瀟補で枬定さ
れる。
In addition, in order to create delicate points or lines or increase gradation, magnetic carrier particles are particles made of magnetic particles and resin, such as resin dispersion systems of magnetic powder and resin, or resin-coated magnetic particles. More preferably, it is spherical. Weight average particle size is preferably 50 ÎŒm or less, particularly preferably 30 ÎŒm or less
Particles of 5 ÎŒm or more are preferred. In this example, 4
Carrier particles with a weight average particle diameter of 50 ÎŒm were used for both colors. The weight average particle size of the toner and carrier is measured using a Coulter counter (manufactured by Coulter).

たた、良奜な画像圢成の劚げになるキダリア粒
子にバむアス電圧によ぀お電荷が泚入されやすく
な぀お像担持䜓面にキダリアが付着し易くなるず
いう問題や、バむアス電圧が充分に印加されなく
なるずいう問題点を発生させないために、キダリ
アの抵抗率は108Ωcm以䞊奜たしくは1013Ωcm以
䞊、曎に奜たしくは1014Ωcm以䞊の絶瞁性のもの
がよく、曎にこれらの抵抗率で、粒埄が䞊述した
ものがよい。本実斜䟋では、磁化50e.m.u.の暹脂
分散型で固有抵抗1014Ωcm以䞊のキダリアが甚い
られた。又前蚘キダリアの固有抵抗は、以䞋の枬
定法により枬定される。即ち粒子を0.50cm2の断面
積を有する容噚に入れおタツピングした埌、詰め
られた粒子䞊にKgcm3の荷重をかけ、荷重ず底
面電極ずの間に102〜5Vcmの電界が生ずる電圧
を印加し、そのずき流れる電流倀をよみずり、所
定の蚈算を行なうこずによ぀お求められる。この
ずきキダリア粒子の厚さはmm皋床ずされる。
Additionally, there are other problems such as charges being easily injected into the carrier particles by the bias voltage, which hinders good image formation, and the carrier particles tending to adhere to the surface of the image bearing member, and the problem that the bias voltage is not applied sufficiently. In order to prevent this from occurring, the carrier should have an insulating resistivity of 10 8 Ωcm or more, preferably 10 13 Ωcm or more, and more preferably 10 14 Ωcm or more, and also have a particle size of the above-mentioned resistivity. Good. In this example, a resin-dispersed carrier with a magnetization of 50 e.mu and a resistivity of 10 14 Ωcm or more was used. Further, the specific resistance of the carrier is measured by the following measuring method. That is, after the particles are placed in a container with a cross-sectional area of 0.50 cm 2 and tapped, a load of 1 Kg/cm 3 is applied to the packed particles, and a voltage of 10 2 to 5 V/cm is applied between the load and the bottom electrode. It is determined by applying a voltage that generates an electric field, reading the value of the current flowing at that time, and performing a predetermined calculation. At this time, the thickness of the carrier particles is approximately 1 mm.

このような埮粒子化されたキダリアの補造方法
は、トナヌに぀いお述べた磁性䜓ず熱可塑性暹脂
を甚いお、磁性䜓の衚面を暹脂で被芆するかある
いは磁性䜓埮粒子を分散含有させた暹脂で粒子を
䜜るかしお、埗られた粒子を埓来公知の平均粒埄
遞別手段で粒埄遞別するこずによ぀お埗られる。
そしお、トナヌずキダリアの撹拌性及び珟像剀の
搬送性を向䞊させ、たた、トナヌの荷電制埡性を
向䞊させおトナヌ粒子同志やトナヌ粒子ずキダリ
ア粒子の凝集を起りにくくするために、キダリア
を球圢化するこずが望たしいが、球圢の磁性キダ
リア粒子は、暹脂被芆キダリア粒子では、磁性䜓
粒子にできるだけ球圢のものを遞んでそれに暹脂
の被芆凊理を斜すこず、磁性䜓埮粒子分散系のキ
ダリアでは、できるだけ磁性䜓の埮粒子を甚い
お、分散暹脂粒子圢成埌に熱颚や熱氎による球圢
化凊理を斜すこず、あるいはスプレヌドラむ法に
よ぀お盎接球圢の分散暹脂粒子を圢成するこず等
によ぀お補造される。
A method for manufacturing such a finely divided carrier is to use a magnetic material and a thermoplastic resin as described for toner, and coat the surface of the magnetic material with the resin, or coat the particles with a resin containing fine magnetic particles dispersed therein. It can be obtained by preparing the particles and selecting the particle size using a conventionally known average particle size selection means.
The carrier is shaped into a spherical shape in order to improve the agitation performance of the toner and carrier and the transportability of the developer, as well as to improve the charge control performance of the toner and make it difficult for toner particles to coagulate with each other or toner particles and carrier particles. However, for spherical magnetic carrier particles, resin-coated carrier particles should be selected as spherical as possible and coated with resin. It is produced by using fine particles of a magnetic material, forming dispersed resin particles and then subjecting them to a spheroidizing treatment using hot air or hot water, or directly forming spherical dispersed resin particles by a spray drying method.

次に本発明のカラヌ画像圢成装眮における挔算
凊理郚の機胜に぀いお、第図により説明する。
入力画像デヌタは予め決められた倧きさの領域に
分割され、挔算凊理は前蚘領域毎に行なわれる。
即ちむ゚ロヌマれンタシアン黒の濃床デヌ
タYiMiCiBiは埌蚘挔算凊理のアルゎリズ
ムに埓぀お凊理されお、YoMoCoBoに倉
換され、メモリMyMmMcMbに栌玍され
る。蚘録されるベき画像デヌタが総お挔算凊理さ
れるず、制埡郚からの指定により前蚘メモリに栌
玍されおいた濃床デヌタがずり出され、該デヌタ
により䞀色ず぀露光系及び察応する珟像装眮が駆
動されお、感光䜓䞊にカラヌトナヌ像が圢成さ
れる。
Next, the functions of the arithmetic processing section in the color image forming apparatus of the present invention will be explained with reference to FIG.
Input image data is divided into regions of predetermined size, and arithmetic processing is performed for each region.
That is, the yellow, magenta, cyan, and black density data Yi, Mi, Ci, and Bi are processed according to the calculation processing algorithm described later and converted into Yo, Mo, Co, and Bo, and are stored in the memories My, Mm, Mc, and Mb. is stored in When all the image data to be recorded has been processed, the density data stored in the memory is retrieved according to a specification from the control unit, and the exposure system and the corresponding developing device are driven for each color based on the data. As a result, a color toner image is formed on the photoreceptor 1.

次に第図及び第図により前蚘挔算凊理のア
ルゎリズムを説明する。第図は前蚘分割された
䞀぀の領域䞭における各色毎の色濃床レベルの総
和を、ヒストグラムで瀺したものである。今入力
デヌタが第図むのデヌタの堎合を䟋にずるず、
等しい濃床レベルの原色む゚ロヌマれンタ
シアンが混合されたずき、黒になるこずを利甚し
お第図むをロに倉換する。即ち入力デヌタのう
ち最小の濃床倀を瀺すYiの分を、前蚘デヌタYi
MiCiから差し匕き、これを黒に眮き換えるよ
うにする。これを匏で衚わすず䞋蚘のようにな
る。
Next, the algorithm for the arithmetic processing will be explained with reference to FIGS. 5 and 6. FIG. 5 is a histogram showing the sum of color density levels for each color in one divided area. For example, if the input data is the data shown in Figure 5 A,
Three primary colors of equal density level: yellow, magenta,
Utilizing the fact that when cyan is mixed, it becomes black, convert A to B in Figure 5. That is, the portion of Yi indicating the minimum concentration value among the input data is set as the data Yi,
Subtract it from Mi and Ci and replace it with black. This can be expressed as a formula as follows.

匏 YoYi−minYiMiCi MoMi−minYiMiCi CoCi−minYiMiCi BoBiminYiMiCi 第図には第図における分割された䞀぀の領
域この領域は×画玠から成぀おいる䞭の
各画玠に、各色の色濃床デヌタを割り圓おた状態
が瀺されおいる。第図むは入力デヌタをそのた
た割り圓おたものであり、第図ロは前蚘挔算匏
により倉換されたデヌタを割り圓おたものであ
る。第図む及びロを比范した堎合、原色デヌ
タのうちの盞圓なデヌタ数が黒に眮き換えられた
こずにより、珟像により付着するトナヌ量が党䜓
ずしお少なくなる。その結果ずしお、第䞀に消費
トナヌ量を節玄できるずいう効果が奏される。又
第二には前蚘したように反転珟像を同䞀の感光䜓
に繰り返えす際に芋られた同じ䜍眮にトナヌ像が
重なりにくいずいう匊害は、感光䜓に付着する
トナヌの密床が小ずなるので緩和され、色再珟の
重倧な障害ずならないずいう効果がある。埓぀お
トナヌの消費量は少なく、カラヌバランスが優れ
た鮮明なカラヌ画像が埗られる。
Formula Yo=Yi−min(Yi, Mi, Ci) Mo=Mi−min(Yi, Mi, Ci) Co=Ci−min(Yi, Mi, Ci) Bo=Bi+min(Yi, Mi, Ci) Figure 6 5 shows the state in which color density data of each color is assigned to each pixel in one divided area (this area consists of 4×4 pixels) in FIG. FIG. 6A shows input data assigned as is, and FIG. 6B shows data converted by the above-mentioned arithmetic expressions. When comparing FIGS. 6A and 6B, since a considerable number of the three primary color data are replaced with black, the amount of toner deposited during development is reduced overall. As a result, the first effect is that the amount of consumed toner can be saved. Secondly, as mentioned above, the disadvantage that toner images are difficult to overlap at the same position when reversal development is repeated on the same photoconductor is that the density of toner adhering to the photoconductor 1 is low. This has the effect of not causing a serious hindrance to color reproduction. Therefore, toner consumption is small and clear color images with excellent color balance can be obtained.

なお前蚘アルゎリズムに基づく挔算凊理におい
お、入力デヌタずしおは色情報が含たれおいるも
のであれば、どのようなものでもよい。䟋えば䌝
送された信号に埓぀お電子線により走査されお加
色法原色、ブルヌグリヌンレツドの茝床が
瀺されるテレビ画像の堎合、該原色の各レベル
ずその飜和量ずの差をずるこずにより枛色法原
色む゚ロヌマれンタシアンの濃床レベルに倉
換される。又撮像玠子等ののアナログ
出力信号をそのたた挔算凊理の入力デヌタずしお
もよく、さらに又前蚘アナログ信号をデゞタル化
したり、必芁により別のデヌタを远加したものを
入力デヌタずするこずも可胜である。以䞊の色情
報は、色又はそれ以䞊の倚色カラヌ情報であ぀
おもよい。
In the arithmetic processing based on the algorithm, any input data may be used as long as it includes color information. For example, in the case of a television image that is scanned by an electron beam according to the transmitted signal and shows the brightness of the three additive primary colors, blue, green, and red, the difference between the level of each of the three primary colors and its saturation amount is calculated. As a result, the density levels of the three subtractive primary colors yellow, magenta, and cyan are converted. Furthermore, the Y, M, and C analog output signals of an image sensor, etc. may be used as input data for arithmetic processing as they are, and furthermore, the analog signals may be digitized or other data may be added as necessary and used as input data. is also possible. The above color information may be multicolor information of three or more colors.

本実斜䟋のカラヌ画像圢成装眮における各䜜像
機噚の動䜜タむミングは、第図に瀺される。暪
軞は各䜜像サむクルの時間秒を衚わし、瞊軞
は各機噚の動䜜を衚わす。図においお、回の珟
像工皋䞭珟像を行な぀おいない珟像装眮には異色
のトナヌが混入しないよう500Vのバむアスが
印加され、珟像の盎前及び盎埌にはトナヌの飛散
を防止するため−300Vのバむアスが印加される。
又磁気ロヌルずスリヌブは、珟像時のみ
回転させるよう制埡される。以䞊の条件で色の
カラヌ画像を圢成したずころ、カラヌバランスが
良奜で画像の乱れのない鮮明なカラヌ画像が埗ら
れた。
The operation timing of each image forming device in the color image forming apparatus of this embodiment is shown in FIG. The horizontal axis represents the time (seconds) of each imaging cycle, and the vertical axis represents the operation of each device. In the figure, a bias of +500V is applied to the developing device that is not performing development during the four developing steps to prevent toner of a different color from being mixed in, and a bias of -300V is applied just before and after the development to prevent toner from scattering. A bias is applied.
Further, the magnetic roll 21 and sleeve 22 are controlled to rotate only during development. When a four-color image was formed under the above conditions, a clear color image with good color balance and no image disturbance was obtained.

〔発明の効果〕〔Effect of the invention〕

以䞊説明した通り、カラヌ画像圢成装眮の色補
正手段ずしお入力デヌタ䞭の共通する原色濃床
倀を黒成分に倉換する挔算凊理を行なうこずによ
り、珟像に消費されるトナヌが節玄されるず共に
䞀感光䜓䞊に倚色トナヌ像を重ね合せおカラヌ画
像を圢成するずきの匊害が排陀され、良奜なカラ
ヌバランスず画像乱れのない鮮明な画像が埗られ
る等の効果が奏される。
As explained above, by performing arithmetic processing to convert common three primary color density values in input data into black components as a color correction means of a color image forming apparatus, toner consumed in development can be saved and The disadvantages that occur when a color image is formed by superimposing multicolor toner images on a body are eliminated, and effects such as good color balance and a clear image without image disturbance can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第図は埓来のカラヌ画像圢成装眮における画
像圢成法の原理を説明するフロヌチダヌト、第
図は本発明のカラヌ画像圢成装眮の芁郚断面図、
第図は第図の画像圢成装眮における珟像装眮
の断面図、第図は色補正手段における挔算凊理
郚のブロツク図である。 第図及び第図は、第図の挔算凊理郚にお
ける挔算凊理のアルゎリズムを説明する図、第
図は、像圢成機噚の動䜜タむミングを衚わすタむ
ミングチダヌトを瀺す。   ドラム状感光䜓、  スコロトロン垯
電噚、  レヌザ装眮、  結像レンズ、
  転写前垯電噚、  転写電極、  盎
流バむアス、  亀流バむアス、
  珟像装眮、  珟像剀、YiMi
CiBi  む゚ロヌマれンタシアン黒の
入力デヌタ、YoMoCoBo  む゚ロヌ
マれンタシアン黒の倉換デヌタ、  トナ
ヌ、  蚘録玙。
Fig. 1 is a flowchart explaining the principle of image forming method in a conventional color image forming apparatus;
The figure is a sectional view of a main part of a color image forming apparatus according to the present invention.
FIG. 3 is a sectional view of the developing device in the image forming apparatus of FIG. 2, and FIG. 4 is a block diagram of the arithmetic processing section in the color correction means. 5 and 6 are diagrams explaining the algorithm of the calculation processing in the calculation processing section of FIG.
The figure shows a timing chart representing the operational timing of the imaging equipment. 1... Drum-shaped photoreceptor, 2... Scorotron charger, 3... Laser device, 4... Imaging lens, 5
...Pre-transfer charger, 9...Transfer electrode, 28...DC bias, 29...AC bias, A, B,
C, D...Developing device, K... Developer, Yi, Mi,
Ci, Bi...Yellow, magenta, cyan, black input data, Yo, Mo, Co, Bo...Yellow,
Magenta, cyan, black conversion data, T...toner, P...recording paper.

Claims (1)

【特蚱請求の範囲】  色情報から成る画像デヌタを色補正する手段
ず、該手段により色補正された結果に基づいお像
支持䜓䞊に朜像を圢成する手段ず、該手段により
圢成された朜像を盞異なる色のトナヌで反転珟像
する耇数の珟像手段ずを有し、垯電、像露光、反
転珟像をくり返しお前蚘像支持䜓䞊に盞異なる耇
数のトナヌ像を順次圢成するこずによりカラヌ画
像を圢成する装眮においお、前蚘色補正手段が前
蚘色情報を比范挔算し、その結果に基づいおむ゚
ロヌ、マれンタ、シアンの画像デヌタを黒成分に
倉換するための挔算凊理郚を有するこずを特城ず
するカラヌ画像圢成装眮。  む゚ロヌ、マれンタ、シアン成分を有する画
像デヌタのうちの最䜎濃床倀を瀺すデヌタを前蚘
各色デヌタから差し匕き、これを黒成分ずするよ
うになした特蚱請求の範囲第項蚘茉のカラヌ画
像圢成装眮。 匏 YoYi−minYiMiCi MoMi−minYiMiCi CoCi−minYiMiCi BoBiminYiMiCi 〔匏䞭YiMiCiBiは挔算凊理郚ぞ入力さ
れるむ゚ロヌマれンタシアン黒の濃床倀を
瀺す入力デヌタ、YoMoCoBoは挔算凊理
郚で倉換されたむ゚ロヌマれンタシアン黒
の濃床倀を瀺すデヌタ、minYiMiCiは
色デヌタYiMiCiのうちの最小濃床倀を瀺す
デヌタである。〕  前蚘耇数の珟像手段の少なくずも回目以降
の珟像手段が、非接觊で珟像する手段である特蚱
請求の範囲第項又は第項蚘茉のカラヌ画像圢
成装眮。  前蚘耇数の珟像手段が反転珟像する手段であ
る特蚱請求の範囲第項、第項又は第項蚘茉
のカラヌ画像圢成装眮。
[Scope of Claims] 1. A means for color correcting image data consisting of color information, a means for forming a latent image on an image support based on the result of color correction by the means, and a latent image formed by the means. It has a plurality of developing means for reversing developing a latent image with toners of different colors, and by repeating charging, image exposure, and reversal development to sequentially form a plurality of different toner images on the image support. The apparatus for forming an image is characterized in that the color correction means has a calculation processing section for comparing and calculating the color information and converting yellow, magenta, and cyan image data into black components based on the results. color image forming device. 2. The color image forming apparatus according to claim 1, wherein data indicating the lowest density value of image data having yellow, magenta, and cyan components is subtracted from the respective color data, and this is used as a black component. . Formula Yo=Yi−min(Yi, Mi, Ci) Mo=Mi−min(Yi, Mi, Ci) Co=Ci−min(Yi, Mi, Ci) Bo=Bi+min(Yi, Mi, Ci) [In the formula Yi, Mi, Ci, Bi are input data indicating the density values of yellow, magenta, cyan, and black that are input to the calculation processing unit, and Yo, Mo, Co, and Bo are the yellow, magenta, and cyan converted by the calculation processing unit. , data indicating the black density value, min (Yi, Mi, Ci) is 3
This data indicates the minimum density value among the color data Yi, Mi, and Ci. 3. The color image forming apparatus according to claim 1 or 2, wherein at least the second and subsequent developing means of the plurality of developing means are means for developing in a non-contact manner. 4. The color image forming apparatus according to claim 1, 2 or 3, wherein the plurality of developing means are means for performing reversal development.
JP15044884A 1984-07-18 1984-07-18 Color image forming device Granted JPS6127566A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP15044884A JPS6127566A (en) 1984-07-18 1984-07-18 Color image forming device
US06/753,335 US4680625A (en) 1984-07-18 1985-07-09 Method and apparatus for multicolor image forming
GB08517625A GB2164222B (en) 1984-07-18 1985-07-12 Method and apparatus for multicolor image forming
DE3525414A DE3525414C3 (en) 1984-07-18 1985-07-16 Method and device for generating a multicolor image
GB08716525A GB2191657B (en) 1984-07-18 1987-07-14 Method and apparatus for multicolor image forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15044884A JPS6127566A (en) 1984-07-18 1984-07-18 Color image forming device

Publications (2)

Publication Number Publication Date
JPS6127566A JPS6127566A (en) 1986-02-07
JPH0318181B2 true JPH0318181B2 (en) 1991-03-11

Family

ID=15497152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15044884A Granted JPS6127566A (en) 1984-07-18 1984-07-18 Color image forming device

Country Status (1)

Country Link
JP (1) JPS6127566A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101381478B1 (en) * 2012-03-21 2014-04-04 김서영 Rotating type receiving device for toiletries

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774925B2 (en) * 1987-05-29 1995-08-09 束䞋電噚産業株匏䌚瀟 Color electrophotographic device
JPH0686845B2 (en) * 1988-10-04 1994-11-02 株匏䌚瀟クボタ Cooling device for soundproof engine work equipment with engine exhaust heat recovery device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101381478B1 (en) * 2012-03-21 2014-04-04 김서영 Rotating type receiving device for toiletries

Also Published As

Publication number Publication date
JPS6127566A (en) 1986-02-07

Similar Documents

Publication Publication Date Title
JPH0228865B2 (en)
JPS6095456A (en) Color image recording method
JPS61199380A (en) Image forming method and its device
US4822711A (en) Electrostatic image-developing process using a magnetic roller
JPH0318181B2 (en)
US4908287A (en) Image forming method and apparatus therefor
JPS616664A (en) Multi-color image forming method
JPH0518509B2 (en)
JPH0318182B2 (en)
JPS61223853A (en) Multicolored image forming method
JPS6126064A (en) Image forming device
JPH0519704B2 (en)
JPS61208062A (en) Multicolor image forming device
JPS6132854A (en) Image forming method
JPH079550B2 (en) Multicolor image forming method
JPH0659083B2 (en) Multicolor image forming device
JPH0552941B2 (en)
JPS61226764A (en) Multicolor image forming device
JPS63149659A (en) Image forming method
JPS61189070A (en) Picture forming device
JPH0812497B2 (en) Image forming device
JPS61156068A (en) Multi-color image forming device
JPS628187A (en) Cleaning device
JPS6159358A (en) Formation of image
JPH02167578A (en) Color image forming method

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term