JPH03179787A - Light emitting diode - Google Patents

Light emitting diode

Info

Publication number
JPH03179787A
JPH03179787A JP1318165A JP31816589A JPH03179787A JP H03179787 A JPH03179787 A JP H03179787A JP 1318165 A JP1318165 A JP 1318165A JP 31816589 A JP31816589 A JP 31816589A JP H03179787 A JPH03179787 A JP H03179787A
Authority
JP
Japan
Prior art keywords
light emitting
emitting diode
light
emitted
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1318165A
Other languages
Japanese (ja)
Inventor
Masaharu Shindo
進藤 雅春
Junichi Yoshitake
吉武 順一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP1318165A priority Critical patent/JPH03179787A/en
Publication of JPH03179787A publication Critical patent/JPH03179787A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

PURPOSE:To enable a light flux which passes through a lens to be emitted as collimated throughout light emitting points of all light emitting diode by a method wherein the incident and the emitting face of the lens are so constituted as to enable light rays emitted from a two-dimensional light emitting plane to be emitted from the emitting face as a parallel light flux passing through the incident face. CONSTITUTION:An incident face 6a and an emitting face 6b of the lens 6 of a light emitting diode are so designed as to enable light rays emitted from a two-dimensional light emitting plane or a light emitting diode chip 1 to be emitted from the emitting face 6b as a parallel light flux passing through the incident face 6a. The incident face 6a is formed into a spherical shape represented by a following equation, (X-A)<2>+Y<2>=1/c, where c1 denotes a curvature (mm<-1>) and A is an X-coordinate of a center of curvature. On the other hand, the emitting face 6b is formed into an elliptical or a parabolic plane represented by a formula 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は発光ダイオードに係り、特に、赤外領域の発光
ダイオードに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a light emitting diode, and particularly to an infrared light emitting diode.

〔従来の技術〕[Conventional technology]

従魚 一部の発光ダイオード、特に赤外領域の発光ダイ
オードにおいて1九 発光ダイオードチップより放射さ
れた光束を効率よく、フォトダイオード、フォトトラン
ジスタ等の受光素子を有する受光器に接続するため、レ
ンズキャンと呼ばれるパッケージを用い、光束を絞るよ
うにしている。
19. In some light emitting diodes, especially those in the infrared region, a lens can is used to efficiently connect the luminous flux emitted from the light emitting diode chip to a light receiver having a light receiving element such as a photodiode or phototransistor. It uses a package called ``1'' to narrow down the luminous flux.

しかしながら、上記の装置にょれ1!、レンズ部を形成
する際に、円筒状ガラスを加熱溶融によって接着後形状
出しを行っているため、レンズ部の外形寸法にばらつき
が大きく、焦点距離等の変動を生じ易いものでありら 一方、上記レンズキャンと呼ばれるパッケージを用いた
装置の問題点を解決する目的で、例え1!、特開昭62
−139367号公報では、プラスチックにより形成さ
れたレンズ部を有する発光ダイオードが提案されている
However, the above device is wrong! When forming the lens part, the cylindrical glass is heated and melted to form the shape after bonding, so the external dimensions of the lens part vary widely and the focal length etc. tend to fluctuate. For the purpose of solving the problems of the device using the package called Lenscan mentioned above, for example 1! , JP-A-62
Japanese Patent No. 139367 proposes a light emitting diode having a lens portion made of plastic.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記の提案では、レンズ部の入射面を発
光ダイオードチップを点光源とみな獣曲率中心とする球
面形状とし 該レンズ部の射出面を楕円面または放物面
としているため、光軸上の発光点に対しては、良好な平
行光束が得られるものの、発光ダイオードチップが2次
元における有限な大きさを有するため、軸外の発光点に
対しては、必ずしも効果的な解決法にはなり得ない。
However, in the above proposal, the entrance surface of the lens section is made into a spherical shape with the center of curvature considering the light emitting diode chip as a point light source, and the exit surface of the lens section is made into an ellipsoid or paraboloid. Although good parallel light flux can be obtained for light-emitting points, it is not necessarily an effective solution for off-axis light-emitting points because the light-emitting diode chip has a finite size in two dimensions. I don't get it.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記問題点を解決するため番λ 以下のよう
な手段をとっ九 本発明は、レンズ部付き外囲器内に発光ダイオードチッ
プを有する発光ダイオードにおいて、前記発光ダイオー
ドチップは2次元の発光面を有し、前記レンズ部の入射
面と射出面と1気 前記2次元発光面から出た光が入射
面を経て射出面から出る際、平行光束を射出する関係に
形成しムここで、前記入射面(転 (X  A) 2+Y2=1/c、2     (1)
但し C1:  曲率(mm”) A9曲車中心のX座標 で表される形状で形成さ札 前記射出面取 但し C2: 中心曲率(m m −’ ) K :円錐定数、 E :定数 に≠−1のとき に*0 K=−1のとき E=B ここで、Bは楕円の中心のX圧機 また1も 放物面の頂点のX座標 で表される形状で形成される力l その際、入射面、射
出面の形状を選択するにあたり、前記発光点が光軸上の
場合と、光軸外の場合について光線追跡を行い、最終的
な射出角カー 平均的に平行光になるようにする。
In order to solve the above-mentioned problems, the present invention takes the following measures.The present invention provides a light emitting diode having a light emitting diode chip in an envelope with a lens part, in which the light emitting diode chip has a two-dimensional shape. The lens unit has a light emitting surface, and is formed in such a relationship that when the light emitted from the two-dimensional light emitting surface passes through the entrance surface and exits from the exit surface, a parallel luminous flux is emitted. , the incident plane (translation (X A) 2+Y2=1/c, 2 (1)
However, C1: Curvature (mm") A9 The injection chamfer is formed in the shape represented by the X coordinate of the center of the curved wheel. However, C2: Center curvature (mm -') K: Conic constant, E: Constant ≠ - When 1, *0 When K=-1, E=B Here, B is the X pressure force at the center of the ellipse, and 1 is also the force l formed by the shape expressed by the X coordinate of the vertex of the paraboloid. When selecting the shapes of the entrance surface and the exit surface, ray tracing is performed for when the light emitting point is on the optical axis and when it is off the optical axis, and the final exit angle curve is adjusted so that the light becomes parallel on average. do.

〔作用〕[Effect]

本発明で14  発光ダイオードチップは点光源ではな
く、2次元の発光面を有することを、前提として、レン
ズ部の設計を行ったものであり、より理想的な平行光を
射出面がら得ることができる。
In the present invention, the lens section is designed on the premise that the light emitting diode chip has a two-dimensional light emitting surface rather than a point light source, and it is possible to obtain more ideal parallel light from the exit surface. can.

〔実施例〕〔Example〕

第1図は、本発明にかかる発光ダイオードの断面図であ
る。この図に示されるよう&へ 発光ダイオードチップ
1を円板状のステム2上にダイボンディングし 金線3
により外部電極4にワイヤーボンディングしである。
FIG. 1 is a cross-sectional view of a light emitting diode according to the present invention. As shown in this figure, a light emitting diode chip 1 is die-bonded onto a disk-shaped stem 2, and a gold wire 3 is attached.
This is the wire bonding to the external electrode 4.

一方、レンズ部6及び胴部7が一体成形されたプラスチ
ック製外囲器5を用意する。これは、レンズ部6の周囲
に円筒状胴部7を垂下させた形状である。
On the other hand, a plastic envelope 5 in which a lens portion 6 and a body portion 7 are integrally molded is prepared. This has a shape in which a cylindrical body part 7 is suspended around a lens part 6.

ここで、発光ダイオードチップ1が搭載されたステム2
を、前記胴部7の下端に取り付ける。この際、外部電極
4に通電し、発光ダイオードを発光させ、射出光が平行
光束になるように位置合わせする。
Here, a stem 2 on which a light emitting diode chip 1 is mounted
is attached to the lower end of the body section 7. At this time, the external electrode 4 is energized to cause the light emitting diode to emit light, and the positions are adjusted so that the emitted light becomes a parallel beam of light.

このように構成することにより、プラスチックレンズ部
6を通過した光束は、平行であるため効率の高い光源と
して利用できる。
With this configuration, the light beam passing through the plastic lens portion 6 is parallel, so it can be used as a highly efficient light source.

また、外囲器5を構成するレンズ部6と胴部7はプラス
チックにより一体成形されるため、従来のレンズキャン
に比べその製造が容易であり、しかもステム2との組立
調整が簡単に行える。
Further, since the lens portion 6 and the body portion 7 constituting the envelope 5 are integrally molded from plastic, they are easier to manufacture than conventional lens cans, and assembly and adjustment with the stem 2 can be easily performed.

一方、本実施例の発光ダイオードのレンズ部6の形状に
ついて、第2図を参照しながら説明する。
On the other hand, the shape of the lens portion 6 of the light emitting diode of this example will be explained with reference to FIG.

レンズ部6の入射面6aと射出面6bとは、前記2次元
発光面である発光ダイオードチップ1から出た光が入射
面6aを経て射出面6bがら出る際、平行光束を射出す
る関係に設計し九 本実施例において(九 既存の発光ダイオードとの寸法
差をできる限り小さくするため&;D、=2. 0mm
  (発光ダイオードチップとレンズ部入射面6aの距
離) D 2 = 2. 8 m m  (し:/ ス部(1
) 厚ミ)と 1− また、 N、=1.53(レンズ材料の屈折率)N2=1   
 (空気中の屈折率) という条件で設計し九 また、入射面6aは次の(1) 面形状とした (X−A)2+Y2=l/C12 但し C1:  曲率(mm−1) A: 曲率中心のX座標 一方、射出面6bは次の(2) 円形状または放物面形状とし氾 式で示される球 (1) 式で示される楕 但し C2: 中心曲率(m m引) K :円錐定数、K≠O E :定数 に≠−1のとき に=−1のとき E=B ここで、Bは楕円の中心のX座凍 また1転 放物面の頂点のX座標 以上において、入射面6 al  射出面6bは各々屈
折力を有し 入射面6aにおける入射角θ、と射出角θ
、。の関係は、 N25inθI+ ””NI 91 nθ、。
The entrance surface 6a and the exit surface 6b of the lens section 6 are designed in a relationship such that when the light emitted from the light emitting diode chip 1, which is the two-dimensional light emitting surface, passes through the entrance surface 6a and exits from the exit surface 6b, a parallel beam is emitted. In this embodiment, (9) In order to minimize the dimensional difference with existing light emitting diodes, &;D, = 2.0 mm.
(Distance between the light emitting diode chip and the lens portion entrance surface 6a) D 2 = 2. 8 mm (shi: / s part (1
) Thickness M) and 1- Also, N, = 1.53 (refractive index of lens material) N2 = 1
(Refractive index in air) In addition, the entrance surface 6a has the following (1) surface shape (X-A)2+Y2=l/C12 where C1: curvature (mm-1) A: curvature The X coordinate of the center On the other hand, the exit surface 6b is as follows: (2) A sphere with a circular or parabolic shape and expressed by the flood formula (1) An ellipse expressed by the formula where C2: Center curvature (m minus m) K: Cone Constant, K≠O E: When constant ≠ -1, when = -1, E = B. Here, B is the Surface 6 al Each of the exit surfaces 6b has a refractive power, and the incident angle θ at the entrance surface 6a and the exit angle θ
,. The relationship is: N25inθI+ ””NI 91 nθ,.

また、射出面6bにおける入射角θ2.と射出角θ2゜
の関係1丸 N、sinθ、=N2sinθ2゜ と表される(スネルの法則)。
Furthermore, the incident angle θ2. The relationship between and the exit angle θ2° is expressed as 1 circle N, sin θ, = N2 sin θ2° (Snell's law).

従って、このスネルの法則を満たす関係志 および各光
線とレンズ部6の交点との関係式により、光線追跡を行
うことにより、最終的な射出光線の角度aが求められる
。この角度aは光軸と光線がなす角である。
Therefore, by tracing the rays using the relationship that satisfies Snell's law and the relational expression between each ray and the intersection of the lens portion 6, the final angle a of the emitted ray can be found. This angle a is the angle between the optical axis and the light beam.

ところで、発光ダイオードチップ1142次元の有限な
大きさを有するため、実際の発光部14光軸上の一点の
みではなく、軸外にまで広がっている。このことを第3
図を参照しながら説明する。
By the way, since the light emitting diode chip 114 has a finite size of two dimensions, the light emitting section 14 actually extends not only at one point on the optical axis but also beyond the axis. This is the third
This will be explained with reference to the figures.

発光ダイオードチップlは、光軸外にまで広がる2次元
の有限な大きさを有している。従って光軸上の点Aから
射出される光線と、光軸外の点Bから射出される光線は
、レンズ部6の入射面6aの同一点Cに入射しても、各
々の入射角θ。1とθIllが異なるため、射出光のレ
ンズ部6の射出面6b上の位置A′B’ および射出角
θ、。、θ8゜が異なる。このとき、最終的な射出光線
の角度α9、aB も変化する。
The light emitting diode chip l has a two-dimensional finite size that extends beyond the optical axis. Therefore, even if the light ray emitted from point A on the optical axis and the light ray emitted from point B off the optical axis are incident on the same point C on the entrance surface 6a of the lens section 6, their respective incident angles θ will be different. Since 1 and θIll are different, the position A'B' of the emitted light on the exit surface 6b of the lens portion 6 and the exit angle θ. , θ8° are different. At this time, the final angle α9, aB of the emitted light beam also changes.

従って、該レンズ部6の形状を決定するにあたってIL
  発光ダイオードチップlの大きさを勘案し 発光点
が光軸上の場合と、光軸外の場合について考慮した光線
追跡を行い、最終的な射出角が、平均的に平行光になる
ようにしら この場合、平均的と示した意味は 必ずし
も算術平均という意味には限定されず、発光点の位置に
より、重み付けがなされても良い。
Therefore, when determining the shape of the lens portion 6, the IL
Taking into consideration the size of the light emitting diode chip l, ray tracing is carried out taking into account cases where the light emitting point is on the optical axis and cases where it is off the optical axis, and the final emission angle is made to be parallel light on average. In this case, the meaning of "average" is not necessarily limited to the meaning of arithmetic average, and weighting may be done depending on the position of the light emitting point.

決定された該レンズ部6の形状+4  入射面6aの曲
率が c、=0. 1 (mm−+) であり、射出面6bの中心曲率が c2=0. 515 (mm−1) 円錐定数か に=−0,45 である。
The determined shape of the lens portion 6+4 The curvature of the entrance surface 6a is c, =0. 1 (mm-+), and the central curvature of the exit surface 6b is c2=0. 515 (mm-1) Conic constant = -0.45.

尚、本発明は上記実施例に限定されるものではなく、本
発明の主旨に基づいて種々の変更が可能であり、これら
を本発明の範囲から除外するものではない。
It should be noted that the present invention is not limited to the above embodiments, and various modifications can be made based on the gist of the present invention, and these are not excluded from the scope of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明によれ(fl  発光ダイオードチップが点光源
ではなく2次元の大きさを有していることを前提として
、レンズ部の射出面から射出される光が平行となるよう
に設計したため、光軸上の発光点はもちろム 発光ダイ
オードチップ全体の発光点にわたり、レンズ部を通過し
た光束は、収束または発散することなく、平行に射出す
ることができる。
According to the present invention (fl) Assuming that the light emitting diode chip is not a point light source but has a two-dimensional size, it is designed so that the light emitted from the exit surface of the lens part is parallel. The luminous flux passing through the lens part can be emitted in parallel over the entire luminous point of the light emitting diode chip without converging or diverging.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる発光ダイオードの断面は 第2
図は本発明にかかる発光ダイオードの一部をなすレンズ
部の説明は 第3図は発光ダイオードチップの発光点の
違いにより光線追跡結果が異なることを示す模式図であ
る。
FIG. 1 shows a cross section of a light emitting diode according to the present invention.
The figure shows an explanation of a lens portion that forms a part of the light emitting diode according to the present invention. FIG. 3 is a schematic diagram showing that the ray tracing results differ depending on the light emitting point of the light emitting diode chip.

Claims (3)

【特許請求の範囲】[Claims] (1)レンズ部付き外囲器内に発光ダイオードチップを
有する発光ダイオードにおいて、前記発光ダイオードチ
ップは2次元の発光面を有し、前記レンズ部の入射面と
射出面とは、前記2次元発光面から出た光が入射面を経
て射出面から出る際、平行光束を射出する関係に形成し
てあることを特徴とする発光ダイオード。
(1) In a light emitting diode having a light emitting diode chip in an envelope with a lens part, the light emitting diode chip has a two-dimensional light emitting surface, and the entrance surface and the exit surface of the lens part are the two-dimensional light emitting surface. A light emitting diode characterized in that the light emitted from the surface is formed in such a relationship that a parallel beam of light is emitted when the light exits from the exit surface after passing through the entrance surface.
(2)前記入射面が (X−A)^2+Y^2=1/(c_1^2)(1)但
しc_1:曲率(mm^−^1) A:曲率中心のX座標 で表される形状で、 前記射出面が X={c_2^2Y^2}/{1+√〔1−(K+1)
c_2^2Y^2〕}+E(2)但しc_2:中心曲率
(mm^−^1) K:円錐定数K≠0 E:定数 K≠−1のとき E=B−1/{(K+1)c_2} K=−1のとき E=B ここで、Bは楕円の中心のX座標 または、放物面の頂点のX座標 で表される形状である請求項1項記載の発光ダイオード
(2) The incident surface is (X-A)^2+Y^2=1/(c_1^2) (1) where c_1: curvature (mm^-^1) A: shape expressed by the X coordinate of the center of curvature So, the exit surface is X={c_2^2Y^2}/{1+√[1-(K+1)
c_2^2Y^2]}+E(2) However, c_2: Center curvature (mm^-^1) K: Conic constant K≠0 E: When constant K≠-1, E=B-1/{(K+1)c_2 } When K=-1, E=B. The light emitting diode according to claim 1, wherein B is a shape represented by the X coordinate of the center of an ellipse or the X coordinate of the vertex of a paraboloid.
(3)前記入射面の曲率c_1が0.1(mm^−^1
)であり、前記射出面の中心曲率c_2が0.515(
mm^−^1)、及び、前記射出面の円錐定数Kが−0
.45である請求項2項記載の発光ダイオード。
(3) The curvature c_1 of the incident surface is 0.1 (mm^-^1
), and the central curvature c_2 of the exit surface is 0.515 (
mm^-^1) and the conic constant K of the exit surface is -0
.. 4. The light emitting diode according to claim 2, wherein the light emitting diode has a diameter of 45.
JP1318165A 1989-12-07 1989-12-07 Light emitting diode Pending JPH03179787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1318165A JPH03179787A (en) 1989-12-07 1989-12-07 Light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1318165A JPH03179787A (en) 1989-12-07 1989-12-07 Light emitting diode

Publications (1)

Publication Number Publication Date
JPH03179787A true JPH03179787A (en) 1991-08-05

Family

ID=18096199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1318165A Pending JPH03179787A (en) 1989-12-07 1989-12-07 Light emitting diode

Country Status (1)

Country Link
JP (1) JPH03179787A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5428227A (en) * 1993-03-17 1995-06-27 Ricoh Company, Ltd. Semiconductor light emitting element
US5841177A (en) * 1993-06-25 1998-11-24 Kabushiki Kaisha Toshiba Multicolor light emitting device
JP2006060254A (en) * 2005-10-31 2006-03-02 Nichia Chem Ind Ltd Light emitting diode
JP5338900B2 (en) * 2009-03-30 2013-11-13 株式会社オートネットワーク技術研究所 Optical communication module and method for manufacturing optical communication module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5428227A (en) * 1993-03-17 1995-06-27 Ricoh Company, Ltd. Semiconductor light emitting element
US5841177A (en) * 1993-06-25 1998-11-24 Kabushiki Kaisha Toshiba Multicolor light emitting device
JP2006060254A (en) * 2005-10-31 2006-03-02 Nichia Chem Ind Ltd Light emitting diode
JP5338900B2 (en) * 2009-03-30 2013-11-13 株式会社オートネットワーク技術研究所 Optical communication module and method for manufacturing optical communication module

Similar Documents

Publication Publication Date Title
US8541795B2 (en) Side-emitting optical coupling device
KR100638611B1 (en) Light emitting diode having multiple lenses
US20060152820A1 (en) Lens and light-emitting device including the lens
US6674096B2 (en) Light-emitting diode (LED) package and packaging method for shaping the external light intensity distribution
JP4623944B2 (en) Side-emitting LED and lens
US8449128B2 (en) System and method for a lens and phosphor layer
JP5150047B2 (en) Lighting package
US6598998B2 (en) Side emitting light emitting device
JP5150335B2 (en) Light guiding lens
US20020080615A1 (en) LED collimation optics with improved performance and reduced size
US20070268722A1 (en) Emission device
JP3686660B2 (en) Light irradiation device and optical unit
JPS62139367A (en) Light emitting diode
JPH03179787A (en) Light emitting diode
TW201438295A (en) Lens combination and light module with the same
EP3577389B1 (en) A dielectric collimator with a rejecting center lens
JP2005142447A (en) Light emitting device, light receiving device, electronic apparatus, and manufacturing method of lens
JP6927744B2 (en) Light projection device
JP2946642B2 (en) LED with collimating lens
JP4404658B2 (en) Semiconductor light emitting device
US20130128590A1 (en) Led unit
JPH02106056A (en) Cap with lens window
EP1288999A2 (en) Double ellipsoid light bulb using total internal reflection
JPS61138905A (en) Optical coupling device
JPH03288480A (en) Light emitting element