JPH0318039Y2 - - Google Patents

Info

Publication number
JPH0318039Y2
JPH0318039Y2 JP1983145075U JP14507583U JPH0318039Y2 JP H0318039 Y2 JPH0318039 Y2 JP H0318039Y2 JP 1983145075 U JP1983145075 U JP 1983145075U JP 14507583 U JP14507583 U JP 14507583U JP H0318039 Y2 JPH0318039 Y2 JP H0318039Y2
Authority
JP
Japan
Prior art keywords
porous brick
upper nozzle
nozzle
inner hole
ventilation grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983145075U
Other languages
Japanese (ja)
Other versions
JPS6056150U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14507583U priority Critical patent/JPS6056150U/en
Publication of JPS6056150U publication Critical patent/JPS6056150U/en
Application granted granted Critical
Publication of JPH0318039Y2 publication Critical patent/JPH0318039Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

〔産業上の利用分野〕 本考案は溶融金属容器に取付けられた、スライ
デイング・ノズル(以下SNと略す)装置に係り、
特に上部ノズル(インサートノズル又は上ノズル
とも云う)から溶鋼内に、不活性ガスを吹込む上
部ノズルの構造に関する。 〔従来の技術〕 溶鋼流量の自動制御手段として、SN方式はバ
ブリング、DH、RH等の長時間に亘る溶鋼処理
を可能にし、品質向上・コスト低減・作業性の向
上・省力化等のため、既に一般的に行なわれてお
り、例えばタンデイツシユの場合は、連続鋳化に
よる鋳造時間の延長、及び鋳造速度の厳密な制御
が要求されている。そのためアルミナの析出、或
いは溶鋼の凝固により、アルミナ系介在物が上部
ノズルの内孔に付着して起すノズル閉塞を防止す
るため、アルゴン、窒素等の不活性ガスによるバ
ブリングが最も有効な方法として行なわれてお
り、これに関しては種々の方法が試みられ、ノズ
ル閉塞防止のために、上部ノズルにはポーラスれ
んがの採用、もしくはれんが内部に細隙を設ける
等のバブリング機能を内蔵しているのが一般的で
ある。しかし従来は第1図に示す如く、ポーラス
れんが1の外周面と、金属フープで囲繞した鉄板
ケース2との間に空間3を設けるか、或いは第2
図に示す如く、ポーラスれんが1の内部に細隙5
を設けて不活性ガスを吹込み、ポーラスれんが1
の気孔を通つて内孔の溶鋼流中に不活性ガスを吹
込むのであるが、不活性ガスの供給管4が上部ノ
ズルの下側にあるため、上部ノズルの上側からは
下側に比べて不活性ガスの吐出が悪い。従つて溶
鋼中のアルミナ系介在物が上部ノズル内孔の上側
に付着して、溶鋼の流出量を少なくするため、所
定の生産が出来ない欠点がある。 また実開昭57−70752号公報には、頂上部分に
0.1m/m以上の、ガス分配室と貫通孔によつて
連結する複数個の噴気孔を有する溶融金属容器用
ガス透過性上ノズルが記載されているが、この考
案のガス分配室は、図面にもある通り上部ノズル
の側面外周を1周して設けられており、実際の製
造時及び使用時において、後述するような問題が
ある。 更に、実開昭51−30809号には、適度の気孔率
のノズルブロツク7の外周面に凹溝7bを設け
て、このノズルブロツク7より気孔率の高い分割
型の耐火性環状体8を合着、嵌装し、該環状体8
の外周面にも数条の気溝16を設けて、不活性ガ
スの均分化を図り、これらのノズルブロツクが上
ノズルに使用しうることが開示されている。 〔考案が解決しようとする課題〕 前記実開昭57−70752号公報記載の考案の問題
点は次のようである: (1) 上部ノズル(ポーラスれんが1)の側面を囲
う鋼板製外套(鉄板ケース2)は、通常焼ばめ
による方法で囲繞されるが、この場合該考案の
ガス分配室8では、第3図に示す如く、鋼板製
外套(鉄板ケース2)が焼ばめ時の収縮によ
り、ガス分配室8側へ凹状にへこみ、十分な焼
ばめを実施することが出来ない。これを防止す
るためには、鋼板製外套(鉄板ケース2)の厚
さを十分厚くするか、或いはガス分配室8の幅
(高さ方向)を出来る限り狭くする必要があり、
この結果上部ノズル内孔の上側、或いは内孔全
体に不活性ガスの吹込みを可能とするガス分配
室8を設けることが出来ない。 (2) ガス分配室8は上部ノズル用れんが成形時
に、金枠構造を従前と変えて設ける必要があ
り、成形時における成形の複雑さや困難さ、或
いは経済性にも影響する。 (3) ガス分配室8が上部ノズル(ポーラスれんが
1)の側面外周を1周して設けられているた
め、上部ノズルの頂上部が損傷し、溶鋼がガス
分配室8まで侵入した時、上部ノズル全体を大
きく損傷することになり、漏鋼の危険性が大き
い。 (4) 上部ノズル内孔へのアルミナ系介在物の付着
防止を目的とする場合、ガス分配室8から貫通
孔6を経て、上部ノズルの頂部に設けられた噴
気孔7を通して不活性ガスを吹込む必要は無
い。 (5) 0.1〜1m/m程度の貫通孔6を、上部ノズ
ル用れんが製造時に設けることは困難で、これ
を容易にするためには、ガス分配室8の幅(高
さ方向)を上部ノズルの頂上付近まで設ける必
要があり、上部損傷時の危険が大きい。 (6) ガス供給管4から一定量の不活性ガスが供給
された時、多孔性耐火物(ポーラスれんが1)
の気孔を通して上部ノズルの内孔面に出る不活
性ガスの量よりも、噴気孔7から出る不活性ガ
スの量の方が多いため、上部ノズルの内孔面に
おいて、アルミナ系介在物の付着によるノズル
閉塞を防止する効果を、充分に挙げることが出
来ない。 前記実開昭51−30809号公報記載の考案は、気
孔率の異なる2種の通気性耐火物を用いることが
必須要件であり、しかも分割型環状体8の外周に
は多数の気溝16を設けるものであり、構造的に
極めて複雑であり、組立上も煩雑となることはま
ぬかれず、前述した公知技術と同様の諸欠点があ
る。 〔課題を解決するための手段〕 本考案は前述のような従来技術の課題を解決す
るために、前記実用新案登録請求の範囲に明記し
たような技術的構成とし、ポーラスれんがの外周
面と、囲繞した鉄板ケースとの間に空間を設け、
且つ該ポーラスれんがの側面外周に縦方向と横方
向に通気溝を設けることにより、上部ノズルの上
側からも不活性ガスの吐出を良くし、アルミナ系
介在物の付着によるノズル閉塞を防止し、上部ノ
ズル用れんがの製造をも容易にした、ポーラスれ
んがの構造を提供するものである。 以下、本考案の一実施例を示す第4図、第5図
a及びbに基づいて詳しく説明する。 ポーラスれんが1の外周面と、囲繞する鉄板ケ
ース2との間の下方部分に空間3が設けられるよ
うに、所定の形状で製造した上部ノズル用ポーラ
スれんが1の側面外周に、縦方向と横方向に夫々
通気溝9,10を設ける。縦方向の通気溝9の本
数は、不活性ガスの供給量とポーラスれんが1の
通気率、及びアルミナ系介在物の付着によるノズ
ル閉塞防止に必要な不活性ガスの上部ノズル内孔
面吐出量によつて決まり、不活性ガスの上部ノズ
ル内孔面吐出必要量は、SN装置を使用する取
鍋・タンデイツシユ等の溶融金属容器によつて異
なり、また上部ノズルの大きさ、内孔径によつて
も異なるため限定は出来ないが、上部ノズル内孔
面における不活性ガスの吐出量を出来るだけ均一
にするためには、縦方向の通気溝9は3〜6本を
等間隔に設け、横方向の通気溝10は上部ノズル
使用時に、最もアルミナ系介在物が付着し、問題
になり易い位置を選定して1〜2本程度設ければ
良く、縦方向の通気溝9は空間3部分から連結し
て横方向の通気溝10の位置までに止め、ポーラ
スれんが1の頂上部まで貫通しないようにする。
また通気溝9,10の形状、大きさも半径2〜
10R程度の半円形状であれば良いが、上部ノズル
内孔面の上側と下側とから、出来るだけ均等に不
活性ガスを吐出させるためには種々実験を重ねた
結果、横方向の通気溝10の位置、本数にもよる
が、横方向の通気溝10の大きさは、縦方向の通
気溝9の大きさの半径で1〜2倍程度にすること
が好ましい。そして、このような通気溝9,10
はポーラスれんがの成形時に設けることも出来る
が、焼成後加工して簡単に設けることが出来、通
気溝9,10の形状、大きさ及び取付方法等は、
何等規制するものでは無い。このようにしてポー
ラスれんが1の側面外周に、縦方向と横方向に通
気溝9,10を設けた後、焼ばめ等の方法により
鉄板ケース2を通気溝9,10を有するポーラス
れんが1を囲繞し、ガス供給管4用パイプを溶接
等の方法により取付け、使用時にはガス供給管4
用パイプの端に、予め設けた螺線をネジ込むこと
により接続する。 以下実施例により更に、本考案を説明する。 実施例 1 所定の形状で製造した上部ノズル用ポーラスれ
んが1の側面外周に、縦方向の通気溝9は半径
5Rの半円形状で6本を空間3から横方向の通気
溝10まで連通させて等間隔で設け、横方向の通
気溝10は半径10Rの半円形状でポーラスれんが
1の頂上部から70m/mの位置に1本、夫々加工
して設け(第4図、第5図参照)、鉄板ケース2
で囲繞後、ガス供給管4用パイプを取付け、本考
案の試料1及び2を得た。比較例として縦方向と
横方向の通気溝9,10を有しないポーラスれん
が1を、鉄板ケース2で囲繞後、ガス供給管4用
パイプを取付けて比較例1とし、夫々ガス供給管
4から空気の供給量を順次変えて吹込み、空気供
給量に対するポーラスれんが1内孔全面の空気吐
出量を測定した。各試料の配合組成及び品質結果
は第1表、空気供給量に対する内孔全面の空気吐
出量は第2表に示す通りである。 第1表及び第2表に示す如く、ほぼ同一の通気
率を有するポーラスれんが1に、縦方向と横方向
に通気溝9,10を設けた本考案の試料1及び2
は同じ圧力で空気をガス供給管4から吹込んだ場
合に、通気溝9,10を有しない比較例1に比
し、ポーラスれんが1内孔全面における空気吐出
量は、約1.7倍になつており、言い換えると本考
案の場合は、同じ吐出量の場合には、約1/2.5〜
1/3程度の少ない供給量で、効果を上げられるこ
とが判る。
[Industrial Application Field] The present invention relates to a sliding nozzle (hereinafter abbreviated as SN) device attached to a molten metal container.
In particular, it relates to the structure of an upper nozzle (also referred to as an insert nozzle or upper nozzle) that blows inert gas into molten steel. [Conventional technology] As an automatic control means for the flow rate of molten steel, the SN method enables long-term molten steel processing such as bubbling, DH, and RH, and is used to improve quality, reduce costs, improve workability, save labor, etc. For example, in the case of tundish casting, it is required to extend the casting time by continuous casting and to strictly control the casting speed. Therefore, in order to prevent nozzle clogging caused by alumina inclusions adhering to the inner hole of the upper nozzle due to alumina precipitation or solidification of molten steel, bubbling with an inert gas such as argon or nitrogen is the most effective method. Various methods have been tried to prevent nozzle blockage, and generally the upper nozzle has a porous brick or a built-in bubbling function such as creating slits inside the brick. It is true. However, conventionally, as shown in FIG. 1, a space 3 is provided between the outer peripheral surface of the porous brick 1 and an iron plate case 2 surrounded by a metal hoop, or a second
As shown in the figure, there is a slit 5 inside the porous brick 1.
After blowing inert gas into the porous brick 1
Inert gas is injected into the molten steel flow in the inner hole through the pores, but since the inert gas supply pipe 4 is located below the upper nozzle, there is less flow from the upper side of the upper nozzle than from the lower side. Inert gas discharge is poor. Therefore, the alumina-based inclusions in the molten steel adhere to the upper side of the inner hole of the upper nozzle, reducing the amount of molten steel flowing out, which has the disadvantage that the specified production cannot be achieved. Also, in Utility Model Publication No. 57-70752, there is a
A gas permeable upper nozzle for a molten metal container having a plurality of blowholes of 0.1 m/m or more and connected to a gas distribution chamber by a through hole is described. As shown in the above, the nozzle is provided around the outer periphery of the side surface of the upper nozzle, and there are problems during actual manufacturing and use as described below. Furthermore, in Japanese Utility Model Application No. 51-30809, a groove 7b is provided on the outer peripheral surface of a nozzle block 7 having an appropriate porosity, and a split-type fire-resistant annular body 8 having a higher porosity than this nozzle block 7 is combined. The annular body 8
It is disclosed that several air grooves 16 are also provided on the outer peripheral surface of the nozzle block to evenly distribute the inert gas, and these nozzle blocks can be used as the upper nozzle. [Problems to be solved by the invention] The problems with the invention described in the above-mentioned Japanese Utility Model Application No. 57-70752 are as follows: (1) The steel plate mantle (iron plate) surrounding the side of the upper nozzle (porous brick 1) The case 2) is usually enclosed by shrink fitting, but in this case, in the gas distribution chamber 8 of the invention, as shown in FIG. As a result, it becomes concave toward the gas distribution chamber 8 side, making it impossible to perform a sufficient shrink fit. In order to prevent this, it is necessary to make the steel plate jacket (steel plate case 2) sufficiently thick, or to make the width (height direction) of the gas distribution chamber 8 as narrow as possible.
As a result, it is not possible to provide a gas distribution chamber 8 above the inner hole of the upper nozzle, or into the entire inner hole, which allows inert gas to be blown into the inner hole. (2) The gas distribution chamber 8 needs to be provided by changing the metal frame structure from the previous one when molding the brick for the upper nozzle, which affects the complexity and difficulty of molding and also affects the economy. (3) Since the gas distribution chamber 8 is provided around the outer circumference of the side surface of the upper nozzle (porous brick 1), if the top of the upper nozzle is damaged and molten steel enters the gas distribution chamber 8, the upper This will cause major damage to the entire nozzle, and there is a high risk of steel leakage. (4) When the purpose is to prevent alumina-based inclusions from adhering to the inner hole of the upper nozzle, inert gas is blown from the gas distribution chamber 8 through the through hole 6 and through the blowhole 7 provided at the top of the upper nozzle. There's no need to go into it. (5) It is difficult to provide through holes 6 with a diameter of about 0.1 to 1 m/m when manufacturing bricks for the upper nozzle. It is necessary to install it almost to the top of the roof, and there is a great danger if the upper part is damaged. (6) When a certain amount of inert gas is supplied from gas supply pipe 4, porous refractory (porous brick 1)
Since the amount of inert gas exiting from the fumarole hole 7 is larger than the amount of inert gas exiting from the inner hole surface of the upper nozzle through the pores of The effect of preventing nozzle clogging cannot be sufficiently achieved. The device described in the above-mentioned Japanese Utility Model Application Publication No. 51-30809 requires the use of two types of breathable refractories with different porosity, and in addition, a large number of air grooves 16 are provided on the outer periphery of the split annular body 8. However, it is extremely complicated in structure and complicated to assemble, and has the same drawbacks as the above-mentioned known technology. [Means for Solving the Problems] In order to solve the problems of the prior art as described above, the present invention has a technical configuration as specified in the claims of the above-mentioned utility model registration, and has an outer circumferential surface of a porous brick, A space is created between the surrounding iron plate case,
In addition, by providing ventilation grooves in the vertical and horizontal directions on the outer periphery of the side surface of the porous brick, it is possible to improve the discharge of inert gas from the upper side of the upper nozzle, and prevent nozzle clogging due to adhesion of alumina inclusions. The present invention provides a porous brick structure that facilitates the manufacture of nozzle bricks. Hereinafter, an embodiment of the present invention will be explained in detail based on FIGS. 4 and 5 a and b, which show an embodiment of the present invention. In order to provide a space 3 in the lower part between the outer circumferential surface of the porous brick 1 and the surrounding iron plate case 2, the porous brick 1 for the upper nozzle is manufactured in a predetermined shape, and is provided with holes in the vertical and horizontal directions on the side outer periphery of the porous brick 1 for the upper nozzle. Ventilation grooves 9 and 10 are provided in each. The number of vertical ventilation grooves 9 depends on the amount of inert gas supplied, the air permeability of the porous brick 1, and the amount of inert gas discharged from the upper nozzle inner hole surface necessary to prevent nozzle clogging due to adhesion of alumina inclusions. The amount of inert gas required to be discharged from the inner hole of the upper nozzle varies depending on the molten metal container such as a ladle or tundish in which the SN device is used, and also depends on the size and inner hole diameter of the upper nozzle. However, in order to make the discharge amount of inert gas as uniform as possible on the inner surface of the upper nozzle, 3 to 6 vertical ventilation grooves 9 should be provided at equal intervals, and horizontal ventilation grooves 9 should be provided at equal intervals. When using the upper nozzle, one or two ventilation grooves 10 may be provided by selecting a position where alumina-based inclusions are most likely to adhere and cause problems, and the vertical ventilation grooves 9 are connected from the three spaces. and stop it at the position of the horizontal ventilation groove 10 so that it does not penetrate to the top of the porous brick 1.
In addition, the shape and size of the ventilation grooves 9 and 10 are from radius 2 to
A semicircular shape of about 10R is fine, but after repeated various experiments, we found that in order to discharge inert gas as evenly as possible from the upper and lower sides of the upper nozzle inner hole surface, horizontal ventilation grooves were found. The size of the horizontal ventilation grooves 10 is preferably about 1 to 2 times the radius of the vertical ventilation grooves 9, although it depends on the position and number of the ventilation grooves 10. Then, such ventilation grooves 9, 10
can be provided at the time of molding the porous brick, but it can also be easily provided by processing after firing, and the shape, size and installation method of the ventilation grooves 9 and 10
There is no regulation whatsoever. After providing the ventilation grooves 9 and 10 in the vertical and horizontal directions on the outer periphery of the side surface of the porous brick 1 in this manner, the iron plate case 2 is attached to the porous brick 1 having the ventilation grooves 9 and 10 by a method such as shrink fitting. surrounding the gas supply pipe 4, and attaching the pipe for the gas supply pipe 4 by a method such as welding, and when using the gas supply pipe 4.
The connection is made by screwing a pre-provided spiral into the end of the pipe. The present invention will be further explained below with reference to Examples. Example 1 A vertical ventilation groove 9 was formed on the outer periphery of the side surface of a porous brick 1 for an upper nozzle manufactured in a predetermined shape.
Six semicircular pieces of 5R are connected from the space 3 to the horizontal ventilation grooves 10 and are provided at equal intervals. Process and install one at each position m (see Figures 4 and 5), and install the iron plate case 2.
After enclosing the pipe, a pipe for the gas supply pipe 4 was attached, and Samples 1 and 2 of the present invention were obtained. As a comparative example, a porous brick 1 without vertical and horizontal ventilation grooves 9 and 10 was surrounded with an iron plate case 2, and then a pipe for a gas supply pipe 4 was attached as a comparative example 1. The amount of air supplied was changed in sequence and the amount of air discharged over the entire inner hole of the porous brick 1 was measured with respect to the amount of air supplied. The composition and quality results of each sample are shown in Table 1, and the amount of air discharged over the entire inner hole with respect to the amount of air supplied is shown in Table 2. As shown in Tables 1 and 2, Samples 1 and 2 of the present invention are made of porous bricks 1 having almost the same air permeability and provided with ventilation grooves 9 and 10 in the vertical and horizontal directions.
When air is blown from the gas supply pipe 4 at the same pressure, the amount of air discharged over the entire inner hole of the porous brick 1 is approximately 1.7 times that of Comparative Example 1 which does not have the ventilation grooves 9 and 10. In other words, in the case of this invention, for the same discharge amount, it is approximately 1/2.5 ~
It can be seen that the effect can be improved with a small supply amount of about 1/3.

【表】【table】

【表】【table】

【表】 実施例 2 所定の形状で製造した上部ノズル用ポーラスれ
んが1の側面外周に、縦方向の通気溝9を6本、
横方向の通気溝10を1本、幅5m/m、深さ3
m/mの半楕円状の同形状で、実施例1の場合と
同要領で、夫々加工して設け、鉄板ケース2で囲
繞後、ガス供給管4用パイプを取付け、本考案の
試料3を得た。比較例として、通気溝9,10を
有しないポーラスれんが1を用い、実施例1の場
合と同様にして比較例2を得た。そして夫々試料
3及び比較例2のガス供給管4から、窒素ガスを
1Kg/cm2の一定圧力で吹込み、ポーラスれんが1
の内孔全面と内孔上側半分からの吐出量を測定し
た。各試料の配合組成及び品質結果は第1表、内
孔全面と内孔上半分における窒素ガスの吐出量は
第3表に示す通りである。 第3表に示す如く、比較例2では最もアルミナ
系介在物が付着し易いポーラスれんが1内孔の上
側には、全吐出量の1/3程度しか吐出していない
が、本考案の試料3では、ポーラスれんが1内孔
の上側と下側とから、ほぼ均等に吐出しているこ
とが判る。
[Table] Example 2 Six vertical ventilation grooves 9 were formed on the outer periphery of the side surface of the porous brick 1 for the upper nozzle manufactured in a predetermined shape.
One horizontal ventilation groove 10, width 5m/m, depth 3
m/m semi-elliptical shape, each was processed and provided in the same manner as in Example 1, and after surrounding it with iron plate case 2, a pipe for gas supply pipe 4 was attached, and Sample 3 of the present invention was prepared. Obtained. As a comparative example, a comparative example 2 was obtained in the same manner as in example 1 using a porous brick 1 having no ventilation grooves 9 and 10. Then, nitrogen gas was blown into the porous brick 1 at a constant pressure of 1 kg/cm 2 from the gas supply pipe 4 of Sample 3 and Comparative Example 2, respectively.
The discharge amount from the entire surface of the inner hole and the upper half of the inner hole was measured. The blending composition and quality results of each sample are shown in Table 1, and the amount of nitrogen gas discharged from the entire surface of the inner hole and the upper half of the inner hole is shown in Table 3. As shown in Table 3, in Comparative Example 2, only about 1/3 of the total discharge amount was discharged onto the upper side of the inner hole of porous brick 1, where alumina-based inclusions are most likely to adhere, but in Sample 3 of the present invention, It can be seen that the porous brick 1 is discharged almost equally from the upper and lower sides of the inner hole.

〔考案の効果〕[Effect of idea]

(1) このように本考案による構造にした通気溝
9,10を有するポーラスれんが1を使用する
と、ガス供給管4から供給された不活性ガス
は、予めポーラスれんが1の外周面と、囲繞し
た鉄板ケース2との間に設けた空間3で分配さ
れ、縦方向及び横方向の通気溝9,10と、ポ
ーラスれんが1の気孔を通つて内孔の上側と下
側とから、ほぼ均等に不活性ガスが吐出され、
従来はアルミニウム含有量が高い鋼種を鋳造す
る場合には、アルミナ系介在物が上部ノズル内
孔の上側に付着してノズル閉塞をきたし、操業
を継続して行なうことが難しかつたが、上部ノ
ズル内孔の上側と下側とから、ほぼ均等に不活
性ガスが吐出されることにより、ノズル閉塞を
防止し、操業の継続を延長することが出来る。 (2) 上部ノズルの内孔に付着したアルミナ系介在
物が脱落して、鋼中に大型介在物として混入
し、鋼の品質が低下することも防止することが
出来る。 (3) 更に通気溝9,10を有するポーラスれんが
1は焼成後加工により、簡単に通気溝9,10
を設けることが出来、上部ノズルの損傷による
漏鋼の危険性も無い。
(1) When the porous brick 1 having the ventilation grooves 9 and 10 structured according to the present invention is used, the inert gas supplied from the gas supply pipe 4 is distributed in advance to the outer peripheral surface of the porous brick 1 and the surrounding area. It is distributed in the space 3 provided between the iron plate case 2, and is distributed almost uniformly from the upper and lower sides of the inner hole through the vertical and horizontal ventilation grooves 9, 10 and the pores of the porous brick 1. Active gas is discharged,
Conventionally, when casting steel with a high aluminum content, alumina inclusions adhered to the upper side of the inner hole of the upper nozzle, clogging the nozzle and making it difficult to continue operation. By discharging the inert gas almost equally from the upper and lower sides of the inner hole, nozzle clogging can be prevented and the continuation of operation can be extended. (2) It is also possible to prevent alumina-based inclusions attached to the inner hole of the upper nozzle from falling off and being mixed into the steel as large inclusions, resulting in a deterioration in the quality of the steel. (3) Further, the porous brick 1 having ventilation grooves 9 and 10 can be easily formed by processing after firing.
There is no risk of steel leakage due to damage to the upper nozzle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来上部ノズルの縦断面図、
第3図はガス分配室を有する上部ノズルの鉄板ケ
ース変形説明図、第4図、第5図は本考案実施例
で第4図は縦断面図、第5図a及びbは第4図の
矢視A−A及びB−B断面図。図中の符号は下記 1……ポーラスれんが、2……鉄板ケース、3
……空間、4……ガス供給管、5……細隙、6…
…貫通孔、7……噴気孔、8……ガス分配室、9
……縦方向の通気溝、10……横方向の通気溝。
Figures 1 and 2 are longitudinal sectional views of the conventional upper nozzle;
Fig. 3 is an explanatory diagram of the deformation of the iron plate case of the upper nozzle having a gas distribution chamber, Figs. Cross-sectional views taken along arrows A-A and B-B. The symbols in the diagram are as follows: 1...Porous brick, 2...Iron plate case, 3
...space, 4...gas supply pipe, 5...slit, 6...
...through hole, 7... fumarole, 8... gas distribution chamber, 9
...Vertical ventilation groove, 10...Horizontal ventilation groove.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] スライデイング・ノズル装置の上部ノズルに用
いるポーラスれんが1の外周面と、該ポーラスれ
んが1を囲繞する鉄板ケース2との間の下方部分
にガス供給管4と連通する空間3を設け、前記ポ
ーラスれんが1の側面外周でかつ該ポーラスれん
がの頂部から1/4〜1/2の位置に横方向通気溝10
を設け、前記空間3と前記通気溝10とを連通す
る3〜6本の縦方向通気溝9を該ポーラスれんが
1の側面外周に設けてなる、スライデイング・ノ
ズル装置用鉄板外套を有する上部ノズル。
A space 3 communicating with the gas supply pipe 4 is provided in the lower part between the outer peripheral surface of the porous brick 1 used for the upper nozzle of the sliding nozzle device and the iron plate case 2 surrounding the porous brick 1, and the porous brick A lateral ventilation groove 10 is located on the outer periphery of the side surface of 1 and at a position of 1/4 to 1/2 from the top of the porous brick.
and three to six vertical ventilation grooves 9 communicating the space 3 and the ventilation groove 10 on the outer periphery of the side surface of the porous brick 1, an upper nozzle having an iron plate jacket for a sliding nozzle device .
JP14507583U 1983-09-21 1983-09-21 Structure of porous brick Granted JPS6056150U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14507583U JPS6056150U (en) 1983-09-21 1983-09-21 Structure of porous brick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14507583U JPS6056150U (en) 1983-09-21 1983-09-21 Structure of porous brick

Publications (2)

Publication Number Publication Date
JPS6056150U JPS6056150U (en) 1985-04-19
JPH0318039Y2 true JPH0318039Y2 (en) 1991-04-16

Family

ID=30323343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14507583U Granted JPS6056150U (en) 1983-09-21 1983-09-21 Structure of porous brick

Country Status (1)

Country Link
JP (1) JPS6056150U (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130809U (en) * 1974-08-28 1976-03-05
JPS57106556U (en) * 1980-12-24 1982-07-01

Also Published As

Publication number Publication date
JPS6056150U (en) 1985-04-19

Similar Documents

Publication Publication Date Title
AU6149190A (en) Continuous casting of ingots
US4583721A (en) Molten metal discharging device
JPH0318039Y2 (en)
US4535975A (en) Gas-transmitting wall element for a metallurgical vessel, a metallurgical vessel having such a wall element, and a method of producing steel
US20020011696A1 (en) Tundish impact pad
US5885473A (en) Long nozzle for continuous casting
US5054749A (en) Tundish for continuous casting of steel
CA1102088A (en) Shaped pouring brick and production thereof
JP2535879Y2 (en) Gas injection equipment for metallurgical vessels
JPH0919760A (en) Ar blow-off ring and method for casting molten metal using it
CN115194108A (en) Continuous casting tundish turbulence controller with molten steel purification function and argon blowing method
JPS62130754A (en) Gas blowing type immersion nozzle
JPS6123558A (en) Immersion nozzle for continuous casting
JPS59225862A (en) Immersion nozzle for continuous casting device
JPH0744364Y2 (en) Upper nozzle for gas blowing used in molten metal discharge device
JPS5919716Y2 (en) Molded body for gas injection
JPS6350071Y2 (en)
JPH02432Y2 (en)
JPS6243655Y2 (en)
JPS6245797Y2 (en)
JPH0133273Y2 (en)
JPH0117412Y2 (en)
JP2557475Y2 (en) Porous plug for gas injection
JPH08168857A (en) Method for blowing gas from refractory-made nozzle and gas blowing nozzle
SU1528607A1 (en) Arrangement for feeding metal to mould