JPH03179127A - Direct combustion chamber structure for direct injection type diesel engine - Google Patents

Direct combustion chamber structure for direct injection type diesel engine

Info

Publication number
JPH03179127A
JPH03179127A JP1316557A JP31655789A JPH03179127A JP H03179127 A JPH03179127 A JP H03179127A JP 1316557 A JP1316557 A JP 1316557A JP 31655789 A JP31655789 A JP 31655789A JP H03179127 A JPH03179127 A JP H03179127A
Authority
JP
Japan
Prior art keywords
combustion chamber
piston
direct combustion
direct
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1316557A
Other languages
Japanese (ja)
Inventor
Nobuji Eguchi
江口 展司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP1316557A priority Critical patent/JPH03179127A/en
Publication of JPH03179127A publication Critical patent/JPH03179127A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0627Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion having additional bores or grooves machined into the piston for guiding air or charge flow to the piston bowl
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0633Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston the combustion space being almost completely enclosed in the piston, i.e. having a small inlet in comparison to its volume
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0621Squish flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0672Omega-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder center axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To accelerate a combustion speed and prevent any afterburning from occurring by forming a direct combustion chamber in a piston so as to be expanded in the radial direction toward the inmost recess from the central opening of a piston top face, while interconnecting the peripheral recess of the direct combustion chamber to a peripheral opening of the piston top face. CONSTITUTION:When a piston 16 goes up, volumetric capacity in a space at the more upper side than a piston top face 17 is decreased, and air at this upper side flows into a direct combustion chamber 22 by way of a center opening 24, a peripheral opening 28 and an interconnecting hole 30. At this time, this direct combustion chamber 22 is formed so as to have a large depth to the radial outside from the center opening 24, so that a large squish flow A is formed in the inner part. In addition, in and around a top dead center the piston 16, fuel is sprayed to a peripheral recess 26 of the direct combustion chamber 22 from a nozzle 20 as a spray. When the piston 16 further goes down, the volume in the more upper space than the piston top face 17 is increased, thus a flame in the direct combustion chamber 22 is jetted to the upper part of piston top face 17.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、大型自動車等に搭載される直接噴射式ディ
ーゼルエンジンの直接燃焼室構造に係り。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a direct combustion chamber structure of a direct injection diesel engine installed in a large automobile or the like.

詳しくは燃焼速度を増加できる直接噴射式ディーゼルエ
ンジンの直接燃焼室構造に関するものである。
More specifically, the present invention relates to a direct combustion chamber structure for a direct injection diesel engine that can increase the combustion rate.

〔従来の技術〕[Conventional technology]

第6図及び第7図は従来の直接噴射式ディーゼルエンジ
ンにおける直接燃焼室構造の断面図である。第6図及び
第7図では、それぞれハート形直接燃焼室40及びスキ
ッシュリップ付き直接燃焼室42が、頂面17に開口し
て、ピストン16内に形成されている。スキッシュリッ
プ付き直接燃焼室42では、スキッシュリップ44が、
半径方向内側へ少し突出するように、スキッシュリップ
付き直接燃焼室42の上部開口周縁に沿って形成され、
ピストン16の往復動に伴って、スキッシュリップ44
によりスキッシュリップ付き直接燃焼室42内には、ス
キッシュ流が生成される。
6 and 7 are cross-sectional views of a direct combustion chamber structure in a conventional direct injection diesel engine. 6 and 7, a heart-shaped direct combustion chamber 40 and a squish lip direct combustion chamber 42, respectively, are formed within the piston 16, opening into the top surface 17. In the direct combustion chamber 42 with a squish lip, the squish lip 44 is
It is formed along the periphery of the upper opening of the direct combustion chamber 42 with a squish lip so as to protrude slightly inward in the radial direction,
As the piston 16 reciprocates, the squish lip 44
As a result, a squish flow is generated in the direct combustion chamber 42 with a squish lip.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

近年のディーゼルエンジンの排気ガス対策では。 In recent years, measures against exhaust gas from diesel engines.

燃料着火時期をピストン上死点又はその直後まで、遅ら
せて、ディーゼルエンジンから排出される排気ガス中の
N0x(窒素酸化物)の量を低減することが行われてい
る。
BACKGROUND ART Fuel ignition timing is delayed to piston top dead center or immediately thereafter to reduce the amount of NOx (nitrogen oxides) in exhaust gas discharged from a diesel engine.

このような燃料着火時期の遅延を第6図及び第7図のよ
うなハート形直接燃焼室40及びスキッシユリツブ付き
直接燃焼室42において行う場合、燃焼終了時期も遅れ
て、後燃え現象が生じ、燃費の悪化、黒煙の発生、未燃
成分の増加等につながっている。
When such a delay in the fuel ignition timing is performed in the heart-shaped direct combustion chamber 40 and the squishy ridged direct combustion chamber 42 as shown in FIGS. 6 and 7, the combustion end timing is also delayed, causing an afterburning phenomenon and reducing fuel efficiency. This leads to deterioration of fuel consumption, generation of black smoke, and increase in unburned components.

この発明の[1的は、直接噴射式ディーゼルエンジンに
おいて、燃料着火時期の遅延にもかかわらず、燃焼を速
やかに終了して、上記従来技術の問題点を解消すること
である。
An object of the present invention is to quickly terminate combustion in a direct injection diesel engine despite the delay in fuel ignition timing, thereby solving the problems of the prior art described above.

[all!題を解決するための手段] この発明の直接噴射式ディーゼルエンジンの直接燃焼室
構造では、中心開口及び複数個の周辺開口が、ピストン
の頂面の中心及び周辺部にそれぞれ形成される。直接燃
焼室は、中心開口から奥へ向かって半径方向へ広がるよ
うに、ピストンの内部に形成される。また、各周辺開口
は連通孔を介して直接燃焼室の周辺奥部へ連通している
[all! Means for Solving the Problem] In the direct combustion chamber structure of the direct injection diesel engine of the present invention, a central opening and a plurality of peripheral openings are formed at the center and peripheral portions of the top surface of the piston, respectively. The direct combustion chamber is formed inside the piston so as to expand radially from the central opening toward the back. Further, each peripheral opening directly communicates with the inner peripheral part of the combustion chamber via a communication hole.

〔作用〕 圧縮行程では、ピストンの上昇に伴って、ピストンの頂
面より上側の空間の容積が減少し、頂面より上側の空気
が、中心開口を経て並びに周辺開口及び連通孔を経て直
接燃焼室内へ流れ込む、直接燃焼室は、中心開口から十
分大きな奥行きを有するように、形成されているので、
中心開口及び周辺開口から直接燃焼室内への空気の流れ
込みにより直接燃焼室内には大きなスキッシュ流が生成
される。
[Operation] In the compression stroke, as the piston rises, the volume of the space above the top surface of the piston decreases, and the air above the top surface is directly combusted through the central opening, the peripheral opening and the communication hole. The direct combustion chamber that flows into the room is formed to have a sufficiently large depth from the center opening, so
A large squish flow is generated directly within the combustion chamber due to the air flowing directly into the combustion chamber from the central opening and the peripheral opening.

直接燃焼室内への燃料噴出は、十分に遅延されて、行わ
れ、自然着火する。火炎は、スキッシュ流に乗って、直
接燃焼室内へ速やかに行きわたる。
Fuel injection directly into the combustion chamber is sufficiently delayed to self-ignite. The flame quickly spreads directly into the combustion chamber in a squish flow.

爆発行程では、ピストンの下降に伴って、ピストンの頂
面より上側の空間の容積が増加し、直接燃焼室内の火炎
が、中心開口を経て並びに連通孔及び周辺開口を経てピ
ストンの頂面の上方へ噴出する。これにより、ピストン
の頂面より上方の混合気は速やかに燃焼する。
During the explosion stroke, as the piston descends, the volume of the space above the top surface of the piston increases, and the flame in the combustion chamber directly flows above the top surface of the piston through the central opening, the communication hole and the peripheral opening. gush to. As a result, the air-fuel mixture above the top surface of the piston is quickly combusted.

〔実施例〕〔Example〕

以下、この発明を第1図ないし第5図の実施例について
説明する。
The present invention will be described below with reference to the embodiments shown in FIGS. 1 to 5.

第1図、第2図及び第3図は直接噴射式ディーゼルエン
ジン10の直接燃焼室構造をそれぞれ圧縮行程、上死点
及び爆発行程において示す図、第4図はピストン16を
上から見た図である。直接噴射式ディーゼルエンジン1
0は、シリンダブロック12と、シリンダブロック12
の上面に接合されるシリンダヘッド14とを有し、ピス
トン16がシリンダブロック12内を往復動するように
なっている。ピストン16は、往復動に伴って、頂面1
7より上方の空間の容積を増減させ1周部には複数個の
ピストンリング18を装着され、ピストンリング18を
介してシリンダブロック12の内面を摺動する。ノズル
20は、ピストン16の中心線に沿うように、シリンダ
ヘッド14に装着され、複数個の噴孔より燃料を噴射す
る。直接燃焼室22は、中心開口24において頂面17
の中心に開口し、中心開口24から周辺奥部26の方へ
半径方向外側へ広がるように、斜め下方へ延び、横断面
は円形となっている。計4個の周辺開口28は、中心開
口24を中心とする同一の円周状に、周方向へ90°間
隔で、頂面17に円弧状に形成される。各周辺開口28
は、ピストン16の軸線に対して平行な連通孔30を介
して周辺奥部26へ連通している。
1, 2, and 3 are diagrams showing the structure of the direct combustion chamber of the direct injection diesel engine 10 in the compression stroke, top dead center, and explosion stroke, respectively, and FIG. 4 is a diagram of the piston 16 viewed from above. It is. Direct injection diesel engine 1
0 is cylinder block 12 and cylinder block 12
A piston 16 reciprocates within the cylinder block 12. As the piston 16 reciprocates, the top surface 1
The volume of the space above 7 is increased or decreased, and a plurality of piston rings 18 are attached to one circumferential portion, and slide on the inner surface of the cylinder block 12 via the piston rings 18. The nozzle 20 is attached to the cylinder head 14 along the centerline of the piston 16, and injects fuel from a plurality of nozzle holes. The direct combustion chamber 22 has a top surface 17 at the central opening 24.
It opens at the center of the opening 24 and extends obliquely downward so as to spread outward in the radial direction from the central opening 24 toward the peripheral inner part 26, and has a circular cross section. A total of four peripheral openings 28 are formed in the same circumferential shape around the central opening 24 at 90° intervals in the circumferential direction in an arc shape on the top surface 17 . Each peripheral opening 28
communicates with the peripheral inner part 26 via a communication hole 30 parallel to the axis of the piston 16.

第2図において噴震32は、ノズル20から吐出された
燃料の噴1132を示し、第4図において吸気ポート3
4及び排気ポート36はそれぞれ吸気ボート34及び排
気ポート36の位置を示している。
In FIG. 2, the jet 32 indicates a jet 1132 of fuel discharged from the nozzle 20, and in FIG.
4 and exhaust port 36 indicate the positions of intake boat 34 and exhaust port 36, respectively.

実施例の作用について説明する。The operation of the embodiment will be explained.

圧縮行程(第1図)では、ピストン16の上昇に伴って
、ピストン16の頂面17より上側の空間の容積が減少
し、頂面17より上側の空気が、中心開口24を経て並
びに周辺開口28及び連通孔30を経て直接燃焼室22
内へ流れ込む、直接燃焼室22は、中心開口24から半
径方向外側へ十分大きな奥行きを有するように、形成さ
れているので、中心開口24及び周辺開口28から直接
燃焼室22内への空気の流れ込みにより直接燃焼室22
内には大きなスキッシュ流(第1図矢印A)が生成され
る。
In the compression stroke (FIG. 1), as the piston 16 rises, the volume of the space above the top surface 17 of the piston 16 decreases, and the air above the top surface 17 passes through the central opening 24 and the peripheral opening. 28 and the communication hole 30 directly into the combustion chamber 22
The direct combustion chamber 22 into which air flows in is formed to have a sufficiently large depth radially outward from the central opening 24, so that air can flow directly into the combustion chamber 22 from the central opening 24 and the peripheral opening 28. direct combustion chamber 22
A large squish flow (arrow A in FIG. 1) is generated inside the tank.

ピストン16の上死点(第2図)及びその直後では、ノ
ズル20は、その噴孔を直接燃焼室22内に臨ませ、燃
料を噴震32として直接燃焼室22の周辺奥部26の方
へ噴出する。燃料の噴霧32は自然着火し、火炎は、ス
キッシュ流に乗って、直接燃焼室22内へ速やかに行き
わたる。
At the top dead center of the piston 16 (FIG. 2) and immediately after it, the nozzle 20 has its nozzle hole facing directly into the combustion chamber 22, and directs the fuel as a jet 32 toward the peripheral inner part 26 of the combustion chamber 22. gush to. The fuel spray 32 spontaneously ignites, and the flame quickly spreads directly into the combustion chamber 22 in a squish flow.

爆発行8!(第3図)では、ピストン16の下降に伴っ
て、ピストン16の頂面17より上側の空間の容積が増
加し、直接燃焼室22内の火炎が、中心開口24を経て
並びに連通孔30及び周辺開口28を経てピストン16
の頂面17の上方へ噴出する(第3図矢印B)。これに
より、ピストン16の頂面17より上方の混合気は速や
かに燃焼する。
Explosion row 8! (FIG. 3), as the piston 16 descends, the volume of the space above the top surface 17 of the piston 16 increases, and the flame in the combustion chamber 22 directly passes through the central opening 24 and through the communication hole 30. Piston 16 via peripheral opening 28
It ejects above the top surface 17 (arrow B in Figure 3). As a result, the air-fuel mixture above the top surface 17 of the piston 16 is quickly combusted.

第5図はクランク角とシリンダ内の圧力との関係を示す
グラフである。燃料噴射時期の遅延に伴って、従来技術
(破線)では、燃焼速度が遅いために、後燃えが生じる
。これに対し、実施例(実戦)では、直接燃焼室22に
おける大きなスキッシュ流の生成及び中心開口24及び
周辺開口28からの火炎の噴出により燃焼速度が増加し
、燃焼が速やかに終了する。
FIG. 5 is a graph showing the relationship between the crank angle and the pressure inside the cylinder. In the conventional technology (dashed line), as the fuel injection timing is delayed, afterburning occurs due to the slow combustion rate. On the other hand, in the example (actual battle), the combustion speed increases due to the generation of a large squish flow in the direct combustion chamber 22 and the ejection of flame from the central opening 24 and the peripheral opening 28, and combustion ends quickly.

〔発明の効果〕〔Effect of the invention〕

この発明では、直接燃焼室は、ピストンの頂面の中心開
口から奥へ向かって半径方向へ広がるように、ピストン
内に形成され、直接燃焼室のn辺奥部は連通孔を介して
ピストンの頂面の周辺開口へ連通している。したがって
、圧縮行程では、ピストンの上昇に伴って、直接燃焼室
内に大きなスキッシュ流が生成されるとともに、爆発行
程では、ピストンの下降に伴って、火炎がピストンの頂
面の上方へ中心開口及び周辺開口から噴出し、燃料の燃
焼速度を速めて、後燃えを防止することができる。これ
により、排気ガス中のNOxの量を抑制しつつ、燃費の
改善、黒煙及び未燃成分の抑制を図ることができる。
In this invention, the direct combustion chamber is formed in the piston so as to expand in the radial direction from the center opening on the top surface of the piston toward the back, and the deep part of the n side of the direct combustion chamber is connected to the piston through the communication hole. It communicates with the peripheral opening on the top surface. Therefore, in the compression stroke, as the piston rises, a large squish flow is generated directly within the combustion chamber, and in the explosion stroke, as the piston descends, the flame moves above the top surface of the piston to the center opening and around the piston. The fuel is ejected from the opening, increasing the combustion speed of the fuel and preventing afterburning. Thereby, it is possible to improve fuel efficiency and suppress black smoke and unburned components while suppressing the amount of NOx in the exhaust gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第5図はこの発明の実施例に関し、第1図
、第2図及び第3図は直接噴射式ディーゼルエンジンの
直接燃焼室構造をそれぞれ圧縮行程。 上死点及び爆発行程において示す図、第4図はピストン
を上から見た図、第5図はクランク角とシリンダ内の圧
力との関係を示すグラフ、第6図及び第7図は従来の直
接噴射式ディーゼルエンジンにおける直接燃焼室構造の
断面図である。 10・・・直接噴射式ディーゼルエンジン、16・・・
ピストン、17・・・頂面、22・・・直接燃焼室、2
4・・・中心開口、26・・・周辺奥部、28・・・周
辺開口、30・・・連通孔。 第 図 0 0 6 7 2 4 6 8 0 直接噴射式デイ ピストン 頂面 直接燃焼室 中心開口 周辺奥部 周辺開口 連通口 ゼルエンジン 第 2 図 第 図 0 第 図 第 図 □クランク角
1 to 5 relate to embodiments of the present invention, and FIGS. 1, 2, and 3 show the direct combustion chamber structure of a direct injection diesel engine during the compression stroke, respectively. Figure 4 is a diagram showing the piston at top dead center and the explosion stroke. Figure 5 is a graph showing the relationship between crank angle and pressure in the cylinder. Figures 6 and 7 are graphs showing conventional FIG. 2 is a cross-sectional view of a direct combustion chamber structure in a direct injection diesel engine. 10... Direct injection diesel engine, 16...
Piston, 17...Top surface, 22...Direct combustion chamber, 2
4... Center opening, 26... Peripheral deep part, 28... Peripheral opening, 30... Communication hole. Figure 0 0 6 7 2 4 6 8 0 Direct injection day piston Top surface Direct combustion chamber Center opening Surroundings Rear area Surrounding opening Communication port Zell engine Figure 2 Figure Figure 0 Figure Figure □ Crank angle

Claims (1)

【特許請求の範囲】[Claims] (1)中心開口及び複数個の周辺開口が、ピストンの頂
面の中心及び周辺部にそれぞれ形成され、直接燃焼室が
、前記中心開口から奥へ向かって半径方向へ広がるよう
に、前記ピストンの内部に形成され、各周辺開口が連通
孔を介して前記直接燃焼室の周辺奥部へ連通しているこ
とを特徴とする直接噴射式ディーゼルエンジンの直接燃
焼室構造。
(1) A central opening and a plurality of peripheral openings are formed at the center and peripheral parts of the top surface of the piston, respectively, so that the direct combustion chamber expands in the radial direction from the central opening toward the back. A direct combustion chamber structure for a direct injection diesel engine, characterized in that each peripheral opening is formed inside and communicates with the inner part of the periphery of the direct combustion chamber through a communication hole.
JP1316557A 1989-12-07 1989-12-07 Direct combustion chamber structure for direct injection type diesel engine Pending JPH03179127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1316557A JPH03179127A (en) 1989-12-07 1989-12-07 Direct combustion chamber structure for direct injection type diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1316557A JPH03179127A (en) 1989-12-07 1989-12-07 Direct combustion chamber structure for direct injection type diesel engine

Publications (1)

Publication Number Publication Date
JPH03179127A true JPH03179127A (en) 1991-08-05

Family

ID=18078426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1316557A Pending JPH03179127A (en) 1989-12-07 1989-12-07 Direct combustion chamber structure for direct injection type diesel engine

Country Status (1)

Country Link
JP (1) JPH03179127A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106441A (en) * 1991-10-21 1993-04-27 Shinnenshiyou Syst Kenkyusho:Kk Combustion chamber of direct injection type diesel engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106441A (en) * 1991-10-21 1993-04-27 Shinnenshiyou Syst Kenkyusho:Kk Combustion chamber of direct injection type diesel engine

Similar Documents

Publication Publication Date Title
EP0544920B1 (en) Direct injection type compression ignition internal combustion engine
US4174679A (en) Internal combustion engine with a subsidiary combustion chamber
JP2003534485A (en) Fuel injection system
US4041923A (en) Internal combustion engine of lean air-fuel mixture combustion type
US5107810A (en) Impingement combustion chamber of internal-combustion engine
US6267096B1 (en) Three-valve cylinder head system
JP2653556B2 (en) Combustion chamber of direct injection diesel engine
JPH03179127A (en) Direct combustion chamber structure for direct injection type diesel engine
JPH07208170A (en) Auxiliary chamber structure in auxiliary chamber type engine
JPH0893479A (en) Combustion chamber of direct injection diesel engine
JPH05272338A (en) Combustion chamber of direct injection type diesel engine
JP4026406B2 (en) Direct-injection spark ignition internal combustion engine
JP6565968B2 (en) engine
JPH11117747A (en) Direct injection type diesel engine
JPS5862312A (en) Combustion chamber of direct injection type diesel engine
JPH0693861A (en) Internal combustion engine
JP3284671B2 (en) Subchamber type engine with subchamber in piston
JPS5926772B2 (en) Pre-chamber internal combustion engine
JPS5968518A (en) Combustion chamber for engine with pre-chamber
JPH074248A (en) Auxiliary chamber type engine
JP2653588B2 (en) Direct injection diesel engine combustion method
JPH074242A (en) Auxiliary chamber type engine
JPH07279672A (en) Sub chamber-type engine provided with sub combustion chamber in piston
JP2004324563A (en) Direct-injection internal combustion engine
JPH0734878A (en) Subsidiary chamber type engine