JPH03179353A - Positive type radiation sensitive resist composition - Google Patents

Positive type radiation sensitive resist composition

Info

Publication number
JPH03179353A
JPH03179353A JP23684590A JP23684590A JPH03179353A JP H03179353 A JPH03179353 A JP H03179353A JP 23684590 A JP23684590 A JP 23684590A JP 23684590 A JP23684590 A JP 23684590A JP H03179353 A JPH03179353 A JP H03179353A
Authority
JP
Japan
Prior art keywords
resist composition
sensitive resist
soluble resin
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23684590A
Other languages
Japanese (ja)
Other versions
JP2814721B2 (en
Inventor
Haruki Ozaki
尾崎 晴喜
Yasunori Kamiya
保則 上谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2236845A priority Critical patent/JP2814721B2/en
Publication of JPH03179353A publication Critical patent/JPH03179353A/en
Application granted granted Critical
Publication of JP2814721B2 publication Critical patent/JP2814721B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve sensitivity, resolving power and heat resistance by incorporating an alkaline-soluble resin contg. a specific phenolic compd. and 1, 2- quinonediazide compd. into the above compsn. CONSTITUTION:This compsn. contains the 1, 2-quinonediazide compd. and the alkaline-soluble resin. The phenolic compd. expressed by formula I is incorpo rated into the alkaline-soluble resin. In the formula I, R denotes an alkyl group, alkoxy group; (n) denotes 0 to 3. This phenolic compd. is synthesized by subjecting phenols and terephthalaldehyde into dehydration condensation in the presence of an acid catalyst. The positive type radiation sensitive resist compsn. having the excellent sensitivity, resolving power and heat resistance is obtd. in this way.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、紫外線、遠紫外線(エキシマ−レーザー等を
含む)、電子線、イオンビーム、X線等の放射線に感応
するポジ型レジスト組成物に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a positive resist composition sensitive to radiation such as ultraviolet rays, deep ultraviolet rays (including excimer lasers, etc.), electron beams, ion beams, and X-rays. It is related to.

〈従来の技術及び発明の課題〉 近年集積回路については高集積化に伴う微細化が進み、
今やサブミクロンのパターン形成が要求されるに到って
おり解像力の優れたポジ型フォトレジストが要望されて
いる。従来、集積回路の形成には、マスク密着方式が用
いられてきたが、この方式では2μmが限界といわれて
おり、これに代わり縮小投影露光方式が注目されている
。この方式はマスターマスク(レチクル)のパターンを
レンズ系により縮小投影して露光する方式であり、解像
力はサブミクロンまで可能である。しかしながら、この
縮小投影露光方式の場合の問題点の1つとしてスループ
ットが低いという点がある。
<Prior art and problems with the invention> In recent years, integrated circuits have become increasingly finer due to higher integration.
Submicron pattern formation is now required, and positive photoresists with excellent resolution are required. Conventionally, a mask contact method has been used to form integrated circuits, but this method is said to have a limit of 2 μm, and a reduction projection exposure method is attracting attention as an alternative. This method is a method in which the pattern of a master mask (reticle) is reduced and projected using a lens system for exposure, and the resolution can be down to submicrons. However, one of the problems with this reduction projection exposure method is that the throughput is low.

即ち、従来のマスク密着方式のような一括露光方式と異
なり、縮小投影露光方式では分割くり返し露光であるた
め、ウェハー1枚当たりの露光トータル時間が長くなる
という問題である。
That is, unlike the conventional batch exposure method such as the mask contact method, the reduction projection exposure method uses divided and repeated exposure, resulting in a problem that the total exposure time per wafer becomes long.

これを解決する方法としては装置の改良もさることなが
ら、用いるレジストの高感度化が最も重要である。高感
度化により露光時間が短縮できればスルーブツトの向上
ひいては歩留まりの向上が達成されうる。一方、LSI
の集積度の向上とともに配線の幅が微細化され、そのた
めエツチングも従来のウェットエツチングに代わりドラ
イエツチングが主流となってきている。このドライエツ
チングのため、レジストの耐熱性が従来以上に要求され
るようになった。
The most important way to solve this problem is to improve the sensitivity of the resist used, as well as improving the equipment. If exposure time can be shortened by increasing sensitivity, throughput and yield can be improved. On the other hand, LSI
As the degree of integration improves, the width of wiring becomes finer, and as a result, dry etching has become mainstream instead of conventional wet etching. Because of this dry etching, heat resistance of the resist has become more required than before.

こうした観点で現在用いられているポジ型フォトレジス
トを見ると、必ずしも感度、解像力、耐熱性の点で満足
なものとはいえない。一般にポジ型フォトレジストはネ
ガ型フォトレジストに比べ感度が低く、改良が望まれて
いる。
Looking at the positive photoresists currently used from this point of view, they are not necessarily satisfactory in terms of sensitivity, resolution, and heat resistance. Generally, positive photoresists have lower sensitivity than negative photoresists, and improvements are desired.

例えば高感度化を達成するためには、ポジ型フォトレジ
ストに用いられているノボラック樹脂の分子量を低くす
る方法が最も簡単であり、アルカリ現像液に対する溶解
速度が増し、見かけ上、レジストの感度は上がる。しか
しこの方法では、非露光部の膜べりが大きくなったり(
いわゆる残膜率の低下)、パターン形状が悪化したり、
露光部と非露光部の現像液に対する溶解速度の差が小さ
くなることからくる、いわゆるγ値の低下(解像力の低
下)といった問題点の他に、レジストの耐熱性か低下す
るという極めて深刻な不都合を生じる。すなわち、現状
では感度、解像力、耐熱性のいずれも兼ね備えたポジ型
レジストはなく、一方を改良しようとすると、他の一方
がさらに悪くなるという極めて不都合な状況にある。
For example, in order to achieve high sensitivity, the simplest method is to lower the molecular weight of the novolak resin used in positive photoresists, which increases the rate of dissolution in alkaline developers and makes the apparent sensitivity of the resist lower. Go up. However, with this method, film loss in non-exposed areas increases (
(so-called decrease in residual film rate), pattern shape worsens,
In addition to problems such as a decrease in the so-called γ value (decreased resolution) due to the small difference in dissolution rate in the developer between exposed and non-exposed areas, this is an extremely serious disadvantage in that the heat resistance of the resist decreases. occurs. That is, at present, there is no positive resist that has all of sensitivity, resolution, and heat resistance, and we are in an extremely disadvantageous situation in which an attempt to improve one will worsen the other.

本発明の目的は、集積回路作製用として前期従来技術の
問題点を解決し、感度、解像力及び耐熱性に優れた、ポ
ジ型感放射線性レジスト組成物を提供することにある。
An object of the present invention is to provide a positive radiation-sensitive resist composition for use in the production of integrated circuits, which solves the problems of the prior art and has excellent sensitivity, resolution, and heat resistance.

く課題を解決するための具体的手段〉 本発明者は、特定の構造のフェノール化合物をレジスト
組成物に添加することにより上記課題が解決できること
を見出し本発明を完成した。本発明は、1.2−キノン
ジアジド化合物とアルカリ可溶性樹脣とを含有するポジ
型感放射線性レジスト組成物において、該アルカリ可溶
性樹脂が、下記一般式(I)で表されるフェノール化合
物(I)を含有することを特徴とするポジ型感放射線性
レジスト組成物を提供するものである。
Specific Means for Solving the Problems> The present inventors have completed the present invention by discovering that the above problems can be solved by adding a phenol compound with a specific structure to a resist composition. The present invention provides a positive radiation-sensitive resist composition containing a 1,2-quinonediazide compound and an alkali-soluble resin, in which the alkali-soluble resin contains a phenol compound (I) represented by the following general formula (I). The present invention provides a positive radiation-sensitive resist composition characterized by containing:

〔式中、Rはアルキル基又はアルコキシ基を表しnは0
以上3以下の数を表す。〕 ここでRとしては、特に01〜Csのアルキル基、メト
キシ基、エトキシ基が好ましい。
[In the formula, R represents an alkyl group or an alkoxy group, and n is 0
Represents a number greater than or equal to 3 and less than or equal to 3. ] Here, R is particularly preferably an alkyl group of 01 to Cs, a methoxy group, or an ethoxy group.

その中でも、特に下式(II)で表される化合物が好ま
しい。            (以下余白)一般式(
I)のフェノール化合物は、フェノール類とテレフタル
アルデヒドとを酸触媒の存在下に脱水縮合することによ
り合成される。
Among these, the compound represented by the following formula (II) is particularly preferred. (Left below) General formula (
The phenolic compound I) is synthesized by dehydration condensation of phenols and terephthalaldehyde in the presence of an acid catalyst.

ここで用いられるフェノール類としては例えば、フェノ
ール、クレゾール、キシレノール、2゜3.5−トリメ
チルフェノール、t−ブチルフェノール、メトキシフェ
ノール、エチルフェノール等が挙げられる。
Examples of the phenols used here include phenol, cresol, xylenol, 2°3.5-trimethylphenol, t-butylphenol, methoxyphenol, and ethylphenol.

又、この縮合反応で用いられる酸触媒としては、例えば
、塩酸、硫酸等の無機酸あるいは、蓚酸p−)ルエンス
ルホン酸等の有機酸か挙げられる。フェノール類の使用
量は、テレフタルアルデヒド1モルに対して4〜80モ
ル、好ましくは8〜40モルである。酸触媒の使用量は
テレフタルアルデヒド1モルに対し0.01−0.7モ
ルが好ましい。縮合反応は通常、30〜150℃、1〜
30時間で行われる。また反応はバルクで行っても、適
当な溶媒を用いてもよい。この際用いられる溶媒として
は、例えば、水あるいはエチルセロソルブアセテート、
エチルセロソルブ、メチルセロソルブ、メチルイソブチ
ルケトン、メチルエチルケトン、ヘキサン、シクロヘキ
サン、ヘプタン、ベンゼン、トルエン等が挙げられる。
Examples of the acid catalyst used in this condensation reaction include inorganic acids such as hydrochloric acid and sulfuric acid, and organic acids such as oxalic acid and p-)luenesulfonic acid. The amount of phenol used is 4 to 80 mol, preferably 8 to 40 mol, per 1 mol of terephthalaldehyde. The amount of acid catalyst used is preferably 0.01-0.7 mol per 1 mol of terephthalaldehyde. The condensation reaction is usually carried out at 30-150°C, 1-
It will be done in 30 hours. Further, the reaction may be carried out in bulk or an appropriate solvent may be used. Examples of solvents used at this time include water, ethyl cellosolve acetate,
Examples include ethyl cellosolve, methyl cellosolve, methyl isobutyl ketone, methyl ethyl ketone, hexane, cyclohexane, heptane, benzene, and toluene.

これらの中ではヘキサン、シクロヘキサン、ヘプタン、
トルエン等の、原料に対して貧溶媒であるものが特に好
ましい。これらの溶媒量は好ましくはフェノール類化合
物とカルボニル化合物の総量100重量部当たり10〜
700重量部である。式(IF)で表される化合物は、
2,5−キシレノールとテレフタルアルデヒドとの縮合
反応により合成できる。
Among these, hexane, cyclohexane, heptane,
Particularly preferred are those that are poor solvents for the raw materials, such as toluene. The amount of these solvents is preferably from 10 to 100 parts by weight of the total amount of the phenolic compound and carbonyl compound.
It is 700 parts by weight. The compound represented by formula (IF) is
It can be synthesized by a condensation reaction between 2,5-xylenol and terephthalaldehyde.

この場合、p−トルエンスルホン酸触媒存在下トルエン
が好ましい。溶媒量は、2,5−キシレノール100重
量部に対して50〜500重量部である。2,5−キシ
レノールの仕込みのモル比は、テレフタルアルデヒド1
モルに対して4〜lOモルであり、p−トルエンスルホ
ン酸の仕込みのモル比は、o、oi〜0.1モル、好ま
しくは0.02〜0.03モルである。縮合反応は、5
0℃〜還流温度、5〜30時間で行なわれる。
In this case, toluene in the presence of a p-toluenesulfonic acid catalyst is preferred. The amount of solvent is 50 to 500 parts by weight per 100 parts by weight of 2,5-xylenol. The molar ratio of 2,5-xylenol is 1:1 of terephthalaldehyde.
The molar ratio of p-toluenesulfonic acid is from o, oi to 0.1 mol, preferably from 0.02 to 0.03 mol. The condensation reaction is 5
The reaction is carried out at 0°C to reflux temperature for 5 to 30 hours.

縮合生成物は脱金属イオンした後、再結晶または再沈澱
により精製できる。
After the condensation product is demetallized, it can be purified by recrystallization or reprecipitation.

脱金属イオンは生成物を水と混合して分液する有機溶媒
に溶解させ、イオン交換水を用いて洗浄することにより
行なえる。本有機溶媒としては、メチルイソブチルケト
ン、エチルセロソルブアセテート、酢酸エチル等が挙げ
られる。
Demetallization can be carried out by dissolving the product in an organic solvent that is separated by mixing it with water, and washing with ion-exchanged water. Examples of the organic solvent include methyl isobutyl ketone, ethyl cellosolve acetate, and ethyl acetate.

また脱金属イオンは生成物を水と混合して分液しない有
機溶媒に溶解させイオン交換水にチャージすること(再
沈澱)によっても行なえる。ここで有機溶媒はメタノー
ル、エタノール、アセトン等が挙げられる。この方法で
は脱金属イオンと精製が同時に行なえ好ましい。
Demetallation ions can also be carried out by mixing the product with water, dissolving it in an organic solvent that does not separate the product, and charging it into ion-exchanged water (re-precipitation). Here, examples of the organic solvent include methanol, ethanol, acetone, and the like. This method is preferable because demetal ionization and purification can be performed simultaneously.

本発明のポジ型感放射線性レジスト組成物には、フェノ
ール化合物(I)以外に他のアルカリ可溶性樹脂を含ん
でいてもよい。フェノール化合物(1)の含量は、アル
カリ可溶性樹脂全量すなわちフェノール化合物CI)と
他のアルカリ可溶性樹脂の総量100重量部に対して、
4重量部以上10〜40重量部が好ましい。
The positive radiation-sensitive resist composition of the present invention may contain other alkali-soluble resins in addition to the phenol compound (I). The content of the phenolic compound (1) is based on 100 parts by weight of the total amount of the alkali-soluble resin (i.e., the phenol compound CI) and other alkali-soluble resins,
4 parts by weight or more, preferably 10 to 40 parts by weight.

フェノール化合物(I)が4重量部未満であると、アル
カリ水溶液からなる現像液に対する溶解性が落ちるので
現像が困難となり、40重量部を超える場合は、放射線
が当っていない部分も現像液に溶けやすくなるのでパタ
ーニングが困難となる。
If the amount of phenol compound (I) is less than 4 parts by weight, the solubility in a developer consisting of an alkaline aqueous solution will be reduced, making development difficult; if it exceeds 40 parts by weight, even the areas not exposed to radiation will dissolve in the developer. This makes patterning difficult.

この場合用いられる他のアルカリ可溶性樹脂は特に限定
されないが、例えば、ポリビニルフェノール、あるいは
ノボラック樹脂等が挙げられる。
Other alkali-soluble resins used in this case are not particularly limited, but include, for example, polyvinylphenol, novolak resin, and the like.

ノボラック樹脂とは、例えばフェノール、O−クレゾー
ル、m−クレゾール、p−クレゾール、25−キシレノ
ール、3,5−キシレノール、34−キシレノール、2
.3.5−)リメチルフェノール、4−t−ブチルフェ
ノール、2−t−ブチルフェノール、3−t−ブチルフ
ェノール、3−エチルフェノール、2−エチルフェノー
ル、4−エチルフェノール、2−ナフトール、1. 3
−ジヒドロキシナフタリン、1.7−ジヒドロキシナフ
タリン、1、5−ジヒドロキシナフタリン等のフェノー
ル類を単独または2種以上組合せて、ホルマリンと常法
により縮合させた樹脂が挙げられる。
Novolac resins include, for example, phenol, O-cresol, m-cresol, p-cresol, 25-xylenol, 3,5-xylenol, 34-xylenol, 2
.. 3.5-) Limethylphenol, 4-t-butylphenol, 2-t-butylphenol, 3-t-butylphenol, 3-ethylphenol, 2-ethylphenol, 4-ethylphenol, 2-naphthol, 1. 3
Examples include resins in which phenols such as -dihydroxynaphthalene, 1,7-dihydroxynaphthalene, and 1,5-dihydroxynaphthalene are condensed alone or in combination with formalin by a conventional method.

この縮合反応は通常、60〜120℃、2〜30時間で
行われる。触媒としては、有機酸或いは無機酸や二価金
属塩等が用いられる。具体例としては、蓚酸、塩酸、硫
酸、過塩素酸、p−トルエンスルホン酸、トリクロル酢
酸、リン酸、蟻酸、酢酸亜鉛、酢酸マグネシウム等が挙
げられる。また反応はバルクで行っても適当な溶媒を用
いてもよい。
This condensation reaction is usually carried out at 60 to 120°C for 2 to 30 hours. As the catalyst, organic or inorganic acids, divalent metal salts, etc. are used. Specific examples include oxalic acid, hydrochloric acid, sulfuric acid, perchloric acid, p-toluenesulfonic acid, trichloroacetic acid, phosphoric acid, formic acid, zinc acetate, magnesium acetate, and the like. Further, the reaction may be carried out in bulk or an appropriate solvent may be used.

中でもノボラック樹脂としては、晶析、分別等によりG
PC(検出器UUV−254nを使用)によるポリスチ
レン換算分子量が900以下の成分の面積比が、全パタ
ーン面積に対し25%以下であるものが好ましい。
Among them, as a novolak resin, G
It is preferable that the area ratio of a component having a polystyrene equivalent molecular weight of 900 or less measured by PC (using a UUV-254n detector) to the total pattern area is 25% or less.

次に本発明のポジ型感放射線性レジスト組成物に用いら
れるI、2−キノンジアジド化合物は特に限定されない
が、例えば、1.2−ベンゾキノンジアジド−4−スル
ホン酸エステル、1.2−ナフトキノンジアジド−4−
スルホン酸エステル1.2−ナフトキノンジアジド−5
−スルホン酸エステル等が挙げられる。これらのエステ
ル類は、公知の方法例えば1.2−ナフトキノンジアジ
ドスルホン酸クロリドやベンゾキノンジアジドスルホン
酸クロリドとヒドロキシル基を有する化合物を弱アルカ
リの存在下で縮合することにより得られる。ここでヒド
ロキシル基を有する化合物の例としては、ハイドロキノ
ン、レゾルシン、−フ(ロログシシン、2,4−ジヒド
ロキシベンゾフェノン、2.3.4−)リヒドロキシベ
ンゾフエノン、2,3.4.4° −テトラヒドロキシ
ベンゾフェノン、2.2’  4.4’ −テトラヒド
ロキシ−沁りフェノン、ビス(p−ヒドロキシフェニル
)メタン、ビス(2,4−ジヒドロキシフェニル)メタ
ン、ビスCZ、3.4−)リヒドロキシフェニル)メタ
ン、2.2−ビス(p−ヒドロキシフェニル)プロパン
、2.2−ビス(2,4−ジヒドロキシフェニル)プロ
パン、2,2−ビス(23、,4−)リヒドロキシフェ
ニル)プロパン、中lは0以上4以下の数を表し、mは
1以上5以下の数を表す。R+ 、R* 、R*は水素
原子、アルキル基、アルケニル基、シクロヘキシル基ま
たはアリール基を表す。)等が挙げられる。これらの1
.2−キノンジアジド化合物は単独でまたは2f1以上
混合して用いられる。ポジ型感放射線性レジスト組成物
の調製は、前記1.2−キノンジアジド化合物とフェノ
ール化合物(I)を含んだアルカリ可溶性樹脂とを適当
な溶媒に混合、溶解することにより行う。アルカリ可溶
性樹脂と1゜2−キノンジアジド化合物の割合は、アル
カリ可溶性樹脂100重量部に対し、通常1.2−キノ
ンジアジド化合物5〜100重量部、好ましくは10〜
50重量部である。この配合量が5重量部未満の場合ア
ルカリ性水溶液からなる現像液に溶けやすくなるのでパ
ターニングが困難となり、100重量部を超える場合は
、短時間の放射線照射では加えた1、2−キノンジアジ
ド化合物の全てを分解することができず結果的に、放射
線照射量を多くしなければならなくなり、感度の低下を
招く。又、用いる溶媒は、適当な乾燥速度で溶媒が蒸発
し、均一で平滑な塗膜を与えるものがよい。
Next, the I,2-quinonediazide compound used in the positive radiation-sensitive resist composition of the present invention is not particularly limited, but examples include 1,2-benzoquinonediazide-4-sulfonic acid ester, 1,2-naphthoquinonediazide- 4-
Sulfonic acid ester 1,2-naphthoquinone diazide-5
-sulfonic acid esters and the like. These esters can be obtained by a known method, for example, by condensing 1,2-naphthoquinonediazide sulfonic acid chloride or benzoquinonediazide sulfonic acid chloride with a compound having a hydroxyl group in the presence of a weak alkali. Here, examples of compounds having a hydroxyl group include hydroquinone, resorcinol, -fu(loroghisin, 2,4-dihydroxybenzophenone, 2.3.4-)lyhydroxybenzophenone, 2,3.4.4°- Tetrahydroxybenzophenone, 2.2'4.4' -tetrahydroxy-dihydric phenone, bis(p-hydroxyphenyl)methane, bis(2,4-dihydroxyphenyl)methane, bisCZ, 3.4-)rihydroxy phenyl)methane, 2,2-bis(p-hydroxyphenyl)propane, 2,2-bis(2,4-dihydroxyphenyl)propane, 2,2-bis(23,,4-)lihydroxyphenyl)propane, In the middle, l represents a number from 0 to 4, and m represents a number from 1 to 5. R+, R*, and R* represent a hydrogen atom, an alkyl group, an alkenyl group, a cyclohexyl group, or an aryl group. ) etc. 1 of these
.. The 2-quinonediazide compound may be used alone or in a mixture of 2f1 or more. The positive radiation-sensitive resist composition is prepared by mixing and dissolving the 1,2-quinonediazide compound and the alkali-soluble resin containing the phenol compound (I) in an appropriate solvent. The ratio of the alkali-soluble resin to the 1.2-quinonediazide compound is usually 5 to 100 parts by weight, preferably 10 to 100 parts by weight of the 1.2-quinonediazide compound per 100 parts by weight of the alkali-soluble resin.
It is 50 parts by weight. If this amount is less than 5 parts by weight, it will easily dissolve in a developer consisting of an alkaline aqueous solution, making patterning difficult; if it exceeds 100 parts by weight, all of the added 1,2-quinonediazide compound will be removed by short-term radiation irradiation. cannot be decomposed, and as a result, the amount of radiation irradiation must be increased, resulting in a decrease in sensitivity. The solvent used is preferably one that evaporates at an appropriate drying rate and provides a uniform and smooth coating film.

そのようなものとしては、エチルセロソルブアセテート
、メチルセロソルブアセテート、エチルセロソルブ、メ
チルセロソルブ、プロピレングリコールモノメチルエー
テルアセテート、酢酸ブチル、メチルイソブチルケトン
、キシレン等が挙げられる。これらの溶媒は単独でまた
は2種以上混合して用いられる。以上の方法で得られた
ポジ型感放射線性レジスト組成物はさらに必要に応じて
付加物として少量の樹脂や染料等が添加されていてもよ
い。
Such ones include ethyl cellosolve acetate, methyl cellosolve acetate, ethyl cellosolve, methyl cellosolve, propylene glycol monomethyl ether acetate, butyl acetate, methyl isobutyl ketone, xylene, and the like. These solvents may be used alone or in combination of two or more. The positive radiation-sensitive resist composition obtained by the above method may further contain a small amount of a resin, dye, etc. as an additive, if necessary.

〈発明の効果〉 本発明の感放射線性レジスト組成物は、既存のレジスト
組成物に比べ感度に優れ、かつ解像力、耐熱性が向上し
たものである。
<Effects of the Invention> The radiation-sensitive resist composition of the present invention has excellent sensitivity and improved resolution and heat resistance compared to existing resist compositions.

〈実施例〉 次に実施例をあげて本発明をさらに具体的に説明するが
、本発明はこれらの実施例によって何ら限定されるもの
ではない。
<Examples> Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way.

合成例1 攪拌器、冷却管、水分離器、および温度計を装着した5
00m1三ツロフラスコに、2.5−キシレノール97
.74 g、テレフタルアルデヒド10.73g、トル
エン 195.5g、 p −トルエンスルホン酸0.
8gを仕込み、還流下で縮合水を除去しながら5時間反
応させた。その後室温まで冷却した後、濾過し、トルエ
ン350 ccで3回洗浄し、60°Cで乾燥させた。
Synthesis Example 1 5 equipped with a stirrer, cooling tube, water separator, and thermometer
2.5-xylenol 97 in a 00ml Mitsuro flask
.. 74 g, terephthalaldehyde 10.73 g, toluene 195.5 g, p-toluenesulfonic acid 0.
8 g was charged, and the reaction was carried out for 5 hours while removing condensed water under reflux. Thereafter, the mixture was cooled to room temperature, filtered, washed three times with 350 cc of toluene, and dried at 60°C.

挿置は45.2g、収率96.2%(テレフタルアルデ
ヒド換算)であった。
The amount of insertion was 45.2 g, and the yield was 96.2% (in terms of terephthalaldehyde).

マススペクトル+m/e  586 (M’ )合成例
2 内容積1.000m1’の三ツロフラスコにメタクレゾ
ール149g、パラクレゾール121g、エチルセロソ
ルブアセテート252g、5%シュウ酸30.4gを仕
込み、還流下で加熱攪拌しながらホルマリン水溶液(3
7,0%)147.8 gを40分かけて摘下しその後
7時間さらに加熱攪拌反応させた。その後中和、水洗、
脱水してノボラック樹脂のエチルセロソルブアセテ−1
・を得た。GPCによるポリスチレン換算重量平均分子
量9600であった。
Mass spectrum + m/e 586 (M') Synthesis Example 2 149 g of metacresol, 121 g of para-cresol, 252 g of ethyl cellosolve acetate, and 30.4 g of 5% oxalic acid were placed in a three-turn flask with an internal volume of 1.000 m1', and heated under reflux. While stirring, add formalin aqueous solution (3
7.0%) was removed over a period of 40 minutes, and the reaction was continued with stirring for 7 hours. Then neutralize, wash with water,
Dehydrated novolak resin ethyl cellosolve acetate-1
・I got it. The weight average molecular weight in terms of polystyrene determined by GPC was 9,600.

合成例3 合成例2で得られたノボラック樹脂のエチルセロソルブ
アセテート溶液(ノボラック樹脂の含有ff141.2
%)120gを31!の底抜きセパラブルフラスコに仕
込み、さらにエチルセロソルブアセテート868.8 
gとノルマルヘプタン544.6 gを加えて20°C
で30分間攪拌後、静置、分液した。分液で得られた下
層中のノルマルへブタンをエバポレーターにより除去し
て、ノボラック樹脂のエチルセロソルブアセテート溶液
を得た。GPCによるポリスチレン換算量平均分子量は
15500であつた。なお、この分別操作により低分子
量ノボラ・ツクは75%除去された。GPCによるポリ
スチレン換算分子量900以下の成分は7%であった。
Synthesis Example 3 Ethyl cellosolve acetate solution of the novolac resin obtained in Synthesis Example 2 (containing novolac resin ff141.2)
%) 120g is 31! Add ethyl cellosolve acetate 868.8 to a bottomless separable flask and add
g and 544.6 g of normal heptane at 20°C.
After stirring for 30 minutes, the mixture was allowed to stand and the liquid was separated. Normal hemobutane in the lower layer obtained by liquid separation was removed using an evaporator to obtain a solution of novolak resin in ethyl cellosolve acetate. The polystyrene equivalent weight average molecular weight determined by GPC was 15,500. This fractionation operation removed 75% of the low molecular weight novola. The content of components having a polystyrene equivalent molecular weight of 900 or less by GPC was 7%.

実施例1〜2 合成例1で得られた縮合物ならびに合成例2.3で得ら
れたノボラック樹脂を各々、感光剤とともに表−1に示
す組成でエチルセロソルブアセテートに溶かしレジスト
液を調合した。なお溶媒量は以下に示す塗布条件で膜厚
1.28μmになるように調整した。これら各組成物を
0.2μmのテフロン製フィルターで濾過し、レジスト
液を調整した。これを常法によって洗浄したシリコンウ
エノ\−に回転塗布機を用いて4000r、 p、 1
)1.で塗布した。ついて、このシリコンウエノ\−を
100°Cの真空吸着型ホットプレートで1分間ベーク
した。その後、超高圧水銀灯を光源とする縮小投影露光
装置を用い、ショット毎に露光時間を段階的に変えて、
露光した。ついで、現像液5OPD (住友化学工業■
製商品名)を用い現像した。リンス、乾燥後各ショット
の膜減り量と露光時間をプロ・ノドして、感度を求めた
。また、未露光部の残膜厚から残膜率を求めた。
Examples 1 to 2 The condensate obtained in Synthesis Example 1 and the novolac resin obtained in Synthesis Example 2.3 were each dissolved in ethyl cellosolve acetate together with a photosensitizer in the composition shown in Table 1 to prepare a resist solution. The amount of solvent was adjusted to give a film thickness of 1.28 μm under the coating conditions shown below. Each of these compositions was filtered through a 0.2 μm Teflon filter to prepare a resist solution. This was applied to a silicone wafer cleaned by a conventional method using a spin coating machine for 4000 r, p, 1.
)1. It was coated with Then, this silicone ueno\- was baked for 1 minute on a vacuum adsorption type hot plate at 100°C. Then, using a reduction projection exposure device with an ultra-high pressure mercury lamp as the light source, the exposure time was changed step by step for each shot.
exposed. Next, developer 5OPD (Sumitomo Chemical ■
It was developed using a commercially available product (trade name). After rinsing and drying, the film loss and exposure time of each shot were measured to determine the sensitivity. Further, the remaining film rate was determined from the remaining film thickness of the unexposed area.

また、現像後のレジストパターンのついたシリコンウェ
ハーを種々の温度に設定したクリーンオーブン中に30
分間、空気雰囲気中で放置し、その後、レジストパター
ンを走査型電子顕微鏡で観察することにより、耐熱性を
評価した。
In addition, silicon wafers with resist patterns after development were placed in a clean oven set at various temperatures for 30 minutes.
The resist pattern was left in an air atmosphere for 1 minute, and then the resist pattern was observed with a scanning electron microscope to evaluate heat resistance.

比較例1〜2 フェノール化合物を添加しない以外は実施例1と同様に
して、レジスト組成物の調整、露光、現像を行った。実
施例1と同じ方法で感度及び残膜率を求めるとともに、
耐熱性を評価した。
Comparative Examples 1 and 2 Resist compositions were prepared, exposed, and developed in the same manner as in Example 1 except that no phenol compound was added. In addition to determining the sensitivity and residual film rate using the same method as in Example 1,
Heat resistance was evaluated.

これらの結果をまとめて表−1に示す。表−1から明ら
かな様に実施例の感度、解像力、耐熱性のバランスは比
較例のそれに比べて、格段に向上していることが認めら
れた。
These results are summarized in Table-1. As is clear from Table 1, it was recognized that the balance of sensitivity, resolution, and heat resistance of the Examples was significantly improved compared to that of the Comparative Examples.

(以下余白) 表 1 (1)1,2−ナフトキノンジアジド5−スルホニルク
ロライドと2.3.4.4° −テトラヒドロキシベン
ゾフェノンの縮合物 (2)  レジストパターンがだれはじめた時のクリー
ンオーブン内の温度
(Margins below) Table 1 (1) Condensate of 1,2-naphthoquinonediazide 5-sulfonyl chloride and 2.3.4.4°-tetrahydroxybenzophenone (2) Condition in the clean oven when the resist pattern started to sag. temperature

Claims (4)

【特許請求の範囲】[Claims] (1)一般式( I )で表されるフェノール化合物を含
有するアルカリ可溶性樹脂と1、2−キノンジアジド化
合物とを含有するポジ型感放射線性レジスト組成物。 ▲数式、化学式、表等があります▼( I ) 〔式中、Rはアルキル基又はアルコキシ基を表し、nは
0以上3以下の数を表す。〕
(1) A positive radiation-sensitive resist composition containing an alkali-soluble resin containing a phenol compound represented by general formula (I) and a 1,2-quinonediazide compound. ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) [In the formula, R represents an alkyl group or an alkoxy group, and n represents a number from 0 to 3. ]
(2)一般式( I )のフェノール化合物が下式(II)
で表される化合物であることを特徴とする請求項1に記
載のポジ型感放射線性レジスト組成物。 ▲数式、化学式、表等があります▼(II)
(2) The phenol compound of general formula (I) has the following formula (II)
The positive radiation-sensitive resist composition according to claim 1, which is a compound represented by: ▲There are mathematical formulas, chemical formulas, tables, etc.▼(II)
(3)一般式( I )で表されるフェノール化合物の含
量がアルカリ可溶性樹脂の全量100重量部に対し4〜
40重量部であることを特徴とする請求項1又は2に記
載のポジ型感放射線性レジスト組成物。
(3) The content of the phenolic compound represented by the general formula (I) is 4 to 4 parts by weight per 100 parts by weight of the total amount of the alkali-soluble resin.
3. The positive radiation-sensitive resist composition according to claim 1, wherein the amount is 40 parts by weight.
(4)アルカリ可溶性樹脂がノボラック樹脂であり、該
ノボラック樹脂のGPC(検出器UV−254nmを使
用)によるポリスチレン換算分子量900以下の成分の
面積比が、全パターン面積に対して25%以下であるこ
とを特徴とする請求項1、2又は3に記載のポジ型感放
射線性レジスト組成物。
(4) The alkali-soluble resin is a novolac resin, and the area ratio of a component having a polystyrene equivalent molecular weight of 900 or less according to GPC (using a detector UV-254 nm) of the novolac resin is 25% or less of the total pattern area. The positive radiation-sensitive resist composition according to claim 1, 2 or 3.
JP2236845A 1989-09-05 1990-09-05 Positive radiation-sensitive resist composition Expired - Fee Related JP2814721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2236845A JP2814721B2 (en) 1989-09-05 1990-09-05 Positive radiation-sensitive resist composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP23116589 1989-09-05
JP1-231165 1989-09-05
JP2236845A JP2814721B2 (en) 1989-09-05 1990-09-05 Positive radiation-sensitive resist composition

Publications (2)

Publication Number Publication Date
JPH03179353A true JPH03179353A (en) 1991-08-05
JP2814721B2 JP2814721B2 (en) 1998-10-27

Family

ID=26529731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2236845A Expired - Fee Related JP2814721B2 (en) 1989-09-05 1990-09-05 Positive radiation-sensitive resist composition

Country Status (1)

Country Link
JP (1) JP2814721B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH041650A (en) * 1990-04-18 1992-01-07 Nippon Zeon Co Ltd Positive type resist composition
JPH05127376A (en) * 1991-04-26 1993-05-25 Nippon Zeon Co Ltd Positive type resist composition
JPH06282067A (en) * 1992-09-14 1994-10-07 Fuji Photo Film Co Ltd Positive photosensitive lithographic printing plate
US5429904A (en) * 1992-05-27 1995-07-04 Sumitomo Chemical Company, Ltd. Positive resist composition
US5451484A (en) * 1992-05-27 1995-09-19 Sumitomo Chemical Company, Ltd. Positive resist composition
EP0706090A1 (en) 1994-10-05 1996-04-10 Japan Synthetic Rubber Co., Ltd. Radiation sensitive resin composition
EP0747768A2 (en) 1995-06-05 1996-12-11 Fuji Photo Film Co., Ltd. Chemically amplified positive resist composition
US9200098B2 (en) 2009-09-11 2015-12-01 Jsr Corporation Radiation-sensitive composition and compound
WO2016124493A1 (en) 2015-02-02 2016-08-11 Basf Se Latent acids and their use
DE10015255B4 (en) 1999-03-31 2020-06-04 Ciba Holding Inc. Process for the preparation of oxime derivatives and their use as latent acids in chemically amplified photoresist compositions, and process for the production of a photoresist

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01289946A (en) * 1988-05-17 1989-11-21 Sumitomo Chem Co Ltd Positive type resist composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01289946A (en) * 1988-05-17 1989-11-21 Sumitomo Chem Co Ltd Positive type resist composition

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH041650A (en) * 1990-04-18 1992-01-07 Nippon Zeon Co Ltd Positive type resist composition
JPH05127376A (en) * 1991-04-26 1993-05-25 Nippon Zeon Co Ltd Positive type resist composition
US5429904A (en) * 1992-05-27 1995-07-04 Sumitomo Chemical Company, Ltd. Positive resist composition
US5451484A (en) * 1992-05-27 1995-09-19 Sumitomo Chemical Company, Ltd. Positive resist composition
JPH06282067A (en) * 1992-09-14 1994-10-07 Fuji Photo Film Co Ltd Positive photosensitive lithographic printing plate
US5798201A (en) * 1994-10-05 1998-08-25 Japan Synthetic Rubber Co., Ltd. Radiation sensitive resin composition
EP0706090A1 (en) 1994-10-05 1996-04-10 Japan Synthetic Rubber Co., Ltd. Radiation sensitive resin composition
US5707558A (en) * 1994-10-05 1998-01-13 Japan Synthetic Rubber Co., Ltd. Radiation sensitive resin composition
EP0747768A2 (en) 1995-06-05 1996-12-11 Fuji Photo Film Co., Ltd. Chemically amplified positive resist composition
DE10015255B4 (en) 1999-03-31 2020-06-04 Ciba Holding Inc. Process for the preparation of oxime derivatives and their use as latent acids in chemically amplified photoresist compositions, and process for the production of a photoresist
US9200098B2 (en) 2009-09-11 2015-12-01 Jsr Corporation Radiation-sensitive composition and compound
WO2016124493A1 (en) 2015-02-02 2016-08-11 Basf Se Latent acids and their use
US9994538B2 (en) 2015-02-02 2018-06-12 Basf Se Latent acids and their use

Also Published As

Publication number Publication date
JP2814721B2 (en) 1998-10-27

Similar Documents

Publication Publication Date Title
EP0358871B1 (en) Radiation-sensitive positive resist composition
JP2929684B2 (en) Positive resist composition
JPH01105243A (en) Positive type photoresist novolak resin
JPH05181270A (en) Positive type photoresist composition
JP3039048B2 (en) Positive radiation-sensitive resist composition
JP2629990B2 (en) Composition for positive resist
JPH03294861A (en) Positive type photoresist composition
JPH0450851A (en) Positive type radiation sensitive resist composition
US5456995A (en) Radiation-sensitive positive resist composition
JP3063148B2 (en) Positive resist composition
JP2636348B2 (en) Composition for positive resist
JP2814721B2 (en) Positive radiation-sensitive resist composition
JPH01289947A (en) Positive type resist composition
EP0416544B1 (en) Radiation-sensitive positive resist composition
JP2830197B2 (en) Positive resist composition
JPH02300751A (en) Positive type photoresist composition
US5861229A (en) Radiation-sensitive positive resist composition comprising a 1,2-quinone diazide compound, an alkali-soluble resin and a polyphenol compound
US5288587A (en) Radiation-sensitive positive resist composition comprising an o-quinone diazide, an alkali-soluble resin and a polyphenol compound
JPH06242599A (en) Radiation sensitive resin composition
JPH04211257A (en) Polyphenol compound
JP2692403B2 (en) Positive radiation-sensitive resist composition
JPH04368949A (en) Positive resist composition
JPH05142770A (en) Positive type photoresist composition
JPH06130661A (en) Positive photoresist composition
JPH03273251A (en) Positive type resist composition

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees