JPH0318149B2 - - Google Patents

Info

Publication number
JPH0318149B2
JPH0318149B2 JP13945482A JP13945482A JPH0318149B2 JP H0318149 B2 JPH0318149 B2 JP H0318149B2 JP 13945482 A JP13945482 A JP 13945482A JP 13945482 A JP13945482 A JP 13945482A JP H0318149 B2 JPH0318149 B2 JP H0318149B2
Authority
JP
Japan
Prior art keywords
antigen
red blood
antibody
enzyme
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13945482A
Other languages
Japanese (ja)
Other versions
JPS5928661A (en
Inventor
Fumio Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP13945482A priority Critical patent/JPS5928661A/en
Priority to DE8383107664T priority patent/DE3381055D1/en
Priority to EP83107664A priority patent/EP0103139B1/en
Publication of JPS5928661A publication Critical patent/JPS5928661A/en
Priority to US07/062,383 priority patent/US4820634A/en
Publication of JPH0318149B2 publication Critical patent/JPH0318149B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/554Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being a biological cell or cell fragment, e.g. bacteria, yeast cells
    • G01N33/555Red blood cell

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Microbiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Mycology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、試料中の特定の抗原または抗体を
定量分析するための免疫分析方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an immunoassay method for quantitatively analyzing a specific antigen or antibody in a sample.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来の免疫分析方法として、たとえば、ラジオ
アイソトープで標識した抗体(または抗原)と生
体により採取した試料中の抗原(または抗体)と
の抗原抗体反応を利用して試料中の特定の抗原
(または抗体)を定量分析するラジオイムノアツ
セイ法や、酸素で標識した抗体(または抗原)と
生体より採取した試料中の抗原(または抗体)と
の抗原抗体反応により抗原抗体結合物を得、その
抗原抗体結合物に標識した酸素による酸素反応を
利用して試料中の特定の抗原(または抗体)を定
量分析するエンザイムイムノアツセイ法等があ
る。
Conventional immunoassay methods utilize, for example, antigen-antibody reactions between radioisotope-labeled antibodies (or antigens) and antigens (or antibodies) in samples collected from living organisms to identify specific antigens (or antibodies) in samples. ), or by an antigen-antibody reaction between an oxygen-labeled antibody (or antigen) and an antigen (or antibody) in a sample collected from a living body, an antigen-antibody complex is obtained, and the antigen-antibody combination is obtained. There is an enzyme immunoassay method that quantitatively analyzes a specific antigen (or antibody) in a sample using an oxygen reaction caused by oxygen labeled with a bound substance.

しかしながら、前記ラジオイムノアツセイ法
は、放射性物質を利用するので設備が大がかりに
なるという欠点があり、また、ラジオイムノアツ
セイ法およびエンザイムイムノアツセイ法のいず
れにおいても、十分な検出感度に達するまでには
数時間から数十時間を要して分析に長時間を要す
るという欠点がある。
However, the radioimmunoassay method has the disadvantage that the equipment is large-scale because it uses radioactive substances, and both the radioimmunoassay method and the enzyme immunoassay method do not reach sufficient detection sensitivity. The drawback is that the analysis takes a long time, from several hours to several tens of hours.

〔発明の効果〕〔Effect of the invention〕

この発明は前記事情に鑑みてなされたものであ
り、極めて短い分析時間で試料中の抗原や抗体を
分析することのできる免疫分析用試薬およびその
免疫分析用試薬を用いた免疫分析方法を提供する
ことを目的とするものである。
This invention has been made in view of the above circumstances, and provides an immunoassay reagent that can analyze antigens and antibodies in a sample in an extremely short analysis time, and an immunoassay method using the immunoassay reagent. The purpose is to

〔発明の概要〕[Summary of the invention]

前記目的を達成するためにこの発明の概要は、
補体活性により細胞溶解作用を受ける赤血球の細
胞膜に抗原または抗体を結合すると共に内部に酵
素または酵素と特異的に反応する基質を収容する
赤血球、赤血球内の酵素または基質と特異的に反
応する基質または酵素および補体を有することを
特徴とするものであり、また補体活性により細胞
溶解作用を受ける赤血球の細胞膜に抗原または抗
体を結合すると共に内部に酵素または酵素と特異
的に反応する基質を収容する赤血球、赤血球内の
酵素または基質と特異的に反応する基質または酵
素および補体を有する試薬と、抗体または抗原を
有する試料とを混合し、生ずる抗原抗体反応によ
り活性化された補体の細胞溶解作用により赤血球
の細胞膜を溶解することにより生ずる酵素反応の
生成物を定量することによつて、試料中の抗原ま
たは抗体を定量することを特徴とするものであ
る。
To achieve the above object, the present invention is summarized as follows:
Red blood cells that bind antigens or antibodies to the cell membrane of red blood cells that undergo cytolytic action due to complement activation and contain enzymes or substrates that specifically react with enzymes, and substrates that specifically react with enzymes or substrates within red blood cells. It is characterized by having an enzyme and a complement, and also binds an antigen or antibody to the cell membrane of red blood cells that undergo cytolytic action due to complement activity, and also contains an enzyme or a substrate that specifically reacts with the enzyme inside. A reagent containing a substrate or an enzyme and complement that specifically reacts with the red blood cells contained in the red blood cells, enzymes or substrates in the red blood cells, and a sample containing antibodies or antigens is mixed, and the complement activated by the antigen-antibody reaction that occurs is mixed. This method is characterized by quantifying antigens or antibodies in a sample by quantifying the product of an enzymatic reaction produced by dissolving the cell membrane of red blood cells by cytolytic action.

〔発明の実施例〕[Embodiments of the invention]

先ず、この発明に係る免疫分析用試薬は、補体
活性により細胞溶解作用を受ける赤血球の細胞膜
に抗体を結合すると共に内部に酵素を収容する赤
血球、赤血球内に収容した酵素と特異的に反応す
る基質および補体を有する。
First, the immunoassay reagent according to the present invention binds an antibody to the cell membrane of red blood cells that undergo cytolytic action due to complement activation, and reacts specifically with red blood cells that contain enzymes inside and with enzymes stored within red blood cells. Has substrate and complement.

抗原を結合し酵素を収容することのできる細胞
としては、動物たとえば羊の赤血球を好適に用い
ることができる。赤血球の細胞膜は脂質、糖質、
タンパク質から成つているので、その細胞膜に結
合する抗体の種類は多い。これに対して、リポゾ
ームはその膜が脂質からなつているので、その膜
に結合する抗体の種類は限定される。したがつ
て、赤血球はリポゾームよりも優れている。な
お、他の動物の赤血球であつても、細胞膜に抗体
を結合し、また、細胞内に酵素を収容することが
できれば、この発明における細胞として使用する
ことができる。
As cells capable of binding antigens and accommodating enzymes, red blood cells of animals such as sheep can be suitably used. The cell membrane of red blood cells contains lipids, carbohydrates,
Since cells are made of proteins, there are many types of antibodies that bind to cell membranes. On the other hand, since the membrane of liposome is made of lipid, the types of antibodies that can bind to the membrane are limited. Therefore, red blood cells are superior to liposomes. Note that even red blood cells from other animals can be used as cells in the present invention as long as they can bind antibodies to their cell membranes and accommodate enzymes within the cells.

細胞膜に結合する抗体は、後述するこの出願に
係る他の発明である免疫分析方法で使用する試料
中の抗原と特異な抗原抗体反応を惹起するものが
適宜に選ばれる。たとえば、試料中の抗原がα−
フエトプロテインであるときは、α−フエトプロ
テイン抗体が挙げられる。
The antibody that binds to the cell membrane is appropriately selected from one that induces a specific antigen-antibody reaction with the antigen in the sample used in the immunoassay method, which is another invention related to this application, which will be described later. For example, if the antigen in the sample is α-
When it is fetoprotein, an α-fetoprotein antibody can be mentioned.

また、細胞内に収容する酵素は、たとえば酸化
酵素たとえばグルコースオキシダーゼ、ウリカー
ゼ、グリセロールオキシダーゼ、およびコレステ
ロールオキシダーゼ、脱水素酵素たとえば乳酸脱
水素酵素、ブドウ糖脱水酵素およびグルタミン酸
脱水素酵素、脱炭酸酵素たとえばグルタメートデ
カルボキシダーゼ、ウレアーゼ、ピルベートデカ
ルボキシダーゼ、あるいは前記各種の酵素を混合
したものが挙げられる。また、細胞内に酵素を収
容する態様として、そのような酵素を含有する微
生物を細胞内に収容するものであつてもよい。細
胞内に前記酵素を収容するかわりに前記した各種
の酵素と特異的に反応する基質を収容してもよ
い。ただし、酵素を収容した細胞を有する免疫分
析用試薬を長期間にわたつて保存しておくと、酵
素が失活してしまうことがあるので、細胞内に収
容するのは酵素よりも基質であるのが好ましい。
The enzymes contained within the cell may also include, for example, oxidizing enzymes such as glucose oxidase, uricase, glycerol oxidase, and cholesterol oxidase, dehydrogenases such as lactate dehydrogenase, glucose dehydrogenase, and glutamate dehydrogenase, decarboxylases such as glutamate dehydrogenase, etc. Examples include carboxidase, urease, pyruvate decarboxidase, and a mixture of the various enzymes mentioned above. Further, as an embodiment of accommodating an enzyme within a cell, a microorganism containing such an enzyme may be accommodated within the cell. Instead of accommodating the enzymes in the cells, a substrate that specifically reacts with the various enzymes described above may be accommodated. However, if immunoassay reagents that contain enzyme-containing cells are stored for a long period of time, the enzymes may become inactivated, so it is better to store the substrate rather than the enzyme in the cells. is preferable.

細胞内に収容する酵素の量としては、細胞膜に
結合する抗体と反応する抗原量1ng/ml〜1μ
g/mlに対し十分に過剰な量たとえば酵素活性値
に換算して100U/ml以上、好ましくは500U/ml
〜1000U/mlである。このように抗体量に対して
細胞内の酵素量が大過剰であるので、この発明の
免疫分析用試薬を用いた免疫分析測定を短時間の
うちに行なうことができる。
The amount of enzyme to be accommodated in cells is 1 ng/ml to 1 μ of antigen that reacts with antibodies that bind to cell membranes.
An amount sufficiently in excess of g/ml, for example, 100 U/ml or more in terms of enzyme activity value, preferably 500 U/ml
~1000U/ml. As described above, since the amount of intracellular enzyme is greatly in excess of the amount of antibody, immunoassay measurements using the immunoassay reagent of the present invention can be carried out in a short period of time.

羊の赤血球の細胞膜に抗体たとえばα−フエト
プロテイン抗体を結合し、赤血球内に酵素たとえ
ばグルコースオキシダーゼを収容した細胞の調整
は、たとえば次のようにし行なうことができる。
The preparation of cells in which an antibody such as an α-fetoprotein antibody is bound to the cell membrane of sheep red blood cells and an enzyme such as glucose oxidase is contained within the red blood cells can be carried out, for example, as follows.

先ず、動物たとえばウサギ、ヤギ、マウス、ラ
ツト等にα−フエトプロテインをたとえば皮下注
射すると、これら動物の感作により動物体内でα
−フエトプロテイン抗体が産生する。皮下注射後
1週間程経過してから、その動物より所定量の血
液を採取し、得られた血液の上澄み液を分離する
ことにより、α−フエトプロテイン抗体を有する
抗血清を得る。なお、抗原抗体反応の特異性を向
上させるために、前記抗血清をさに精製してもよ
い。一方、他の動物たとえばヒツジから所定量の
血液を採取してこれを精製し、等張液たとえば
0.15Mの濃度の塩を含有する緩衝液(PH7)と混
合することにより赤血球をサスペンドした等張液
を得る。次いで、ヒツジの赤血球をサスペンドし
た等張液と前記のα−フエトプロテイン抗体を有
する抗血清とを混合すると、ヒツジの赤血球の細
胞膜上にα−フエトプロテイン抗体が吸着され、
α−フエトプロテイン抗体を細胞膜に結合する赤
血球を有する等張液が得られる。この等張液中に
サスペンドした赤血球中には細胞液、ミトコンド
リア等が含まれているので、常法である透析法に
よつて赤血球内から細胞液等を排出して赤血球内
に酵素であるグルコースオキシダーゼを収容す
る。収容するグルコースオキシダーゼ量として
は、全赤血球につき500〜1000U/mlであるが、
これに限ることはなく、後述する免疫分析測定法
の必要に応じて適宜に決定することができる。
First, when α-fetoprotein is subcutaneously injected into animals such as rabbits, goats, mice, rats, etc., α-fetoprotein is sensitized in the animal body.
- Fetoprotein antibodies are produced. Approximately one week after the subcutaneous injection, a predetermined amount of blood is collected from the animal, and the supernatant of the obtained blood is separated to obtain antiserum containing α-fetoprotein antibodies. Note that, in order to improve the specificity of the antigen-antibody reaction, the antiserum may be further purified. On the other hand, a predetermined amount of blood is collected from another animal, such as a sheep, and purified, and an isotonic solution, such as a sheep, is purified.
An isotonic solution in which red blood cells are suspended is obtained by mixing with a buffer (PH 7) containing a salt at a concentration of 0.15M. Next, when the isotonic solution in which sheep red blood cells were suspended and the antiserum containing the α-fetoprotein antibody were mixed, the α-fetoprotein antibody was adsorbed onto the cell membrane of the sheep red blood cells.
An isotonic solution is obtained with red blood cells binding alpha-fetoprotein antibodies to cell membranes. Since the red blood cells suspended in this isotonic solution contain cell fluid, mitochondria, etc., the cell fluid and the like are expelled from the red blood cells using the standard dialysis method, and glucose, an enzyme, is added to the red blood cells. Contains oxidase. The amount of glucose oxidase accommodated is 500 to 1000 U/ml per whole red blood cell,
It is not limited to this, and can be appropriately determined according to the needs of the immunoassay method described below.

補体は、動物の血液中に含まれているものを使
用することができ、たとえばモルモツトの血清を
補体含有液としてそのまま使用することができ
る。
Complement contained in the blood of animals can be used; for example, guinea pig serum can be used as it is as a complement-containing fluid.

免疫分析用試薬中の基質は、前記細胞中に収容
された酵素と特異的に酵素反応をする前述の基質
を使用することができる。基質の量としては、細
胞内に収容されている酵素に対応する量でよい。
As the substrate in the immunoassay reagent, the above-mentioned substrates that specifically enzymatically react with the enzyme accommodated in the cells can be used. The amount of substrate may be an amount corresponding to the enzyme contained within the cell.

以上のようにして調整して得た、抗体を細胞上
に結合すると共に内部に酵素を収容する細胞を含
有する緩衝液と補体を含有する血清と基質とを混
合すると、この発明に係る免疫分析用試薬を得る
ことができる。
When the buffer solution containing cells that binds antibodies to cells and contains enzymes therein, prepared as described above, is mixed with the serum and substrate containing complement, the immunization according to the present invention can be performed. Analytical reagents can be obtained.

次に、以上のようにして得られる免疫分析用試
薬を用いた免疫分析方法について述べる。
Next, an immunoassay method using the immunoassay reagent obtained as described above will be described.

分析の手順としては、先ず免疫分析用試薬と試
料たとえば患者より採取した血液試料とを混合す
る。第1図に示すように、免疫分析用試薬中の細
胞に結合された抗体3と血液試料中の抗原4とが
抗原抗体反応を惹起すると、免疫分析用試薬中の
補体が前記抗原抗体反応により活性化され、補体
活性による細胞溶解作用により細胞膜1が溶解し
て細胞内に収容されていた酵素2が細胞外に放出
される。放出された酵素2と免疫分析用試薬中の
基質5とが酵素反応することにより反応生成物が
得られる。次いで、この反応生成物を適宜の手段
により定量する。定量手段としては、たとえば反
応生成物がイオンであるときにはイオン電極を、
反応生成物が過酸化水素であるときには過酸化水
素電極を使用する電気化学的手段を採用すること
ができ、また、反応生成物と他の試薬とを反応さ
せて反応液を呈色させ、反応液の吸光度を測定す
る分光分析的手段を採用することもできる。反応
生成物の定量により、血液試料中に含有されてい
る抗原を定量することができる。つまり、免疫分
析用試薬中の細胞に結合した抗体量と細胞内に収
容された酵素量とが試薬調整の際に既知であるこ
と、試料中の抗原と細胞に結合した抗体とが定量
的に反応すること、細胞外に放出された酵素と細
胞外にあらかじめ存在する基質とが定量的に反応
することから、あらかじめ実験的に得られた検量
線により酵素反応の生成物の定量から試料中の抗
原を定量することができるのである。しかも、細
胞に結合した抗体量に比して細胞内に収容した酵
素量は大過剰であるので、この発明に係る免疫分
析方法によると、従来方法では数10時間も要して
いた分析を、5〜10分程度で行なうことができ
る。
In the analysis procedure, first, an immunoassay reagent and a sample, such as a blood sample collected from a patient, are mixed. As shown in FIG. 1, when the antibody 3 bound to cells in the reagent for immunoassay and the antigen 4 in the blood sample cause an antigen-antibody reaction, the complement in the reagent for immunoassay causes the antigen-antibody reaction. The cell membrane 1 is dissolved by the cytolytic action of complement activity, and the enzyme 2 contained within the cell is released outside the cell. A reaction product is obtained by an enzymatic reaction between the released enzyme 2 and the substrate 5 in the immunoassay reagent. This reaction product is then quantified by an appropriate means. As a quantitative means, for example, when the reaction product is an ion, an ion electrode is used.
When the reaction product is hydrogen peroxide, electrochemical means using a hydrogen peroxide electrode can be used, or the reaction product is reacted with other reagents to color the reaction solution. Spectroscopic means of measuring the absorbance of the liquid may also be employed. By quantifying the reaction product, it is possible to quantify the antigen contained in the blood sample. In other words, the amount of antibody bound to cells and the amount of enzyme contained within the cells in the immunoassay reagent must be known at the time of reagent preparation, and the amount of antigen bound to cells and antigen in the sample must be quantitatively determined. Because the enzyme released extracellularly reacts quantitatively with the substrate pre-existing outside the cell, it is possible to quantify the products of the enzymatic reaction using a calibration curve obtained experimentally in advance. This allows the antigen to be quantified. Moreover, since the amount of enzyme accommodated within the cells is much larger than the amount of antibodies bound to the cells, the immunoassay method of the present invention allows analysis to be carried out, which would take several tens of hours using conventional methods. It can be done in about 5 to 10 minutes.

免疫分析方法の実験例 あらかじめ調製したα−FP抗体含有の免疫分
析用試薬とα−FP含有既知の血液試料とを以下
の条件に従つて混合し、抗原抗体反応の結果、細
胞外に放出されたグルコースオキシダーゼの作用
により免疫分析用試薬中のグルコースが酸化され
て生ずる過酸化水素を過酸化水素電極で定量し
た。
Experimental example of immunoassay method A pre-prepared immunoassay reagent containing α-FP antibody and a blood sample known to contain α-FP are mixed according to the following conditions, and as a result of an antigen-antibody reaction, the immunoassay is released outside the cells. Hydrogen peroxide produced when glucose in the immunoassay reagent was oxidized by the action of glucose oxidase was quantified using a hydrogen peroxide electrode.

過酸化水素電極より出力される電流増加値と血
液試料中のα−FP量との関係を第2図に示す。
第2図に示すように電流増加値とα−FP量とは
直線的な相関関係があるまた、ラジオイムノアツ
セイ法(RIAで示す)により血液試料中のα−
FP定量結果とこの発明に係る免疫分析方法(本
法と示す)によるα−FP定量結果とは、第3図
に示すように、きわめて良い相関がある。したが
つて、第2図に示すグラフを検量線として、α−
FP含有量未知の血液試料につきこの発明の免疫
分析方法によりα−FPを精度よく、かつ迅速に
定量することができることが裏付けられる。
FIG. 2 shows the relationship between the current increase value output from the hydrogen peroxide electrode and the amount of α-FP in the blood sample.
As shown in Figure 2, there is a linear correlation between the current increase value and the amount of α-FP.
As shown in FIG. 3, there is an extremely good correlation between the FP quantification results and the α-FP quantification results obtained by the immunoassay method according to the present invention (referred to as the present method). Therefore, using the graph shown in Figure 2 as a calibration curve, α-
This proves that α-FP can be accurately and rapidly quantified by the immunoassay method of the present invention in blood samples with unknown FP content.

〔発明の効果〕〔Effect of the invention〕

この発明によると、抗原抗体反応と酵素反応と
を組み合わせて、試料中の抗原あるいは抗体を、
酵素反応生成物の定量をするだけで、迅速かつ正
確に定量することができる。また、赤血球の細胞
膜に結合する抗体を任意に選択し、結合すること
ができることに対応して、広範囲に、結合した抗
体と特異的に反応する抗原を定量することができ
る。
According to this invention, an antigen or antibody in a sample is detected by combining an antigen-antibody reaction and an enzyme reaction.
Quick and accurate quantification can be achieved simply by quantifying the enzymatic reaction product. Furthermore, since antibodies that bind to the cell membrane of red blood cells can be arbitrarily selected and bound thereto, it is possible to quantify over a wide range of antigens that specifically react with the bound antibodies.

さらに特性が安定しており一定期間の保存が可
能である。
Furthermore, its properties are stable and it can be stored for a certain period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る免疫分析方法の原理を
示す説明図、第2図はこの発明に係る免疫分析方
法における酵素反応生成物の生成量を検知する電
極より出力される電流の増加値と試料中の抗原量
との相関を示すグラフ、および第3図はラジオイ
ムノアツセイ法の分析結果とこの発明に係る免疫
分析方法の分析結果との相関を示すグラフであ
る。 1……細胞膜、2……酵素、3……抗体、4…
…抗原、5……基質、6……生成物。
Fig. 1 is an explanatory diagram showing the principle of the immunoassay method according to the present invention, and Fig. 2 shows the increased value of the current output from the electrode for detecting the amount of enzyme reaction product produced in the immunoassay method according to the present invention. A graph showing the correlation with the amount of antigen in the sample, and FIG. 3 are graphs showing the correlation between the analysis results of the radioimmunoassay method and the analysis results of the immunoassay method according to the present invention. 1... Cell membrane, 2... Enzyme, 3... Antibody, 4...
...antigen, 5...substrate, 6...product.

Claims (1)

【特許請求の範囲】 1 その細胞膜に抗体を結合せしめると共に内部
に酵素を収容した赤血球と、この赤血球内の酵素
と反応する基質と、抗原抗体反応により前記細胞
膜の溶解作用を起こす補体とを有することを特徴
とする免疫分析用試薬。 2 その細胞膜に抗体を結合せしめると共に内部
に酵素を収容した赤血球と、この赤血球内の酵素
と反応する基質と、抗原抗体反応により前記細胞
膜の溶解作用を起こす補体とを有する免疫分析用
試薬と、前記抗体と反応する抗原を有する試料と
を混合し、抗原抗体反応により活性化された補体
の細胞膜溶解作用により前記赤血球の細胞膜を溶
解することにより生じる前記酵素と前記基質との
酵素反応の生成物を定量することによつて、前記
抗原を定量することを特徴とする免疫分析方法。
[Scope of Claims] 1. A red blood cell that has an antibody bound to its cell membrane and contains an enzyme inside, a substrate that reacts with the enzyme in the red blood cell, and a complement that causes lysis of the cell membrane through an antigen-antibody reaction. An immunoassay reagent comprising: 2. An immunoanalytical reagent comprising red blood cells that have antibodies bound to their cell membranes and contain enzymes inside them, a substrate that reacts with the enzymes in the red blood cells, and complement that causes lysis of the cell membranes through an antigen-antibody reaction. , an enzymatic reaction between the enzyme and the substrate occurs by mixing a sample having an antigen that reacts with the antibody, and lysing the cell membrane of the red blood cell by the cell membrane lytic action of complement activated by the antigen-antibody reaction. An immunoassay method, characterized in that the antigen is quantified by quantifying the product.
JP13945482A 1982-08-11 1982-08-11 Reagent and method for immunoanalysis Granted JPS5928661A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP13945482A JPS5928661A (en) 1982-08-11 1982-08-11 Reagent and method for immunoanalysis
DE8383107664T DE3381055D1 (en) 1982-08-11 1983-08-03 REAGENT COMPOSITION FOR IMMUNITY TEST AND IMMUNOTEST USING THE SAME.
EP83107664A EP0103139B1 (en) 1982-08-11 1983-08-03 Reagent composition for immunoassay and immunoassay using the same
US07/062,383 US4820634A (en) 1982-08-11 1987-06-15 Immunoassay method and immunoreactive cell reagent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13945482A JPS5928661A (en) 1982-08-11 1982-08-11 Reagent and method for immunoanalysis

Publications (2)

Publication Number Publication Date
JPS5928661A JPS5928661A (en) 1984-02-15
JPH0318149B2 true JPH0318149B2 (en) 1991-03-11

Family

ID=15245584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13945482A Granted JPS5928661A (en) 1982-08-11 1982-08-11 Reagent and method for immunoanalysis

Country Status (1)

Country Link
JP (1) JPS5928661A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799374B2 (en) * 1987-02-06 1995-10-25 株式会社日立製作所 Immunological analysis reagent and immunological analysis method using the same

Also Published As

Publication number Publication date
JPS5928661A (en) 1984-02-15

Similar Documents

Publication Publication Date Title
Aizawa et al. Enzyme immunosenser: Ill. Amperometric determination of human cherienic gonadotropin by membrane-bound antibody
Ivnitski et al. A one-step, separation-free amperometric enzyme immunosensor
Tang et al. Electrochemical enzyme immunoassay for phenytoin by flow-injection analysis incorporating a redox coupling agent
US4820634A (en) Immunoassay method and immunoreactive cell reagent
US5147781A (en) Enzyme electrode and assay for determining LDH5
Mattiasson et al. Novel approaches to enzyme-immunoassay
Solsky et al. Ion-selective electrodes in biomedical analysis
EP0328380B1 (en) Electrochemical sensors in immunological measurement
Messina et al. Continuous-flow/stopped-flow system using an immunobiosensor for quantification of human serum IgG antibodies to Helicobacter pylori
Brown et al. Potentiometric enzyme channelling immunosensor for proteins
JPH0318149B2 (en)
Monroe Amperometric immunoassay
EP0125368B1 (en) A method of immunoassay detection by reaction-rate potentiometry using fluoride ion-selective electrode
JP2543630B2 (en) Measuring method of glycation ratio of specific protein
Karube et al. A catalytic immuno-reactor for the amperometric determination of human serum albumin
Aboul-Enein et al. The construction of an amperometric immunosensor for the thyroid hormone (+)-3, 3′, 5-triiodo-l-thyronine (l-T3)
JPS5984160A (en) Reagent for immunological analysis and immunological analysis method
Clark et al. The cholesterol electrode: use of the polarographic oxidase anode with multiple enzymes
EP0399127A1 (en) Homogeneous immunochemical method for determining haptens by means of ion selective electrodes
Broyles et al. Homogeneous and Heterogeneous Enzyme Immunoassays Monitored with Carbon Dioxide Sensing Membrane Electrodes
Monroe Immunoselective electrodes
Heineman et al. Electrochemical immunosensors
EP0058539A1 (en) Enzymatic detection method and use
JPS6080765A (en) Immunoanalysis method
Brown et al. Potentiometric enzyme channeling immunosensor for proteins zyxwvutsrqponmlkjihgfedcbaZYXWVUT