JPH0317951A - Low pressure rare gas discharge lamp - Google Patents

Low pressure rare gas discharge lamp

Info

Publication number
JPH0317951A
JPH0317951A JP15025489A JP15025489A JPH0317951A JP H0317951 A JPH0317951 A JP H0317951A JP 15025489 A JP15025489 A JP 15025489A JP 15025489 A JP15025489 A JP 15025489A JP H0317951 A JPH0317951 A JP H0317951A
Authority
JP
Japan
Prior art keywords
rare gas
glass bulb
discharge lamp
bulb
gas discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15025489A
Other languages
Japanese (ja)
Other versions
JPH083993B2 (en
Inventor
Takashi Osawa
隆司 大澤
Seijiyurou Mihashi
三橋 征寿郎
Yujiro Kamano
鎌野 裕二郎
Katsuo Murakami
勝男 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15025489A priority Critical patent/JPH083993B2/en
Priority to KR1019900008489A priority patent/KR920010666B1/en
Priority to DE69032825T priority patent/DE69032825T2/en
Priority to DE69019597T priority patent/DE69019597T2/en
Priority to EP90111134A priority patent/EP0402878B1/en
Priority to EP93110967A priority patent/EP0570024B1/en
Priority to US07/538,084 priority patent/US5187415A/en
Publication of JPH0317951A publication Critical patent/JPH0317951A/en
Publication of JPH083993B2 publication Critical patent/JPH083993B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

PURPOSE:To restrain the reaction of a light emitting gas with residue contained in a glass bulb that may cause clean-up so as to elongate the life of a low pressure rare gas discharge lamp by providing an isolating film on the inner surface of the glass bulb surrounding a positive column. CONSTITUTION:A titanium oxide film 2 applied as an isolating film on the inner surface of a glass bulb 1 formed from soda glass is obtained by applying and drying tetrabutiltitanate thereon, and baking and dissolving it. A filament 6 is coated with an electron emitting material and a gas of one hundred percent xenon is sealed inside the glass bulb 1. The isolating film 2 provided on the inner surface of the glass bulb 1 restrains the reaction of the rare gas sealed inside the bulb with residue contained in the glass bulb. Clean-up is thereby prevented so as to elongate the life of the low pressure rare gas discharge lamp.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、発光ガスとして希ガスを封入した低圧希ガ
ス放電ランプに関する. 〔従来の技術〕 従来、例えば東芝レビュー(40巻12号)昭和60年
第1079頁〜1082頁に、通常の蛍光ランプの水銀
に代えて、数10Torr〜数100Torrのキセノ
ンを封入した低圧希ガス放電ランプが記載されている.
これは、通常の蛍光ランプが水銀蒸気を用いるため周囲
温度の変化によりこの蒸気圧が変化し、光出力も変動す
るのに対し、キセノンを用いたものは、水銀を使わない
ので広い温度範囲にわたって光出力が変動しないという
利点を活かし、OA関連機器用の光源としての用途拡大
を図ったものである. 一方、例えば、昭和50年照明学会全国大会で松下電子
工業(株)奥野氏の発表にもあるように、キセノンを封
入した低圧希ガス放電ランプにおいては、封入ガス圧を
0. ITorr以下という極めて低圧力にすると、発
光効率が最良となることが知られている.しかしながら
、同発表にもあるように、このような低圧領域では、放
電中のクリーンアップ現象によりキセノンが消失しラン
プが短時間に寿命になってしまうという問題点があった
. 〔発明が解決しようとする課題〕 このように、低圧希ガス放電ランプは、封入ガスを低く
すれば輝度が増し効率も向上するが、クリーンアップ現
象により極端な短寿命となる.このため、寿命を確保す
るためにやむを得ずガス圧を高くして、輝度・効率を犠
牲にしなければならないという問題点があった. この発明はかかる問題点を解決するためになされたもの
で、低圧希ガス放電ランプのクリーンアップ現象は、ガ
ラス管中の残渣と希ガスイオンとの反応に密接に関係し
ており、希ガスイオンとガラス中の残渣を互いに隔離す
れば、互いの反応が抑制されることを究明し、この結果
に基づき、封入希ガス圧力を極めて低くしてもクリーン
アップを防止でき、輝度・効率が良好な低ガス圧領域で
寿命を延長させた低圧希ガス放電ランプを提供すること
を目的とする.〔課題を解決するための手段〕 この発明にかかる低圧希ガス放電ランプは、バルブ内面
の少なくとも陽光柱を囲繞する部分に、放電空間との隔
離膜を設けたものである.また、別の発明は、上記の発
明において、隔g!膜を透光性を有する酸化チタン薄膜
としたものである. 〔作用〕 この発明においては、ガラスバルブ内面に設けられた隔
離膜は、バルブ内に封入された希ガスとガラスバルブ中
の残渣との反応を抑制するため、クリリーンアップを防
止し寿命を延長する. また、隔離膜として透光性の酸化チタン薄膜を用いるこ
とにより、効果的に希ガスとバルブ中の残渣との反応を
抑制でき、一層の寿命延長を可能にする. 〔実施例〕 第1図はこの発明の一実施例を示す低圧希ガス放電ラン
プの部分断面図である.図において、(1)は管径15
. 5+*mのガラスバルブである.このガラスバルブ
(1)は、フッ素が0. 004重量%,塩素が0.0
31重量%程度残渣として含有されている掻く一般的な
ソーダガラスで形成されている.(2)はこのガラスバ
ルブ(1)の内面に隔離膜として塗着された酸化チタン
膜で、テトラブチルチタネートを塗布・乾燥し、これを
焼付し分解して得たものである.口)はこの酸化チタン
膜(2)の面上に設けられた蛍光体層で、化成オブ1・
ニクス社製GP,G.緑色蛍光体より成る.(4)は反
射膜,((5)はアパーチャ開口部,(6)はフィラメ
ントである.特に図示しないが、このフィラメント(6
)には電子放射物質が塗布されており、ガラスバルブ(
11の内部にはキセノン100%ガスが封入されている
。またガラスバルブ(1)中には、寿命中不純ガスを吸
着させる目的で、十分量のバリウムゲッターが設けられ
ている。点灯条件は、電源は30KHzの正弦高周波と
し、ランプ電流は100+aA一定とした. 第2図は、上記のように構或されたランプにおいて、ガ
ス圧を変fヒさせた場合の寿命特性を示している.パラ
メータとして、ガラスバルブ内面上の酸化チタン付着量
をとった.また、寿命は封入キセノン圧100Torr
のランプ寿命を100%とし、相対値で示している。図
からもわかるように、酸化チタンの付着量を増すと寿命
は飛躍的に延長する.寿命終了となったランプのフィラ
メントを観察してみると、酸化チタンの付着量が0.0
5B/ciを超えたものは電子放射物質の残存はほとん
ど無かった.これは酸化チタンを被着させなかった封入
ガス圧50Torr以上のランプのフィラメントの状態
に近いものであった.また、他の同様な実験によれば、
キセノンよりクリブトンの方が寿命を短くすることが判
った.一般には、希ガスは反応性が極めて小さく不活性
ガスと称され、原子が小さくなればなる程その傾向は強
まるとされている.しかし、発明者らの実験では、実際
プラズマ中では小さい原子の方が反応しやすい傾向にあ
った.これはイオン化レベルがクリプ1・ンの方がキセ
ノンより高いため、放電中電子エネルギーはクリプトン
の方が高く、反応が促進されていると思われる.同様に
、例えば、キセノン100%ガスとキセノンlO%,ネ
オン90%ガスを同じ圧力で封入した場合、後者の方が
電子エネルギーは高くなり、輝度は高くなるが、寿命は
短くなった.表1にいくつかの実験例を示す. 表1 仕様A;反射膜なし 蛍光体のみ全面塗り封入ガス組戒
(Xe:10%,Ne:90%)封入圧1.QTorr B;反射膜,蛍光体のアパーチャー 封入ガス組成(Kr:10%, Ne : 90%)封
入圧1.0Torr 表1で酸化アルミニウム.酸化ケイ素はデグッサ社製の
アルミニウムオキサイドC等を用いたが、効果がないば
かりか、若干寿命を短くする傾向を示した.これは隔離
膜としての機能、つまりガラス遮蔽が不完全なだけでな
く、焼付け時、これらの微粒子がガラスバルブ内面をき
すつけ、ガラス中の不純物(残渣)を露呈させたためと
考えられる. なお、ガラスバルブ内面に酸化チタンの被膜を形成する
ことは、例えば特公昭36−7240号公報や特開昭5
0−35967号公報に示されており周知である.しか
し、これらはガラスバルブ内面に形成された導電膜と水
銀との反応を抑制するためのものである.一方、特開昭
52−93184号公報には、ガラス中のナトリウムの
析出を抑え、このナトリウムと水銀との反応を防止する
ものが記載されている.このように、上記従来の酸化チ
タン膜いずれも水銀との反応を抑制し、光束の改善を図
ったもので、水銀を有さない希ガス放電ランプの低圧領
域において酸化チタン膜がガラス中の残渣と希ガスイオ
ンとの反応を抑え、寿命特性を大幅に向上させることの
示唆は何ら与えるものではない. 〔発明の効果〕 以上説明したように、この発明は、陽光柱を囲繞するガ
ラスバルブの内面に隔N膜を設けたので、クリーンアッ
プを招く発光ガスとガラスバルブ中の残渣との反応を抑
制でき、寿命を延長させる.よって、寿命を損なうこと
なく、輝度および効率を大幅に改善できる効果がある.
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a low-pressure rare gas discharge lamp filled with a rare gas as a luminescent gas. [Prior Art] Conventionally, for example, in Toshiba Review (Volume 40, No. 12), 1985, pages 1079 to 1082, a low-pressure rare gas containing xenon of several tens to several hundred Torr was introduced in place of mercury in ordinary fluorescent lamps. Discharge lamps are described.
This is because normal fluorescent lamps use mercury vapor, so the vapor pressure changes with changes in ambient temperature, and the light output also fluctuates, whereas xenon lamps do not use mercury, so they can be used over a wide temperature range. Taking advantage of the fact that the light output does not fluctuate, this product aims to expand its use as a light source for OA-related equipment. On the other hand, for example, as stated in the presentation by Mr. Okuno of Matsushita Electronics Co., Ltd. at the 1975 National Illumination Society Conference, in low-pressure rare gas discharge lamps filled with xenon, the filled gas pressure is reduced to 0. It is known that the luminous efficiency is the best when the pressure is extremely low, less than ITorr. However, as stated in the same presentation, in such a low pressure region, there was a problem in that xenon disappeared due to the clean-up phenomenon during discharge, and the lamp's life span was shortened in a short period of time. [Problems to be Solved by the Invention] As described above, in a low-pressure rare gas discharge lamp, lowering the filler gas increases brightness and improves efficiency, but the clean-up phenomenon results in an extremely short life span. For this reason, there was a problem in that in order to ensure longevity, the gas pressure had to be increased, at the expense of brightness and efficiency. This invention was made to solve this problem, and the cleanup phenomenon of low-pressure rare gas discharge lamps is closely related to the reaction between the residue in the glass tube and rare gas ions. We found that by isolating the residues in glass and glass from each other, their reactions with each other can be suppressed. Based on this result, we have developed a system that can prevent clean-up and achieve good brightness and efficiency even when the pressure of the rare gas sealed is extremely low. The purpose of this project is to provide a low-pressure rare gas discharge lamp with extended life in the low gas pressure region. [Means for Solving the Problems] The low-pressure rare gas discharge lamp according to the present invention is provided with an isolation film from the discharge space on at least the portion surrounding the positive column on the inner surface of the bulb. In addition, another invention is the above-mentioned invention, in which the interval g! The film is a thin titanium oxide film that is transparent. [Function] In this invention, the isolation membrane provided on the inner surface of the glass bulb suppresses the reaction between the rare gas sealed in the bulb and the residue in the glass bulb, thereby preventing clean-up and extending the life. do. In addition, by using a transparent titanium oxide thin film as the isolation membrane, it is possible to effectively suppress the reaction between the rare gas and the residue in the bulb, making it possible to further extend the life of the valve. [Embodiment] Figure 1 is a partial sectional view of a low-pressure rare gas discharge lamp showing an embodiment of the present invention. In the figure, (1) is a pipe diameter of 15
.. It is a 5+*m glass bulb. This glass bulb (1) contains 0.0% fluorine. 0.04% by weight, 0.0% chlorine
It is made of common soda glass that contains about 31% by weight as a residue. (2) is a titanium oxide film applied as an isolation film to the inner surface of the glass bulb (1), which was obtained by coating and drying tetrabutyl titanate, then baking and decomposing the film. ) is a phosphor layer provided on the surface of this titanium oxide film (2),
GP manufactured by Nix, G. Consists of green phosphor. (4) is a reflective film, ((5) is an aperture opening, and (6) is a filament. Although not particularly shown, this filament (6) is
) is coated with an electron-emitting substance, and the glass bulb (
11 is filled with 100% xenon gas. Further, a sufficient amount of barium getter is provided in the glass bulb (1) for the purpose of adsorbing impurity gas during its life. The lighting conditions were that the power source was a 30KHz sinusoidal high frequency, and the lamp current was constant at 100+aA. FIG. 2 shows the life characteristics of the lamp constructed as described above when the gas pressure is varied. The amount of titanium oxide deposited on the inner surface of the glass bulb was taken as a parameter. In addition, the lifespan is the sealed xenon pressure of 100 Torr.
The lamp life is assumed to be 100%, and the values are shown in relative values. As can be seen from the figure, increasing the amount of titanium oxide deposited dramatically extends the life. When observing the filament of a lamp that has reached the end of its life, the amount of titanium oxide deposited is 0.0.
There was almost no remaining electron emitting material in the case where the concentration exceeded 5B/ci. This condition was close to that of a filament in a lamp with a sealed gas pressure of 50 Torr or more, which was not coated with titanium oxide. Also, according to other similar experiments,
It was found that krybton shortens lifespan more than xenon. In general, rare gases have extremely low reactivity and are called inert gases, and it is said that this tendency becomes stronger as the atoms become smaller. However, in the experiments conducted by the inventors, it was found that smaller atoms actually tend to react more easily in plasma. This is because the ionization level of krypton is higher than that of xenon, so the electron energy during discharge is higher for krypton, which seems to accelerate the reaction. Similarly, for example, when 100% xenon gas and 10% xenon and 90% neon gas were sealed at the same pressure, the latter had higher electron energy and higher brightness, but had a shorter lifespan. Table 1 shows some experimental examples. Table 1 Specification A: No reflective film, only phosphor is fully coated, filled with gas (Xe: 10%, Ne: 90%) Filled pressure: 1. QTorr B: Reflection film, phosphor aperture filling gas composition (Kr: 10%, Ne: 90%) Filling pressure 1.0 Torr Table 1 shows aluminum oxide. As silicon oxide, Aluminum Oxide C manufactured by Degussa was used, but it was not only ineffective but also tended to shorten the lifespan. This is thought to be due not only to the incomplete function of the isolation membrane, that is, the glass shielding, but also to the fact that during baking, these fine particles scratched the inner surface of the glass bulb, exposing impurities (residues) in the glass. Note that forming a titanium oxide film on the inner surface of a glass bulb is known, for example, in Japanese Patent Publication No. 36-7240 and Japanese Patent Application Laid-open No. 5
It is disclosed in Japanese Patent No. 0-35967 and is well known. However, these are intended to suppress the reaction between the conductive film formed on the inner surface of the glass bulb and mercury. On the other hand, JP-A-52-93184 describes a method for suppressing the precipitation of sodium in glass and preventing the reaction between this sodium and mercury. In this way, all of the conventional titanium oxide films mentioned above suppress the reaction with mercury and improve the luminous flux. There is no suggestion that the reaction between the gas and rare gas ions can be suppressed and the life characteristics can be significantly improved. [Effects of the Invention] As explained above, in this invention, the N film is provided on the inner surface of the glass bulb that surrounds the solar column, thereby suppressing the reaction between the luminescent gas and the residue in the glass bulb that would cause cleanup. It can extend the lifespan. Therefore, it has the effect of significantly improving brightness and efficiency without impairing lifespan.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す部分断面図,第2図
は酸化チタン膜を用いた低圧希ガス放電ランプの寿命特
性図である. 図において、(1)はガラスバルブ,L2)は隔NIB
!(酸化チタン膜) . (3)は蛍光体.(6)はフ
ィラメント.
Figure 1 is a partial cross-sectional view showing one embodiment of the present invention, and Figure 2 is a life characteristic diagram of a low-pressure rare gas discharge lamp using a titanium oxide film. In the figure, (1) is a glass bulb, L2) is a septum NIB
! (Titanium oxide film) . (3) is a phosphor. (6) is a filament.

Claims (2)

【特許請求の範囲】[Claims] (1)バルブ内に発光ガスとして希ガスを封入し、放電
によりこれらが放射する光を利用するものにおいて、バ
ルブ内面の少なくとも陽光柱を囲繞する部分に放電空間
との隔離膜を設けたことを特徴とする低圧希ガス放電ラ
ンプ。
(1) In a bulb that seals rare gas as a luminous gas in a bulb and utilizes the light emitted by these gases through discharge, an isolation film from the discharge space is provided on at least the portion surrounding the positive column on the inner surface of the bulb. Characteristic low pressure rare gas discharge lamp.
(2)隔離膜はテトラブチルチタネートを加熱分解させ
て形成した透光性を有する酸化チタン薄膜(TiO_2
)であることを特徴とする請求項(1)記載の低圧希ガ
ス放電ランプ。
(2) The isolation film is a titanium oxide thin film (TiO_2) with translucent properties formed by thermally decomposing tetrabutyl titanate.
) The low-pressure rare gas discharge lamp according to claim (1).
JP15025489A 1989-06-13 1989-06-13 Low pressure rare gas discharge lamp Expired - Lifetime JPH083993B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP15025489A JPH083993B2 (en) 1989-06-13 1989-06-13 Low pressure rare gas discharge lamp
KR1019900008489A KR920010666B1 (en) 1989-06-13 1990-06-11 Low pressure rare gas arcing lamp
DE69032825T DE69032825T2 (en) 1989-06-13 1990-06-12 Low pressure noble gas discharge lamp
DE69019597T DE69019597T2 (en) 1989-06-13 1990-06-12 Low pressure noble gas discharge lamp.
EP90111134A EP0402878B1 (en) 1989-06-13 1990-06-12 Low pressure rare gas discharge lamp
EP93110967A EP0570024B1 (en) 1989-06-13 1990-06-12 Low pressure rare gas discharge lamp
US07/538,084 US5187415A (en) 1989-06-13 1990-06-13 Low-pressure rare gas discharge lamp and method for lighting same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15025489A JPH083993B2 (en) 1989-06-13 1989-06-13 Low pressure rare gas discharge lamp

Publications (2)

Publication Number Publication Date
JPH0317951A true JPH0317951A (en) 1991-01-25
JPH083993B2 JPH083993B2 (en) 1996-01-17

Family

ID=15492925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15025489A Expired - Lifetime JPH083993B2 (en) 1989-06-13 1989-06-13 Low pressure rare gas discharge lamp

Country Status (1)

Country Link
JP (1) JPH083993B2 (en)

Also Published As

Publication number Publication date
JPH083993B2 (en) 1996-01-17

Similar Documents

Publication Publication Date Title
KR910009643B1 (en) Hot-cathode discharge fluorescent lamp filled with low pressure rare gas
JP2948200B1 (en) High pressure mercury lamp
KR920010666B1 (en) Low pressure rare gas arcing lamp
JPH0317951A (en) Low pressure rare gas discharge lamp
JP2001015065A (en) Cold cathode fluorescent lamp and manufacture thereof
JP2005011665A (en) Cold-cathode fluorescent lamp
JP3376608B2 (en) Cold cathode discharge lamp
JP3314627B2 (en) High pressure mercury discharge lamp
EP2266131B1 (en) Fluorescent lamps having desirable mercury consumption and lumen run-up times
JPH07254390A (en) Fluorescent lamp
JP3127608B2 (en) Metal halide lamp and method of manufacturing the same
JPS60148043A (en) Metal vapor discharge lamp
JP2004039323A (en) Metal-halide lamp and headlamp for automobile using the same
JP3117007B2 (en) Fluorescent lamp, lighting device and display device using the same
JPS6362147A (en) Metal halide lamp
JP2008097911A (en) Low-pressure nitrogen gas discharge lamp
JPH01161655A (en) Metal halide lamp
JPS63237346A (en) Lamp for ultraviolet light source
JPH09283081A (en) Cold cathode low pressure mercury vapor discharge lamp, display device and lighting system
JPH0864173A (en) Mercury vapor discharge lamp and lighting system using this lamp
JPH09270247A (en) High pressure vapor discharge lamp
JPS6258562A (en) Ceramic discharge lamp
JPH097547A (en) Cold cathode electric-discharge lamp
JPS62226555A (en) Electrode for cold cathode discharge lamp
JPH0745239A (en) Low pressure mercury vapor discharge lamp and equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080117

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 14