JPH03180286A - Laser beam machining method - Google Patents

Laser beam machining method

Info

Publication number
JPH03180286A
JPH03180286A JP1316898A JP31689889A JPH03180286A JP H03180286 A JPH03180286 A JP H03180286A JP 1316898 A JP1316898 A JP 1316898A JP 31689889 A JP31689889 A JP 31689889A JP H03180286 A JPH03180286 A JP H03180286A
Authority
JP
Japan
Prior art keywords
laser beam
irradiation spot
section
laser
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1316898A
Other languages
Japanese (ja)
Inventor
Seiji Imamura
清治 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1316898A priority Critical patent/JPH03180286A/en
Publication of JPH03180286A publication Critical patent/JPH03180286A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To perform machining such as uniform welding and heat treatment of high quality by scanning an object by a square irradiation spot formed by condensing a laser beam having a square cross section. CONSTITUTION:A laser beam medium 11 of a solid laser beam machine 10 is formed by cutting out into a pillarlike body having a square cross section from an optical crystal and both end faces are ground orthogonally to the axial direction. The slid layer beam machine 10 oscillates the laser beam in a resonant condition in the axial direction to progress in the axial direction of the laser beam medium 11 and the laser beam LB having the same square cross section as the laser beam medium 11 is taken out to the outside of a laser beam resonant system from a partial reflection mirror 15 side. The laser beam LB is directed in the desired direction by a bending mirror 21 and then, condensed on the irradiation spot SP on the object 1 located in the vicinity of the focus by a lens 20. The object 1 is scanned in the scanning direction SD by the irradiation spot SP to perform specified machining.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は固体レーザ装置の出射レーザビームを集光した
照射スポットで対象を掃引して加工するレーザ加工方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a laser processing method for processing an object by sweeping it with an irradiation spot obtained by focusing a laser beam emitted from a solid-state laser device.

〔従来の技術〕[Conventional technology]

周知のようにYAG等の光学結晶をレーザ媒質に用いる
固体レーザ装置はガスレーザに比べて構造が簡単で取り
扱いが便利な利点があり、しかも最近では励起ランプや
水冷構造の進歩により小形の装置で種々な加工に適する
数百W程度の大出力パルス発振が可能である。
As is well known, solid-state laser devices that use optical crystals such as YAG as the laser medium have the advantage of being simpler in structure and easier to handle than gas lasers.Moreover, recent advances in excitation lamps and water-cooling structures have made it possible to use a variety of compact devices. It is possible to generate high-output pulse oscillations of several hundred W, which is suitable for various types of processing.

従来から、かかる加工用の固体レーザ装置ではレーザ媒
質として光学結晶の円形断面のロッドを用い、キセノン
ランプやクリプトンランプの励起光源とともに内面を鏡
面仕上げした密閉容器内に収納して、強力な水冷下でパ
ルス発振またはQスイッチを用いて準連続発振させる。
Conventionally, solid-state laser devices for such processing have used a rod of optical crystal with a circular cross section as the laser medium, which is housed together with an excitation light source such as a xenon lamp or krypton lamp in an airtight container with a mirror-finished inner surface, and is cooled under powerful water cooling. Quasi-continuous oscillation is performed using pulse oscillation or a Q switch.

レーザ加工に際しては、この大出力固体レーザ装置から
のレーザビームをレンズ等の手段で集光してふつうは1
0宜〜10’ W/c−の範囲の高電力密度の照射スポ
ットを作り、溶接、熱処理、切断等の加工内容に応して
通常は1〜100 m/sec程度の掃引速度でこの照
射スポットで対象を掃引することにより加工を行なう。
During laser processing, the laser beam from this high-output solid-state laser device is focused using a lens or other means, and usually one
An irradiation spot with a high power density in the range of 0 to 10' W/c is created, and this irradiation spot is normally applied at a sweep speed of about 1 to 100 m/sec depending on the processing content such as welding, heat treatment, cutting, etc. Machining is performed by sweeping the object with .

また、加工用に適する大出力レーザとしていわゆるスラ
ブ形固体レーザ装置が知られている。これはレーザ媒質
に偏平な板状の光学結晶を用い、よく知られているよう
にレーザ媒質内でレーザ光をその1対の板面間で全反射
させながらジグザグ状に進行させる共振状態でレーザ発
振させるものであるが、これから取り出されるレーザビ
ームがレーザ媒質と同し偏平断面でそのままでは力U工
上あまり使い勝手がよくないので、ふつうシリンドリカ
ルレンズ等の手段でほぼ正方形断面にした後に集光して
加工用の照射スポットを作る。このように固体レーザ装
置と照射スポットの作り方は異なるが、加工方法は従来
からロッド形固体レーザ装置を用いる場合と同様である
Furthermore, a so-called slab-type solid-state laser device is known as a high-output laser suitable for processing. This uses a flat plate-shaped optical crystal as a laser medium, and as is well known, the laser beam is generated in a resonant state in which the laser beam is totally reflected between a pair of plate surfaces and travels in a zigzag pattern. However, if the laser beam that is extracted from this has the same flat cross section as the laser medium, it is not very convenient in terms of power processing, so it is usually made into a nearly square cross section using a cylindrical lens, etc., and then focused. to create an irradiation spot for processing. Although the method of creating the irradiation spot is different from that of a solid-state laser device in this way, the processing method is the same as in the conventional case of using a rod-shaped solid-state laser device.

(発明が解決しようとする課題) 上述のロッド形固体レーザ装置を用いる加工方法では、
レーザビームを集光した照射スポットが円形になるので
、従来から加工に若干の不均一性が発生しやすい問題が
ある。以下、これを第5図を参照して説明する。
(Problem to be solved by the invention) In the processing method using the above-mentioned rod-shaped solid-state laser device,
Since the irradiation spot where the laser beam is focused is circular, there has been a problem in the past that some non-uniformity tends to occur in processing. This will be explained below with reference to FIG.

第5図(alは、例えば突き合わせ溶接加工のため固体
レーザ装置をパルス発振させ、レーザビームを集光した
円形の照射スボッl−5Pを溶接線に沿い図の方向SD
に掃引する状態を示す、この際の掃引速度はパルス発振
周波数に応じて、隣合う照射スポットSPが図のハツチ
ングのように重なり合うよう設定される0重なり合いが
過少であると溶接欠陥が発生するので、重なりの割合は
かなり多めに取られるが、それでも溶接線に細かな凹凸
等の不均一性が出やすく、この不均一性が認められなく
なるまで掃引速度を落とすと溶接速度が大幅に低下して
しまう。
Fig. 5 (Al is a circular irradiation spot l-5P that pulses a solid-state laser device and focuses a laser beam for butt welding processing, for example, along the welding line in the direction SD of the figure.
The sweep speed at this time is set according to the pulse oscillation frequency so that adjacent irradiation spots SP overlap as shown by the hatching in the figure. If the overlap is too small, welding defects will occur. , although the overlap ratio is quite high, it is still easy for non-uniformity such as fine irregularities to appear in the weld line, and if the sweep speed is reduced until this non-uniformity is no longer recognized, the welding speed will drop significantly. Put it away.

第5図(b)は焼き入れ等の熱処理のためにレーザ装置
を連続発振させ、円形の照射スポットSPで熱処理面上
を方向SOに連続掃引する状態を示す、この場合、図の
右側に示すように照射強度Iが必ず照射スポットSPの
中心部で高く周縁部で低くなるので熱処理にむらができ
、スポット径を大きくすればむらは改善されるが最大照
射強度を熱処理に必要な限界以下には下げられない。
Fig. 5(b) shows a state in which the laser device is continuously oscillated for heat treatment such as hardening, and a circular irradiation spot SP is continuously swept in the direction SO on the heat treatment surface. In this case, it is shown on the right side of the figure. As shown, the irradiation intensity I is always high at the center of the irradiation spot SP and low at the periphery, resulting in uneven heat treatment.If the spot diameter is increased, the unevenness can be improved, but the maximum irradiation intensity must be below the limit required for heat treatment. cannot be lowered.

このため、実際の熱処理加工では図のように範囲を順次
ずらせながら熱処理面を照射スボ7)SPで複数回掃引
するのがふつうであるが、この際にも照射強度Iの分布
を均一化するには、掃引範囲を図のハンチングのように
若干重ね合わせる必要がある。ところがこの重ね合わせ
の程度の制御が実際には厄介で、少な過ぎると例えば焼
き入れ硬度に面内むらができ、多過ぎると一旦焼き入れ
た個所がなまってしまう問題がある。
For this reason, in actual heat treatment processing, it is common to sweep the heat treatment surface multiple times with the irradiation spot 7) SP while sequentially shifting the range as shown in the figure, but at this time, the distribution of the irradiation intensity I is also made uniform. To do this, it is necessary to overlap the sweep ranges slightly as shown by the hunting in the figure. However, controlling the degree of overlapping is actually difficult; if it is too little, for example, the hardening hardness will become uneven in the surface, and if it is too much, the once hardened area will become dull.

また加工内容が切断のとき、照射スポットSPを第5図
(a)の場合よりさらに小さくなるようレーザビームを
集光するが、照射スポットが円形なので切断線に細かな
凹凸が出やすいのは同じである。
Also, when the processing content is cutting, the laser beam is focused so that the irradiation spot SP is even smaller than in the case of Fig. 5 (a), but since the irradiation spot is circular, fine irregularities are likely to appear on the cutting line. It is.

さらに切断加工にはレーザビーム出力を極力上げるのが
望ましいが、固体レーザ装置を高出力運転するとレーザ
媒質のいわゆる熱レンズ効果によりレーザビームの広が
り角が大きくなって、小さな照射スポットに集光するの
が困難になるので、切断溝の幅が広がりやすく、かつド
ロスの発生が増えて切断面が見苦しくなる問題がある。
Furthermore, it is desirable to increase the laser beam output as much as possible for cutting, but when a solid-state laser device is operated at high output, the divergence angle of the laser beam increases due to the so-called thermal lens effect of the laser medium, which causes the beam to be focused on a small irradiation spot. As a result, the width of the cutting groove tends to widen, and the generation of dross increases, resulting in an unsightly cut surface.

スラブ形固体レーザ装置を用いる加工方法では上述の熱
レンズ効果を減少させてレーザビームの広がり角を狭く
できる利点があるが、レーザビームの断面が非常に偏平
なので、多くの加工用には前述のようにシリンドリカル
レンズ等の手段で断面形状を一旦修正した上で集光して
照射スポットを作る必要があるので、照射スポットに集
光する光学手段が複雑になってその調整が容易でない。
Processing methods using slab-type solid-state laser devices have the advantage of reducing the thermal lens effect mentioned above and narrowing the divergence angle of the laser beam, but since the cross section of the laser beam is very flat, the above-mentioned method is not suitable for many processing applications. Since it is necessary to once correct the cross-sectional shape using a means such as a cylindrical lens and then condense the light to create an irradiation spot, the optical means for condensing the light onto the irradiation spot becomes complicated and its adjustment is not easy.

また、光学結晶に斜端面を設ける加工が厄介で、かつそ
こがとくに傷つきやすいので、固体レーザ装置が高価に
つきやすく、かつ加工現場での取り扱いがむつかしい問
題がある。さらに、光学結晶のm面に設ける熱絶縁の焼
損問題など、本格的な実用化には解決すべき点がまだか
なり残っているのが現状である。
Further, since the process of providing the optical crystal with a beveled end face is complicated and is particularly prone to damage, the solid-state laser device tends to be expensive and difficult to handle at the processing site. Furthermore, there are still many issues that need to be resolved before full-scale practical use, such as the problem of burnout of the thermal insulation provided on the m-plane of the optical crystal.

本発明はかかる従来方法の問題点を軽減して、加工の均
一度を改善できるレーザ加工方法を提供することを主目
的とする。さらに、本発明方法の従たる目的は同じ固体
レーザ装置を用いて種々な加工ができるようにすること
にある。
The main object of the present invention is to provide a laser processing method that can alleviate the problems of the conventional method and improve the uniformity of processing. Furthermore, a further object of the method of the present invention is to enable various types of processing to be performed using the same solid-state laser device.

(i!!題を解決するための手段〕 本発明方法によればこの目的は、レーザ媒質に方形断面
をもつ光学結晶を用いて固体レーザ装置をレーザ媒質内
の軸方向共振状態で発振させ、この固体レーザ装置の出
射レーザビームを集光した照射スポットの掃引方向に対
してレーザビームの断面を所定方向に向け、固体レーザ
装置の発振状態に応じた掃引速度で照射スポットにより
加工対象を掃引することによって遠戚される。
(Means for solving the i!! problem) According to the method of the present invention, this purpose is to oscillate a solid-state laser device in an axial resonance state within the laser medium by using an optical crystal with a rectangular cross section as the laser medium, The cross section of the laser beam is directed in a predetermined direction with respect to the sweep direction of the irradiation spot where the emitted laser beam of the solid-state laser device is condensed, and the object to be processed is swept with the irradiation spot at a sweep speed that corresponds to the oscillation state of the solid-state laser device. This makes them distant relatives.

また、同じ固体レーザ装置を用いて種々な加工ができる
ようにする上では、照射スポットへの集光前のレーザビ
ームを所定の形状と面積の断面に絞るアパーチャ手段を
設けるのが有利である。このアパーチャ手段は固体レー
ザ装置の共振系内に組み込むのが望ましく、さらにはそ
のアパーチャの大きさや形状を加工内容に応じて選択で
きるよう取り替え可能に設け、かつ照射スポットの掃引
方向に対するレーザビームの断面の方向を加工条件に応
じて調整できるよう取付角度を調整可能に設けるのが非
常に有利である。
Furthermore, in order to be able to carry out various types of processing using the same solid-state laser device, it is advantageous to provide an aperture means that narrows the laser beam to a cross section with a predetermined shape and area before it is focused on the irradiation spot. It is desirable that this aperture means be incorporated into the resonance system of the solid-state laser device, and furthermore, it should be replaceable so that the size and shape of the aperture can be selected depending on the processing content, and the cross section of the laser beam with respect to the sweeping direction of the irradiation spot. It is very advantageous to provide an adjustable mounting angle so that the direction of the mounting angle can be adjusted depending on the processing conditions.

本発明方法用の固体レーザ装置のレーザ媒質に用いる光
学結晶の方形断面は、多くの加工内容に対してその縦横
の比が4までの矩形とするのが有利である。加工が溶接
や切断で照射スポットの照射強度を高める必要がある場
合、このレーザ媒質従ってレーザビームの断面の矩形の
長辺を掃引方向とする断面方向で照射スポットに集光す
るのが加工速度を高める上で有利である。また、加工が
熱処理で照射スポットの照射強度が低くてもよい場合、
レーザビームの矩形断面の短辺を照射スポットの掃引方
向にして集光するのが広い面積内に熱処理を施す上で有
利である。
The rectangular cross-section of the optical crystal used as the laser medium of the solid-state laser device for the method of the invention is advantageously rectangular with an aspect ratio of up to 4 for many processing operations. When it is necessary to increase the irradiation intensity of the irradiation spot due to welding or cutting, it is possible to increase the processing speed by concentrating the light on the irradiation spot in the cross-sectional direction of the laser beam with the long side of the rectangular cross section as the sweep direction. It is advantageous to increase In addition, if the processing is heat treatment and the irradiation intensity of the irradiation spot may be low,
It is advantageous to focus the laser beam with the short side of the rectangular cross section in the scanning direction of the irradiation spot in order to perform heat treatment over a wide area.

この固体レーザ装置の発振状態はもちろん加工内容に応
じて選択される1例えば加工内容が溶接や切断の場合、
固体レーザ装置をパルス発振させて、照射スポットによ
りパルス的に順次照射される掃引方向に隣合う2個の範
囲が互いにほぼ接触するか部分的に重なり合うように、
このパルス発振の周波数に応じた照射スポットの掃引速
度でかかる加工を施す。
The oscillation state of this solid-state laser device is selected depending on the processing content. For example, if the processing content is welding or cutting,
The solid-state laser device is oscillated in pulses so that two areas adjacent to each other in the sweep direction that are successively irradiated with the irradiation spot in a pulsed manner are almost in contact with each other or partially overlap each other.
This processing is performed at a sweep speed of the irradiation spot according to the frequency of this pulse oscillation.

また、加工内容が熱処理の場合は、固体レーザ装置に通
例のようにQスイッチ等を組み込んで準連続的に発振さ
せ、レーザビームを集光した比較的大きな照射スポット
でビーム出力に応じた掃引速度で対象を掃引して加熱す
ることにより熱処理加工を施す。
In addition, if the processing content is heat treatment, a Q-switch or the like is usually incorporated into the solid-state laser device to generate quasi-continuous oscillation, and the laser beam is focused on a relatively large irradiation spot with a sweep speed corresponding to the beam output. Heat treatment is performed by sweeping and heating the object.

〔作用〕[Effect]

本発明方法は、従来の加工の不均一性の問題が円形の照
射スポットを用いる点に起因することに着目して、固体
レーザ装置のレーザ媒質に方形断面をもつ光学結晶を用
いてレーザビームを方形断面で取り出し、これを集光し
た方形の照射スポットで対象を掃引、加熱することによ
り、対象内の掃引方向や掃引と直角方向の温度分布を従
来よりも均一化して、加工の均一性を向上させるもので
ある。さらに、本発明ではこの方形断面のレーザ媒質を
用いる固体レーザ装置を通常の軸方向共振状態で発振さ
せて、前述のスラブ形のもつ種々な欠点を除き、固体レ
ーザ装置の実用性を高めがっ加工現場での使い勝手を良
好にする。
The method of the present invention focuses on the fact that the problem of non-uniformity in conventional processing is due to the use of a circular irradiation spot, and uses an optical crystal with a rectangular cross section as the laser medium of a solid-state laser device to generate a laser beam. By taking out a rectangular cross section and sweeping and heating the target with a condensed rectangular irradiation spot, the temperature distribution within the target in the sweep direction and in the direction perpendicular to the sweep is made more uniform than before, resulting in uniform processing. It is something that improves. Furthermore, in the present invention, a solid-state laser device using a laser medium with a rectangular cross section is caused to oscillate in a normal axial resonance state, thereby eliminating the various drawbacks of the slab-type laser device mentioned above and increasing the practicality of the solid-state laser device. To improve usability at the processing site.

本発明方法に用いるレーザ媒質ないしはレーザビームの
断面は矩形とするのが種々の加工内容に対して有利で、
照射スポットに集光すべきこの矩形断面の方向を適宜選
定することにより、例えば照射スポットの矩形の長辺を
掃引方向と合わせた設定状態で均一な溶接を高速で行な
い、あるいはこの長辺を掃引方向と直角方向にした設定
状態で従来よりも大面積内に均一な熱処理を施すことが
可能になる。
It is advantageous for various processing contents to have a rectangular cross section of the laser medium or laser beam used in the method of the present invention.
By appropriately selecting the direction of this rectangular cross section to be focused on the irradiation spot, for example, uniform welding can be performed at high speed with the long sides of the rectangle of the irradiation spot aligned with the sweep direction, or by sweeping this long side. With the setting perpendicular to the direction, it becomes possible to perform uniform heat treatment over a larger area than before.

レーザビームを照射スポットに集光する前に所定の形状
と面積の断面に絞るアパーチャ手段を用いる本発明の有
利な態様では、照射スポットを加工内容に最も都合のよ
い形状にできることはもちろんであるが、このほか切断
加工等の際にレーザビームの面積を絞ることにより従来
より小さな照射スポットに集光できる。これはレーザ媒
質の断面内の熱レンズ効果従って広がり角が小さい中央
部分のみからレーザビームを取り出せるためで、これを
集光した照射強度が非常に高いスポットで良好な切断加
工を行なうことができる。
In an advantageous embodiment of the present invention using an aperture means for narrowing the laser beam to a cross-section of a predetermined shape and area before converging it onto the irradiation spot, it is of course possible to shape the irradiation spot to be most convenient for the processing content. In addition, by narrowing down the area of the laser beam during cutting, etc., it is possible to focus the beam onto a smaller irradiation spot than before. This is because the laser beam can be extracted only from the central portion where the thermal lens effect within the cross section of the laser medium has a small divergence angle, and the laser beam can be focused at a spot where the irradiation intensity is very high to perform good cutting.

〔実施例〕〔Example〕

以下、第1図から第4図までを参照しながら本発明方法
の若干Φ実躯例を説明する。第1図は本発明の第1実施
例を示す斜視図で、この例では刻象1に溶接や熱処理加
工が行なわれる。
Hereinafter, some practical examples of the method of the present invention will be explained with reference to FIGS. 1 to 4. FIG. 1 is a perspective view showing a first embodiment of the present invention. In this example, an engraving 1 is subjected to welding and heat treatment.

固体レーザ装置10用のレーザ媒質11は、例えは通常
のNdイオンをレーザ活性物質とするYAG等の光学結
晶から方形断面の柱状体に切り出したもので、断面は数
〜数十閣角、長さは百〜数百鵬とされ、その断面の縦横
の寸法比が1〜4望ましくは2〜3に選ばれ、両端面が
軸方向に対して直角に研磨される。このレーザ媒質11
とキセノン等のフラッシュランプである励起光源12は
密閉容器lコ内に収納されて純水等の通流により冷却さ
れる。
The laser medium 11 for the solid-state laser device 10 is, for example, a columnar body with a rectangular cross section cut from an optical crystal such as YAG that uses normal Nd ions as a laser active substance, and the cross section is several to several tens of squares and long. The diameter is from 100 to several 100 squares, the ratio of the vertical and horizontal dimensions of the cross section is selected to be 1 to 4, preferably 2 to 3, and both end surfaces are polished perpendicular to the axial direction. This laser medium 11
The excitation light source 12, which is a flash lamp such as a xenon lamp, is housed in a closed container and cooled by flowing pure water or the like.

通例のようにこれらは第2図(a)および(9)の断面
に示すように内面が鏡面仕上げされた密閉容器13の楕
円状半部13aと13bの焦点に、あるいは同図(C。
As usual, these are placed at the focal points of the elliptical halves 13a and 13b of the closed container 13, whose inner surfaces are mirror-finished, as shown in the cross-sections of FIGS.

のように単一楕円状の容器IOの焦点にそれぞれ置かれ
、いずれの場合にも励起光源12からの励起究がレーザ
媒質11に集められる。
are respectively placed at the focal point of a single elliptical vessel IO, such that in each case the excitation light from the excitation light source 12 is focused into the laser medium 11.

レーザ媒111の両端面は密閉容器13の端面から外方
に向けて露出され、それらに対向して全反射ミラー14
と部分反射ミラー15がそれぞれ配置されてレーザ共振
系をt#I威する9本発明方法で用いる固体レーザ装2
10は、励起光Ll、がスラブ形の場合と異なり常にレ
ーザ媒質11の軸方向に進行する軸方向共振状態でレー
ザ発振され、レーザ媒質10と同じ方形断面をもつレー
ザビームLBが通例のように部分反射ミラー15側から
レーザ共振系外に取り出される。このレーザビームLB
はペンドミラー21によって所望の方向ふつうは垂直方
向に向けられた後、レンズ20によってその焦点付近に
位置する対象1上の照射スポラ)SPに集光される。
Both end faces of the laser medium 111 are exposed outward from the end face of the sealed container 13, and a total reflection mirror 14 is placed opposite to them.
9 solid-state laser device 2 used in the method of the present invention, in which a partial reflection mirror 15 and a partial reflection mirror 15 are respectively arranged to drive the laser resonant system t#I.
10, unlike in the case of a slab type, the excitation light Ll is oscillated in an axial resonance state in which it always travels in the axial direction of the laser medium 11, and the laser beam LB having the same rectangular cross section as the laser medium 10 is generated as usual. The light is taken out of the laser resonant system from the partial reflection mirror 15 side. This laser beam LB
is directed in a desired direction, usually vertically, by a pendor mirror 21, and then focused by a lens 20 onto an irradiation spora (SP) on the object 1 located near its focal point.

この照射スポットSPは集光レンズ2oの対象1との距
離を微調整することにより加工内容に応じた大きさに設
定される。また、ふつうはこの照射スポラ)SPに対し
て対象1の方を移動させることにより、対象l上を照射
スポットSPで図の掃引方向SDに掃引して所定の加工
を行なう、第3図はこの加工の様子を示すものである。
This irradiation spot SP is set to a size according to the processing content by finely adjusting the distance between the condenser lens 2o and the object 1. In addition, by moving the object 1 with respect to the irradiation spot SP (normally, the irradiation spot SP), the specified processing is performed by sweeping the irradiation spot SP in the sweep direction SD shown in the figure. This shows the process of processing.

第3図(a)は溶接加工の場合を示し、この際には固体
レーザ装置10を励起光源12のパルス状点灯により1
秒あたり数十〜200パルスの繰り返えし周波数でパル
ス発振させた状態で、方形断面のレーザビームLBを1
0’ W/cj程度の照射強度に集光して1x2〜4請
程度の小さな矩形の照射スポラ1−3Pとし、かつ図示
のように矩形の長辺が掃引方向SDに向くように集光す
る。
FIG. 3(a) shows the case of welding, in which the solid-state laser device 10 is turned on by pulsed lighting of the excitation light source 12.
Laser beam LB with a rectangular cross section is oscillated at a repetition frequency of several tens to 200 pulses per second.
The light is focused to an irradiation intensity of about 0' W/cj to form a small rectangular irradiation spora 1-3P of about 1x2 to 4 lines, and the light is focused so that the long side of the rectangle faces the sweep direction SD as shown in the figure. .

この照射スボ・ントSPの掃引速度はもちろん固体レー
ザ装置IOのパルス発振の周波数に応して設定されるが
、照射スポット内の照射強度がふつう楕円状分布で矩形
の長辺の両端部で低くなるの!、本発明方法においても
掃引方向に順次隣合う照射スポットが若干型なり合うよ
うにこの掃引速度を設定する。しかし本発明の場合、照
射スポラ)SPが方形なのでこの重なり合いの程度は従
来よりも少なくてよく、スポット面積のふつうは10%
以下であってよい。かかる掃引速度は照射スポットSP
の長辺の長さによっても異なっ”C来るが、ふつうは数
十mm/secの範囲に設定される。
The sweep speed of this irradiation spot SP is of course set according to the pulse oscillation frequency of the solid-state laser device IO, but the irradiation intensity within the irradiation spot usually has an elliptical distribution and is low at both ends of the long side of the rectangle. Become! Also in the method of the present invention, the sweep speed is set so that irradiation spots that are sequentially adjacent in the sweep direction are slightly shaped. However, in the case of the present invention, since the irradiated spora) SP is rectangular, the degree of overlap may be smaller than that of the conventional method, and the spot area is usually 10%.
It may be the following. Such a sweep speed is the irradiation spot SP.
The length of the long side varies depending on the length of the long side, but it is usually set in a range of several tens of mm/sec.

第3図(a)を従来の第5図(a)と比べればわかるよ
うに、本発明方法では方形の照射スポットを用いるので
加熱のむらが少なく、ビードに凹凸がない良好な溶接が
できる。また、照射スポットの矩形の長辺を掃引方向に
向けることにより、溶接ビードを細め、かつ従来と同じ
レーザ出力で溶接速度を少なくとも2倍に上げることが
できる。
As can be seen by comparing FIG. 3(a) with the conventional method shown in FIG. 5(a), since the method of the present invention uses a rectangular irradiation spot, there is little unevenness in heating and good welding can be performed without unevenness on the bead. Furthermore, by orienting the long side of the rectangle of the irradiation spot in the sweeping direction, it is possible to narrow the weld bead and increase the welding speed by at least twice with the same laser output as in the past.

第3図(blは焼き入れ等の熱処理加工の場合を示す、
この場合には、固体レーザ装置loを通例の。
Figure 3 (bl shows the case of heat treatment such as quenching,
In this case, the solid-state laser device lo is customary.

スイッチを利用して数に&以上の高周波発振ないし準連
続発振状態にし、レーザビームを10” ’t4/c4
程度の照射強度の数〜十数論角の照射スポラ)SPに集
光してふつう LoomIl/see以上の高速で掃引
する。この熱処理の場合、本発明による方形の照射スポ
ットを利用して従来より均一な熱処理を施すことができ
、かつ照射スポットを矩形にして長辺を11引方向と直
角に向けることにより1回の掃引で広い面積に熱処理を
施せる。また、図のような複数回掃引の場合にも、従来
の第5図い)のように掃引範囲を重ね合わせる必要がな
くなる。
Use a switch to turn the laser beam into a high-frequency oscillation or quasi-continuous oscillation state of 10"'t4/c4.
The irradiation intensity is several to several tens of decimal degrees irradiation spora) focused on the SP and swept at a high speed of usually more than LoomIl/see. In the case of this heat treatment, by using the rectangular irradiation spot according to the present invention, it is possible to perform more uniform heat treatment than in the past, and by making the irradiation spot rectangular and orienting the long side at right angles to the 11 direction, one sweep can be performed. Heat treatment can be applied to a wide area. Furthermore, even in the case of multiple sweeps as shown in the figure, there is no need to overlap the sweep ranges as in the conventional case of Fig. 5).

第3図(C)では、同図(a)と同様に固体レーザ装置
をパルス発振させるが、方形の照射スボツ)SPの掃引
速度を隣接スポットが重なり合わず互いにほぼ接するよ
うに設定する。この態様は同図(a)より低い照射強度
の比較的大なスポットを高速掃引して加工速度を上げた
い場合に適する。
In FIG. 3(C), the solid-state laser device is oscillated in pulses as in FIG. 3(a), but the sweep speed of the rectangular irradiation spot (SP) is set so that adjacent spots do not overlap and are almost in contact with each other. This mode is suitable when it is desired to increase the processing speed by sweeping a relatively large spot with a lower irradiation intensity than that shown in FIG. 4(a) at high speed.

第4図に本発明の第2実施例を示す。この実施例では照
射スポットSPに集光すべきレーザビームLBを所定の
形状と面積の断面に絞るアパーチャ手段16が用いられ
る。同図(a)のアパーチャ手段16は例えば数皿程度
の厚みの金属板に円形、方形、楕円形等の適宜な形状の
開口ないしアパーチャ16aを設けたものである。かか
るアパーチャ手段16は固体レーザ装置lOから出力さ
れるレーザビームLB内に挿入してもよいが、図のよう
に固体レーザ装置10のレーザ共振系内に挿入するのが
望ましい。
FIG. 4 shows a second embodiment of the present invention. In this embodiment, an aperture means 16 is used to focus the laser beam LB to be focused on the irradiation spot SP into a cross section with a predetermined shape and area. The aperture means 16 shown in FIG. 3A is, for example, a metal plate having a thickness of several plates, and provided with an opening or aperture 16a having an appropriate shape such as circular, rectangular, or elliptical. Although such aperture means 16 may be inserted into the laser beam LB output from the solid-state laser device 10, it is preferable to insert it into the laser resonant system of the solid-state laser device 10 as shown in the figure.

容易にわかるように、アパーチャ手段16を通過するレ
ーザ光のみがレーザ共振に寄与するので、そのアパーチ
ャ16aと同じ断面のレーザビームLBが固体レーザ装
置10から出力される。
As can be easily seen, only the laser light passing through the aperture means 16 contributes to laser resonance, so that the solid-state laser device 10 outputs a laser beam LB having the same cross section as the aperture 16a.

このアパーチャ手段16は、種々な加工内容に適する形
状と面積のアパーチャ16aを選択できるよう取り換え
可能とし、かつアパーチャ16aの形状が矩形や楕円形
の場合に照射スポットに集光するレーザビームLBの断
面の方向を選択できるよう、図で矢印Rで示すようにそ
の角度を調整可能にして置くのが望ましい、なお、これ
により断面が制約されたレーザビームLBをペンドミラ
ー21やレンズ20により対象1上の照射スポットSP
に集光する要領は第1実施例と同しである。
This aperture means 16 is replaceable so that an aperture 16a with a shape and area suitable for various processing contents can be selected, and when the shape of the aperture 16a is rectangular or elliptical, the cross section of the laser beam LB focused on the irradiation spot is In order to select the direction of Irradiation spot SP
The procedure for condensing light is the same as in the first embodiment.

この第2実施例は、アパーチャ16aの形状の選択と角
度の調整とにより、レーザ媒質11の断面に制約されず
に加工内容に最適な形状と方向をもつ照射スポットSP
を容易に作れる利点を有するが、この実施例のもう一つ
の重要な利点は切断加工等に際して照射スポットSPを
従来より格段に小さく絞れる点にある。これはアパーチ
ャ16aの大きさをレーザ媒質11の断面よりも若干小
さくすることにより、レーザビームLBの広がり角を従
来よりも小さくできるからである。
In this second embodiment, by selecting the shape and adjusting the angle of the aperture 16a, the irradiation spot SP has an optimal shape and direction for the processing content without being restricted by the cross section of the laser medium 11.
Another important advantage of this embodiment is that the irradiation spot SP can be narrowed down to a much smaller size than the conventional one during cutting or the like. This is because by making the size of the aperture 16a slightly smaller than the cross section of the laser medium 11, the spread angle of the laser beam LB can be made smaller than before.

第4図(b)と(C)はこの説明用である。同図し)の
ようにレーザ媒1r11の断面の寸法がXとyの方向に
それぞれ21xと21yであるとすると、レーザ媒質l
l内のいわゆる熱レンズ効果によってレーザビームLB
の広がり角θは同図(C)のようになる0図示のように
広がり角θはレーザ媒質11の中心で最小でこの中心か
ら離れるに従って大きくなるが、この例ではlxの方が
zyよりも大きく、X方向の広がり角θXの方がX方向
の広がり角θyよりもかなり大きくなる。
FIGS. 4(b) and 4(C) are for this explanation. If the cross-sectional dimensions of the laser medium 1r11 are 21x and 21y in the X and y directions, respectively, as shown in the same figure, then the laser medium l
The laser beam LB due to the so-called thermal lens effect within l
The spread angle θ is as shown in FIG. The spread angle θX in the X direction is considerably larger than the spread angle θy in the X direction.

かかる広がり角はレンズ20等の光学系によってもちろ
ん補正されず、それにより集光される照射スポットSP
の径はレーザビームLBの断面内の最大広がり角に応じ
て大きくなる。この実施例におけるアパーチャ16aに
よりレーザビームを絞ると、最大広がり角はもちろん小
さくなるが、いま簡単化のためアパーチャを円形とする
とθX=θy=θとなり、照射スポットSPの径dはレ
ンズ20の焦点距離をrとして次式で表せる。
Of course, such a spread angle is not corrected by the optical system such as the lens 20, so that the irradiation spot SP is condensed.
The diameter increases according to the maximum spread angle in the cross section of the laser beam LB. If the laser beam is narrowed down by the aperture 16a in this embodiment, the maximum divergence angle will of course become smaller, but for simplicity, if the aperture is made circular, θX = θy = θ, and the diameter d of the irradiation spot SP is the focal point of the lens 20. It can be expressed by the following equation, where the distance is r.

d−f・θ 従って、この実施例のアパーチャ16aにより広がり角
θを小さくして照射スポットの径dを絞ることができる
。しかし、アパーチャ16aの大きさをあまり小さくす
ると、レーザビームLBの出力が低下して来るし、広が
り角θも第4図(C)かられかるようにあまり減少しな
くなるから、その大きさ例えば図の径2「にはレーザ媒
質11の断面の狭い方の寸法21yよりも小な範囲で切
断等の加工内容やその対象の材料に対して最適な値があ
り、実際には実験によってこのアパーチャ16aの最適
な大きさが決められる。このアパーチャの大きさが最適
化された条件では、アパーチャなしの場合と比べて照射
スポットの大きさは半分以下になり、照射強度も数倍に
向上される。
d−f·θ Therefore, the aperture 16a of this embodiment makes it possible to reduce the spread angle θ and narrow down the diameter d of the irradiation spot. However, if the size of the aperture 16a is made too small, the output of the laser beam LB will decrease, and the spread angle θ will not decrease much as shown in FIG. 4(C). The diameter 2'' of the aperture 16a has an optimum value within a range smaller than the narrower dimension 21y of the cross section of the laser medium 11, depending on the type of processing such as cutting and the material to be processed. The optimal size of the aperture is determined. Under conditions where the aperture size is optimized, the size of the irradiation spot is less than half that of a case without an aperture, and the irradiation intensity is also improved several times.

この第2実施例において、アパーチャ16aの大きさを
最適化してよく絞られた照射スポットSPで対象1を掃
引して切断加工を行なうことにより、従来より切断線が
細くて切断面に凹凸のない高品質の切断加工ができ、か
つ従来切断不能であった材料の切断も可能になる。
In this second embodiment, by optimizing the size of the aperture 16a and performing the cutting process by sweeping the object 1 with a well-focused irradiation spot SP, the cutting line is thinner than before and the cut surface is smooth. High-quality cutting is possible, and it is also possible to cut materials that were previously impossible to cut.

〔発明の効果〕〔Effect of the invention〕

以上述べたとおり本発明方法では、レーザ媒質に方形断
面をもつ光学結晶を用いて固体レーザ装置をレーザ媒質
内の軸方向共振状態で発振させ、この固体レーザ装置か
ら出射されるレーザビームの断面を照射スポットの掃引
方向に対して所定方向に向けた状態で照射スポットに集
光し、この出身・1スポツトで対象を固体レーザ装置の
発振状態に応じた掃引速度で掃引して所定の力U工を施
すことにより、次の効果を得ることができる。
As described above, in the method of the present invention, an optical crystal with a rectangular cross section is used as a laser medium to cause a solid-state laser device to oscillate in an axial resonance state within the laser medium, and the cross-section of a laser beam emitted from this solid-state laser device is The light is focused on the irradiation spot while facing in a predetermined direction with respect to the sweep direction of the irradiation spot, and the target is swept at a sweep speed corresponding to the oscillation state of the solid-state laser device at this origin/spot to apply a predetermined force U process. By applying this, the following effects can be obtained.

fa)方形断面のレーザビームを集光した方形の照射ス
ポットで対象を掃引することにより、対象内のスポット
の掃引方向とそれに直角方向の温度分布が均一化され、
従来よりも格段に均一で高品質な溶接や熱処理等の加工
を施すことができる。
fa) By sweeping the target with a rectangular irradiation spot made by concentrating a laser beam with a rectangular cross section, the temperature distribution of the spot in the target in the sweep direction and in the direction perpendicular to it is made uniform,
It is possible to perform processes such as welding and heat treatment that are much more uniform and of higher quality than conventional methods.

なお、従来は掃引方向の加工の均一化のためパルス発振
時の出射スポット相互間の重ね合わせを大きく設定する
必要があったが、本発明方法ではかかる重ね合わせは必
要がないか僅少で済ませることができる。
Note that in the past, it was necessary to set a large overlap between the emission spots during pulse oscillation in order to make the processing uniform in the sweep direction, but with the method of the present invention, such overlap is not necessary or can be done with a small amount. I can do it.

(b)従来は加工を掃引と直角方向に均一化するため出
射スポットを振動ミラーにより高速で振動させる場合が
多かったが、本発明方法ではかかる振動ミラーは一切不
要になり、従って出射スボ・ント用の光学系を簡単化す
ることができる。
(b) Conventionally, in order to make the machining uniform in the direction perpendicular to the sweep, the output spot was often vibrated at high speed with a vibrating mirror, but in the method of the present invention, such a vibrating mirror is completely unnecessary, and therefore the output spot The optical system for use can be simplified.

(C)レーザビームの断面を矩形としこれを集光した照
射スポットの長辺を掃引方向に向けて溶接や切断加工を
従来より高速で行ない、あるいは長辺を掃引とは直角な
方向に向けて従来より大面積内に均一な熱処理を施すこ
とができる。
(C) The cross section of the laser beam is rectangular, and the long side of the focused irradiation spot is directed in the direction of the sweep, and welding or cutting is performed at a higher speed than before, or the long side is directed in the direction perpendicular to the sweep direction. Uniform heat treatment can be performed over a larger area than before.

(中本発明方法で用いる固体レーザ装置は方形断面のレ
ーザ媒質を用いるが、スラブ形と異なり軸方向共振状態
で発振させるので、従来の口・ノド形と同様に構成簡単
で安価で実用性が高く、かつ加工現場での取り扱いが容
易である。
(The solid-state laser device used in the method of the present invention uses a laser medium with a rectangular cross section, but unlike the slab type, it oscillates in an axial resonance state, so it is simple in construction, inexpensive, and practical like the conventional mouth-to-throat type. It is expensive and easy to handle at the processing site.

このほか、アパーチャ手段を固体レーザ装置内に組み込
んで、照射スポットに集光すべきレーザビームを所望の
形状と面積の断面に絞る本発明方法のの有利な実施態様
によれば、さらに次の効果を上げることができる。
In addition, according to an advantageous embodiment of the method of the present invention, in which an aperture means is incorporated into the solid-state laser device and the laser beam to be focused on the irradiation spot is narrowed down to a cross-section with a desired shape and area, the following effects can be achieved: can be raised.

(e)アパーチャの形状や面積を適宜選択し、あるいは
その角度を調整することにより、レーザ媒質の断面に制
約されず照射スポットに各種加工に最適な形状と方向を
もたせて、例えば溶接等の加工速度を向上させ、焼き入
れ等の熱処理を広い面積に施すことができる。
(e) By appropriately selecting the shape and area of the aperture or adjusting its angle, the irradiation spot can be given the optimal shape and direction for various processing without being restricted by the cross section of the laser medium, such as processing such as welding. The speed can be improved and heat treatment such as hardening can be applied to a wide area.

(f)固体レーザ装置をレーザ媒質の断面の中央部分で
発振さセて広がり角の小さなレーザビームを取り出すこ
とにより、非常に小径で照射強度が高い照射スポットに
集光することができ、この照射スポ7)の掃引によって
切断線が細く切断面に凹凸のない高品質の切断を可能に
し、かつ従来は切断不能であった材料にも切断加工の適
用範囲を広げることができる。
(f) By oscillating a solid-state laser device at the center of the cross section of the laser medium and extracting a laser beam with a small spread angle, it is possible to focus the light onto an irradiation spot with a very small diameter and high irradiation intensity. By sweeping the spot 7), it is possible to achieve high-quality cutting with a thin cutting line and no unevenness on the cut surface, and the range of application of the cutting process can be expanded to materials that could not be cut in the past.

なお、本発明方法は従来のロッド形と同様に構成が簡単
で実用的な構成の固体レーザ装置と照射スポットへの集
光用光学系を用いて容易に実施することができ、上述の
各種加工内容に対するその固有の利点を通してレーザ加
工技術の今後の一層の発展と賛及に貢献し得るものであ
る。
The method of the present invention can be easily implemented using a solid-state laser device with a simple and practical configuration similar to the conventional rod-type laser device and an optical system for converging light onto the irradiation spot, and can be used for the various processing described above. Through its unique advantages to the content, it can contribute to the further development and popularization of laser processing technology in the future.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第4図までが本発明に関し、第1図は本発明
によるレーザ加工方法の第1実施例を示す加工用装置の
斜視図、第2図は固体レーザ装置の構成上の若干の態様
を示す簡略断面図、第3図は第1実施例の若干の適用例
を示す照射スポットとその掃引要領図、第4図は本発明
方法の第2実施例を示す加工用装置の斜視図とレーザビ
ームの広がり角を説明するための線図である。第5図は
従来方法における照射スポットとその掃引要領図である
0図において、 1:加工対象、10:固体レーザ装置、Iljレーザ媒
質、141アパ一チヤ手段、16aニアパーチヤ、LB
Xレーザビーム、SD:照射スポットの掃引方向、SP
:照射スポット、θ:レーザビームの広がり角、l2 // 第2屈 平3図 第4屈 第5月
FIGS. 1 to 4 relate to the present invention, with FIG. 1 being a perspective view of a processing device showing a first embodiment of the laser processing method according to the present invention, and FIG. 2 showing some structural details of the solid-state laser device. FIG. 3 is a diagram showing an irradiation spot and its sweeping procedure showing some application examples of the first embodiment, and FIG. 4 is a perspective view of a processing device showing a second embodiment of the method of the present invention. FIG. 2 is a diagram for explaining the spread angle of a laser beam. FIG. 5 is a diagram of the irradiation spot and its sweep procedure in the conventional method. In FIG.
X laser beam, SD: sweep direction of irradiation spot, SP
: Irradiation spot, θ: Laser beam spread angle, l2 // 2nd Qu Ping 3 Figure 4 Qu 5th month

Claims (1)

【特許請求の範囲】 1)固体レーザ装置の出射レーザビームを集光した照射
スポットで対象を掃引して加工する方法であって、レー
ザ媒質に方形断面をもつ光学結晶を用いて固体レーザ装
置をレーザ媒質内の軸方向共振状態で発振させ、照射ス
ポットの掃引方向に対して照射スポットに集光するレー
ザビームの断面を所定方向に向け、固体レーザ装置の発
振状態に応じた掃引速度で対象に所定の加工を施すこと
を特徴とするレーザ加工方法。 2)請求項1において、照射スポットに集光すべきレー
ザビームを所定の形状と面積の断面に絞るアパーチャ手
段を用いるレーザ加工方法。
[Claims] 1) A method for processing an object by sweeping it with an irradiation spot focused on an emitted laser beam of a solid-state laser device, which method uses an optical crystal with a rectangular cross section as a laser medium to process the solid-state laser device. The laser beam is oscillated in an axial resonance state within the laser medium, and the cross section of the laser beam focused on the irradiation spot is directed in a predetermined direction with respect to the sweep direction of the irradiation spot, and the laser beam is aimed at the target at a sweep speed that corresponds to the oscillation state of the solid-state laser device. A laser processing method characterized by performing predetermined processing. 2) A laser processing method according to claim 1, using an aperture means for focusing the laser beam to be focused on the irradiation spot into a cross section with a predetermined shape and area.
JP1316898A 1989-12-06 1989-12-06 Laser beam machining method Pending JPH03180286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1316898A JPH03180286A (en) 1989-12-06 1989-12-06 Laser beam machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1316898A JPH03180286A (en) 1989-12-06 1989-12-06 Laser beam machining method

Publications (1)

Publication Number Publication Date
JPH03180286A true JPH03180286A (en) 1991-08-06

Family

ID=18082140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1316898A Pending JPH03180286A (en) 1989-12-06 1989-12-06 Laser beam machining method

Country Status (1)

Country Link
JP (1) JPH03180286A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595670A (en) * 1995-04-17 1997-01-21 The Twentyfirst Century Corporation Method of high speed high power welding
US5603853A (en) * 1995-02-28 1997-02-18 The Twentyfirst Century Corporation Method of high energy density radiation beam lap welding
JP2004528991A (en) * 2001-06-08 2004-09-24 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Partial processing by laser
US7693696B2 (en) 2005-06-10 2010-04-06 Chrysler Group Llc System and methodology for zero-gap welding
US8198565B2 (en) 2007-04-11 2012-06-12 Chrysler Group Llc Laser-welding apparatus and method
JP2013528496A (en) * 2010-06-03 2013-07-11 ロフィン−ラザグ エージー Machining method by pulse laser and machining apparatus by pulse laser, especially laser welding method by power fluctuation
US8803029B2 (en) 2006-08-03 2014-08-12 Chrysler Group Llc Dual beam laser welding head
CN110253155A (en) * 2019-05-10 2019-09-20 武汉华工激光工程有限责任公司 A kind of laser processing device of micro-crack control

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5603853A (en) * 1995-02-28 1997-02-18 The Twentyfirst Century Corporation Method of high energy density radiation beam lap welding
US5595670A (en) * 1995-04-17 1997-01-21 The Twentyfirst Century Corporation Method of high speed high power welding
JP2004528991A (en) * 2001-06-08 2004-09-24 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Partial processing by laser
US7693696B2 (en) 2005-06-10 2010-04-06 Chrysler Group Llc System and methodology for zero-gap welding
US8253062B2 (en) 2005-06-10 2012-08-28 Chrysler Group Llc System and methodology for zero-gap welding
US8803029B2 (en) 2006-08-03 2014-08-12 Chrysler Group Llc Dual beam laser welding head
US8198565B2 (en) 2007-04-11 2012-06-12 Chrysler Group Llc Laser-welding apparatus and method
JP2013528496A (en) * 2010-06-03 2013-07-11 ロフィン−ラザグ エージー Machining method by pulse laser and machining apparatus by pulse laser, especially laser welding method by power fluctuation
CN110253155A (en) * 2019-05-10 2019-09-20 武汉华工激光工程有限责任公司 A kind of laser processing device of micro-crack control

Similar Documents

Publication Publication Date Title
US10556293B2 (en) Laser machining device and laser machining method
JP4822737B2 (en) Laser welding method and laser welding apparatus
TWI430863B (en) A laser processing method, a division method of a workpiece, and a laser processing apparatus
US6437284B1 (en) Optical system and apparatus for laser heat treatment and method for producing semiconductor devices by using the same
US4947023A (en) Method and apparatus for roll dulling by pulse laser beam
KR100589087B1 (en) Green welding laser
US6545248B2 (en) Laser irradiating apparatus
JP2005313195A (en) Double wavelength superposing type laser beam emission unit, and laser beam machining apparatus
US7005605B2 (en) Laser irradiation apparatus and method
JP4154477B2 (en) Laser oscillator
JP2007067396A (en) Solid-state laser source subjected to side pumping and pumping process for solid-state laser source
JPH03180286A (en) Laser beam machining method
US6890839B2 (en) Method and apparatus for laser annealing configurations of a beam
JP2000343254A (en) Laser beam line patterning method
JP3847172B2 (en) Crystal growth method and laser annealing apparatus
JPS6054151B2 (en) Laser cutting method
JPH0790385A (en) Grain-oriented silicon steel sheet excellent in magnetic property
JPH0145225B2 (en)
Yamaguchi et al. Line focus system with a segmented prism array for compact X-ray laser experiments
JPH06152017A (en) Laser oscillator
JPH11295649A (en) Laser beam converging and radiating device
US4904310A (en) Method of generating a metal vapor in a metal vapor laser
US20080310462A1 (en) Anamorphotic solid-sate laser
JPH11197868A (en) Laser beam projecting device
JPS601912Y2 (en) Laser processing equipment