JPH03181394A - Denitrifying method of sewage - Google Patents

Denitrifying method of sewage

Info

Publication number
JPH03181394A
JPH03181394A JP1320680A JP32068089A JPH03181394A JP H03181394 A JPH03181394 A JP H03181394A JP 1320680 A JP1320680 A JP 1320680A JP 32068089 A JP32068089 A JP 32068089A JP H03181394 A JPH03181394 A JP H03181394A
Authority
JP
Japan
Prior art keywords
aeration
hours
tank
bod
sewage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1320680A
Other languages
Japanese (ja)
Inventor
Isao Ishii
勲 石井
Katsuyuki Tanaka
克幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1320680A priority Critical patent/JPH03181394A/en
Publication of JPH03181394A publication Critical patent/JPH03181394A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To sufficiently remove nitrogen contained in sewage and to simultaneously remove BOD by continuously performing aerating work wherein air is introduced from a draft tube for 3 hours or 8 hours and stopping the aerating work for at least 6 hours or more and introducing sewage into a filter tank during stoppage of aeration. CONSTITUTION:Liquid discharged from a preliminary filter tank 8 is passed through a flow rate regulator 11 and an advection pipe 12 and introduced into the lower part of a first aeration tank 13. Draft tubes D are provided to the central part of the first aeration tank 13 and air can be introduced thereinto. In relation to COD, the longer an aeration time is, the better lowering of COD is enhanced. In relation to Kjeldahl nitrogen, it is better that the aeration time does not exceed 8 hours. In relation to BOD, this is not much changed at >=3 hours but the aeration time is made utmost at about 4 to 5 hours. In the first and second aeration tanks, BOD is generally made small in the upper part thereof and it is made large in the lower part. In the meantime, sewage is not aerated and therefore aerobic organisms absorb oxygen and the inside of the aeration tank is made anaerobic.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、多数の円筒体を濾材として用いた濾過槽の下
方に空気を送るドラフトチューブを挿入して空気を汚水
中に注入する汚水の脱窒方法に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention is directed to the treatment of sewage in which air is injected into the sewage by inserting a draft tube for feeding air into the bottom of a filtration tank using a large number of cylindrical bodies as filter media. Regarding denitrification methods.

[従来の技術] 汚水、例えば生活排水を浄化するために、例えば商品名
ヤクルトの容器の底部を除去した円筒体を多数濾材とし
て濾過槽内に入れると浮遊物質(S S)が著しく減少
することは知られている。
[Prior Art] In order to purify sewage, such as domestic wastewater, if a large number of cylindrical bodies from which the bottoms of containers of the brand name Yakult have been removed are placed in a filter tank as filter media, suspended solids (SS) are significantly reduced. is known.

また汚水処理のために汚水中に空気を注入したり、攪拌
したりすることによりBODの処理効率を高めることも
知られている。
It is also known that the BOD treatment efficiency can be improved by injecting air into wastewater or stirring it for wastewater treatment.

しかしながら、従来技術によれば、BODや固形分(粒
子)を除去することは比較的に容易になし得ても特に窒
素分、すなわちケルダール窒素と称せられるアンモニア
や有機窒素及び亜硝酸性窒素、硝酸性窒素の除去が困難
であった。
However, according to the prior art, although it is relatively easy to remove BOD and solid content (particles), it is especially difficult to remove nitrogen content, such as ammonia called Kjeldahl nitrogen, organic nitrogen, nitrite nitrogen, and nitric acid. It was difficult to remove nitrogen.

[解決しようとする課題] したがって本発明の目的は、汚水をすみやかに脱窒でき
、かつその結果、BODも除去できる汚水の脱窒方法を
提供するにある。
[Problems to be Solved] Therefore, an object of the present invention is to provide a method for denitrifying wastewater that can quickly denitrify wastewater and, as a result, also remove BOD.

[発明の原理] 一般に汚水中に含まれる窒素は主としてアンモニアの形
で存在する。このアンモニアは硝化菌の働きにより亜硝
酸性窒素や硝酸性窒素に酸化される(亜硝酸、硝酸を多
く含む水を硝化水と称する)。そして嫌気化した状態で
、脱窒菌と硝化水とBOD(水素供与用体)とが存在す
ると脱窒作用があることを見出した。他方、窒素を酸化
するためには、曝気が効果的である。そのために、曝気
による好気化および曝気しない嫌気化の各状態を繰返す
ことが脱窒に対して効果的であることを見出した。
[Principle of the Invention] Generally, nitrogen contained in wastewater exists mainly in the form of ammonia. This ammonia is oxidized to nitrite nitrogen and nitrate nitrogen by the action of nitrifying bacteria (water containing a large amount of nitrite and nitric acid is called nitrified water). They have also found that in an anaerobic state, the presence of denitrifying bacteria, nitrified water, and BOD (hydrogen donor) has a denitrifying effect. On the other hand, aeration is effective for oxidizing nitrogen. To this end, we have found that repeating aerobic conditions with aeration and anaerobic conditions without aeration is effective for denitrification.

[課題を解決するための手段] 本発明によれば、多数の円筒体を濾材として用いた曝気
槽の下方に空気を送るドラフトチューブを挿入して空気
を汚水中に注入する汚水の脱窒方法において、ドラフト
チューブから空気を注入する曝気作業を連続して3時間
ないし8時間行い、そして少なくとも6時間以上曝気作
業を停止し、その曝気停止中に濾過槽に汚水を流入させ
るようになっている。
[Means for Solving the Problems] According to the present invention, a method for denitrifying wastewater includes inserting a draft tube for sending air below an aeration tank using a large number of cylindrical bodies as filter media, and injecting air into the wastewater. In the process, aeration work is carried out by injecting air through the draft tube for 3 to 8 hours continuously, and then the aeration work is stopped for at least 6 hours, and sewage is allowed to flow into the filtration tank while the aeration is stopped. .

[作用コ したがって、円筒状の濾材はその表面に生物膜を充分に
保持し捕捉する。そのために曝気槽中の汚泥の滞留時間
が長くなり、比増殖速度の小さい好気性の硝化菌が充分
に存在し、硝化が進行する。
[Operations] Therefore, the cylindrical filter medium sufficiently retains and traps biofilm on its surface. Therefore, the residence time of the sludge in the aeration tank becomes longer, and aerobic nitrifying bacteria with a low specific growth rate are sufficiently present, and nitrification progresses.

その結果、アンモニアは比較的に速かに亜硝酸性窒素や
硝酸性窒素に変化し硝化水が生成される。
As a result, ammonia is relatively quickly converted into nitrite nitrogen and nitrate nitrogen, producing nitrified water.

その際、汚水の流入がないので、未処理の曝気液が放流
されることはない。
At that time, since there is no inflow of sewage, untreated aeration liquid is not discharged.

この曝気時間は後述の如く4ないし5時間位連続して行
うのが好ましく、3時間以下ではアンモニアの酸化が不
十分であり、かつ硝化菌の増殖が不十分である。その結
果、窒素の除去が低下する。
The aeration time is preferably continuous for about 4 to 5 hours as described below; if it is less than 3 hours, the oxidation of ammonia will be insufficient and the growth of nitrifying bacteria will be insufficient. As a result, nitrogen removal is reduced.

また8時間以上では後述の如くケルダール窒素の除去率
が低下し、窒素の除去率も低下する。
In addition, if the heating time is longer than 8 hours, the Kjeldahl nitrogen removal rate decreases as will be described later, and the nitrogen removal rate also decreases.

曝気の停止時間が6時間以下では嫌気性生物の脱窒菌が
脱窒をするほど嫌気化が充分でなく、好気性生物が充分
に酸素を吸収して嫌気化するのに十分な時間を与えねば
ならない。
If the aeration stop time is less than 6 hours, the anaerobic state will not be sufficient for denitrifying bacteria, which are anaerobic organisms, to denitrify, and sufficient time must be given for aerobic organisms to absorb enough oxygen and become anaerobic. No.

特に生活廃水は1日24時間単時間項減が繰返されるの
で、上記の条件を充分に満足できるサイクル作動を行う
ことができる。
In particular, domestic wastewater undergoes repeated depletion 24 hours a day, so it is possible to perform cycle operation that fully satisfies the above conditions.

[実施例および実験例] 第1図は本発明を実施する装置の概要を示し、図におい
て泥水例えば生活廃水は入口1から第1腐敗槽2に流入
する。この第1の腐敗槽2に隣接して設けた第2の腐敗
槽3とは壁体4で区画されており、第1の腐敗槽2から
の液は仕切板5と壁体4との間の通路6を通り、流入ロ
アから第2の腐敗槽3に流入する。第2の腐敗槽3に隣
接して設けた予備濾過槽8とは下部9が開放している仕
切壁10で区画されており、仕切壁10の下部9を通っ
て第2の腐敗槽3からの液が予備濾過槽8に流入する。
[Examples and Experimental Examples] FIG. 1 shows an outline of an apparatus for implementing the present invention, and in the figure, muddy water, such as domestic wastewater, flows into a first septic tank 2 from an inlet 1. A second septic tank 3 provided adjacent to the first septic tank 2 is separated by a wall 4, and the liquid from the first septic tank 2 is distributed between the partition plate 5 and the wall 4. It passes through the passage 6 and flows into the second septic tank 3 from the inflow lower. A preliminary filtration tank 8 provided adjacent to the second septic tank 3 is separated from the second septic tank 3 by a partition wall 10 whose lower part 9 is open. The liquid flows into the preliminary filtration tank 8.

この予備濾過槽8の中間には濾材区域A1が形成され、
多数の円筒状体が密に集合してアトランダムに配置され
ている。そして予備濾過槽8の上部には流量調整器11
を介して移流管12が設けられている。図中WL、は第
1および第2の腐敗槽2.3と予備濾過槽8の液面を示
している。
A filter medium area A1 is formed in the middle of this preliminary filtration tank 8,
A large number of cylindrical bodies are densely gathered and arranged at random. A flow rate regulator 11 is installed at the top of the preliminary filtration tank 8.
An advection pipe 12 is provided via the . In the figure, WL indicates the liquid level of the first and second septic tanks 2.3 and the preliminary filtration tank 8.

予備濾過槽8からの液は流量調整器11および移流管1
2を通って、第1の曝気槽(3の下部に流入する。この
第1の曝気槽13の中心部にはドラフトチューブDが設
けられ、空気を注入できるようになっており、また上下
方向中間には濾材区域A2が設けられている。
The liquid from the preliminary filtration tank 8 is passed through the flow rate regulator 11 and the advection pipe 1.
2, and flows into the lower part of the first aeration tank (3).A draft tube D is provided in the center of the first aeration tank 13, so that air can be injected, and it also flows in the vertical direction. A filter medium area A2 is provided in the middle.

この第1の曝気槽16に隣接して設けた第2の曝気槽に
は移流管14に接続された流出口15から液が流れるよ
うになっている。この第2の曝気槽16は実質的に第1
の曝気槽■3と同様に構成されており、ドラフトチュー
ブDおよび濾材区域A、を具備している。そして第2の
曝気槽16からの液は流出口17から放流される。図中
WL2は第1および第2曝気槽の液面を示している。
A liquid flows into a second aeration tank provided adjacent to the first aeration tank 16 from an outlet 15 connected to the advection pipe 14. This second aeration tank 16 is substantially the same as the first aeration tank 16.
It has the same structure as the aeration tank 3, and is equipped with a draft tube D and a filter medium area A. The liquid from the second aeration tank 16 is then discharged from the outlet 17. In the figure, WL2 indicates the liquid level of the first and second aeration tanks.

実験プラントとして前記の各種の容器CrrOおよび表
面積(−)が下記のものを作った。
As experimental plants, various containers described above with CrrO and surface areas (-) as shown below were made.

容量d   表面積d 第■の腐敗槽2  1.16   0.77第2の腐敗
槽3  0.57   0.38予備濾過槽8   0
.57   0.38第1の曝気槽13 1. 04 
  0. 72第2の曝気槽16 1. 03   2
. 97そして下記の如く曝気時間を種々に変えてAな
いしJの実験を行った。
Capacity d Surface area d No. 1 septic tank 2 1.16 0.77 2nd septic tank 3 0.57 0.38 Pre-filtration tank 8 0
.. 57 0.38 First aeration tank 13 1. 04
0. 72 Second aeration tank 16 1. 03 2
.. 97 Experiments A to J were conducted with various aeration times as described below.

表1において横長の実線は曝気時間を示し、処理BOD
はm g / l s窒素除去率は%で示しである。
In Table 1, the horizontal solid line indicates the aeration time, and the treatment BOD
is mg/ls nitrogen removal rate is shown in %.

また窒素の除去率について曝気時間を種々変えて実験し
た結果第2図を得た。
In addition, experiments were conducted to determine the nitrogen removal rate by varying the aeration time, and the results shown in Figure 2 were obtained.

したがって、窒素の除去に関しては5時間程度の連続運
転が好ましい。
Therefore, continuous operation for about 5 hours is preferred for nitrogen removal.

しかしながら、水質処理に関してはその他のフタイヌ−
も検討しなければならないので、BOD。
However, when it comes to water quality treatment, other
We also have to consider BOD.

CODおよびケルダール窒素の除去率と曝気時間との関
係を同様に実験した。その結果を、第3図に示す、第3
図において、実線BはBODの除去率、鎖線eはCOD
の除去率、そして−点鎖線にはケルダール窒素の除去率
をそれぞれ示している。
The relationship between the COD and Kjeldahl nitrogen removal rates and the aeration time was similarly tested. The results are shown in Figure 3.
In the figure, the solid line B is the removal rate of BOD, and the dashed line e is the removal rate of COD.
The removal rate of Kjeldahl nitrogen is shown by the - dotted chain line.

表1および第2図、第3図から解る通り、曝気時間が3
時間未満では窒素、ケルダール窒素、BOD、COD共
に充分に除去できない。
As can be seen from Table 1 and Figures 2 and 3, the aeration time was 3.
If the time is less than 1 hour, nitrogen, Kjeldahl nitrogen, BOD, and COD cannot be removed sufficiently.

CODに関しては曝気時間か長いほど良いが、ケルダー
ル窒素に関しては8時間を越えない方が良い。BODに
関しては3時間以上ではあまり変らないが、4時間ない
し5時間位が最高となる。
For COD, the longer the aeration time, the better, but for Kjeldahl nitrogen, it is better not to exceed 8 hours. Regarding BOD, it doesn't change much after 3 hours or more, but it reaches its maximum when it is around 4 or 5 hours.

以上の点を考慮して、本発明では曝気時間は連続して3
ないし8時間とした。
Considering the above points, in the present invention, the aeration time is continuously set to 3.
8 hours.

さて、曝気停止時間に関しては下記の如く考察される。Now, the aeration stop time will be considered as follows.

本発明では曝気停止中に汚水が流入するので、予備濾過
槽8内の液は流量調整器11を通って徐々に第1の曝気
槽13の下部に流入し、濾材区域A2を通って上方に流
れるが、その間に汚水と曝気液とが徐々に混合される。
In the present invention, since sewage flows in during the aeration stop, the liquid in the preliminary filtration tank 8 passes through the flow regulator 11 and gradually flows into the lower part of the first aeration tank 13, and then upwards through the filter medium area A2. During the flow, the wastewater and aeration liquid are gradually mixed.

すなわち、初期の状態では下部の汚水と上部の曝気液と
の界面が第1図の符号Xで示す位置に生ずる。次いでこ
の界面Xの上下の位ff1YおよびXの間で徐々に混合
が行われ、例えば6時間後には曝気槽13全体に亘って
混合される。したがって、第1および第2の曝気槽共に
、一般に上部ではBODが小さく、下部では大である。
That is, in the initial state, an interface between the lower wastewater and the upper aeration liquid occurs at the position indicated by the symbol X in FIG. Next, mixing is gradually performed between ff1Y and X above and below this interface X, and after 6 hours, for example, the mixture is mixed throughout the aeration tank 13. Therefore, in both the first and second aeration tanks, the BOD is generally small in the upper part and large in the lower part.

その間は曝気されないので、好気性生物は酸素を吸収し
、曝気槽内が嫌気性となる。
During this time, there is no aeration, so aerobic organisms absorb oxygen and the inside of the aeration tank becomes anaerobic.

このようにして脱窒のための条件が整い、窒素の除去率
を向上させることができ、かつBODもippm前後に
することができる。
In this way, the conditions for denitrification are prepared, the nitrogen removal rate can be improved, and the BOD can also be brought to around ippm.

[発明の効果] 以上の如く、本発明によれば、曝気停止時に窒素を硝化
し、曝気中に窒素を酸化するので、汚水中の窒素分を充
分に除去でき、かつ同時にBODも除去できる。
[Effects of the Invention] As described above, according to the present invention, since nitrogen is nitrified when aeration is stopped and nitrogen is oxidized during aeration, the nitrogen content in wastewater can be sufficiently removed, and BOD can also be removed at the same time.

通常生活廃水は24時間のサイクルで増減するので、本
発明は好適に実施できる。さらに曝気による酸素は一般
にBODの酸化及び窒素の酸化に費やされるが、本性に
おいては主に窒素の酸化に費やされるので必要なエネル
ギが少なく、BODは脱窒により消費されるために、省
エネルギ的な方法である。特に本発明では脱窒に際して
BODが消費されるので、処理BODを低下することが
できる。
Since domestic wastewater normally increases and decreases in a 24-hour cycle, the present invention can be suitably implemented. Furthermore, oxygen from aeration is generally used for oxidizing BOD and nitrogen, but in reality it is mainly used for oxidizing nitrogen, so less energy is required, and BOD is consumed for denitrification, resulting in energy saving. This is a great method. In particular, in the present invention, since BOD is consumed during denitrification, the processing BOD can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施する装置の概要説明図、第2図は
本発明による曝気時間と窒素除去率との関係を示す図、
第3図は曝気時間とBOD5C0Dおよびケルダール窒
素の除去率の関係を示す図である。 8・・・予備濾過槽  13・・・第■の曝気槽  A
、A、 、A2・・・濾材区域  11・・・流量調整
器  12.14・・・移流管16・・・第2の曝気槽
FIG. 1 is a schematic explanatory diagram of an apparatus for carrying out the present invention, and FIG. 2 is a diagram showing the relationship between aeration time and nitrogen removal rate according to the present invention.
FIG. 3 is a diagram showing the relationship between the aeration time and the removal rate of BOD5C0D and Kjeldahl nitrogen. 8...Preliminary filtration tank 13...No.■ aeration tank A
,A, ,A2... Filter medium area 11... Flow rate regulator 12.14... Advection pipe 16... Second aeration tank

Claims (1)

【特許請求の範囲】[Claims] 多数の円筒体を濾材として用いた濾過槽の下方に空気を
送るドラフトチューブを挿入して空気を汚水中に注入す
る汚水の脱窒方法において、ドラフトチューブから空気
を注入する曝気作業を連続して3時間ないし8時間行い
、そして少なくとも6時間以上曝気作業を停止し、その
曝気停止中に濾過槽に汚水を流入させることを特徴とす
る汚水の脱窒方法。
In a wastewater denitrification method in which air is injected into wastewater by inserting a draft tube that sends air below a filtration tank that uses many cylindrical bodies as filter media, the aeration work of injecting air from the draft tube is performed continuously. A method for denitrifying wastewater, which comprises carrying out the aeration operation for 3 to 8 hours, stopping the aeration operation for at least 6 hours or more, and allowing the wastewater to flow into a filter tank during the aeration stoppage.
JP1320680A 1989-12-12 1989-12-12 Denitrifying method of sewage Pending JPH03181394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1320680A JPH03181394A (en) 1989-12-12 1989-12-12 Denitrifying method of sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1320680A JPH03181394A (en) 1989-12-12 1989-12-12 Denitrifying method of sewage

Publications (1)

Publication Number Publication Date
JPH03181394A true JPH03181394A (en) 1991-08-07

Family

ID=18124134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1320680A Pending JPH03181394A (en) 1989-12-12 1989-12-12 Denitrifying method of sewage

Country Status (1)

Country Link
JP (1) JPH03181394A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001369A (en) * 2000-06-23 2002-01-08 Hitachi Chem Co Ltd Sewage septic tank with bioreactor charged with precipitating carrier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001369A (en) * 2000-06-23 2002-01-08 Hitachi Chem Co Ltd Sewage septic tank with bioreactor charged with precipitating carrier

Similar Documents

Publication Publication Date Title
US3709364A (en) Method and apparatus for denitrification of treated sewage
US6517723B1 (en) Method and apparatus for treating wastewater using membrane filters
US3563888A (en) Method and apparatus for treating waste-containing liquor
US4009099A (en) Apparatus and process for removing ammonia nitrogen from waste water
AU2002301606B2 (en) Batch Style Wastewater Treatment Apparatus Using Biological Filtering Process and Wastewater Treatment Method Using The Same
AU2001280766A1 (en) Method and apparatus for treating wastewater using membrane filters
US5776344A (en) Method for removing nitrogen from wastewater
US4159945A (en) Method for denitrification of treated sewage
KR100459950B1 (en) Apparatus and mode of transformed sequential batch reactor with separating nitrification basin for purifying sewage and wastewater
US3956129A (en) Waste treatment apparatus
CN216549815U (en) Internal circulation short-cut denitrification filter tank
US3928190A (en) Method of biological purification of sewage
JP4409532B2 (en) Apparatus for treating wastewater containing high-concentration nitrogen such as livestock wastewater and manure, and its treatment method
JP7133339B2 (en) Nitrogen treatment method
KR100527172B1 (en) A method and apparatus for nitrogenous waste water of nitrogen and sewage
EP2049443B1 (en) A method and apparatus for simultaneous clarification and endogenous post denitrification
JPH07313992A (en) Treatment of sewage
JPH03181394A (en) Denitrifying method of sewage
JP2000024687A (en) Treatment of waste nitric acid
EP0552134B1 (en) A sewage biological purification system
JP2673488B2 (en) Method and apparatus for treating organic wastewater
KR100416693B1 (en) Method for removing nutrients of domestic sewage using 2 step aeration and an apparatus used therefor
JPS61287498A (en) Biological treatment of organic sewage
KR101126424B1 (en) Wastewater treatment apparatus having tail treatment equipment including hardwood charcoal
JPS6036838B2 (en) How to purify sewage