JPH03179056A - Radiation-resistant molding material and radiation-screening molding material - Google Patents

Radiation-resistant molding material and radiation-screening molding material

Info

Publication number
JPH03179056A
JPH03179056A JP1318458A JP31845889A JPH03179056A JP H03179056 A JPH03179056 A JP H03179056A JP 1318458 A JP1318458 A JP 1318458A JP 31845889 A JP31845889 A JP 31845889A JP H03179056 A JPH03179056 A JP H03179056A
Authority
JP
Japan
Prior art keywords
radiation
lead
molding material
polymer
shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1318458A
Other languages
Japanese (ja)
Inventor
Shigeru Matsuo
茂 松尾
Shigeru Murakami
滋 村上
Chikafumi Kayano
茅野 慎史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP1318458A priority Critical patent/JPH03179056A/en
Publication of JPH03179056A publication Critical patent/JPH03179056A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prepare a radiation-resistant molding material excellent in the radiation resistance and useful as a material for nuclear reactors, space and aeronautics use, etc., by compounding a polymer contg. specific repeating units into the material. CONSTITUTION:A polymer contg. repeating units of the formula is compounded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、耐放射線性成形材料および放射線遮蔽性成形
材料に関し、さらに詳しく言うと、たとえば原子炉や増
殖炉材料、宇宙航空材料として好適に利用することので
きる耐放射線性成形材料と放射線遮蔽性成形材料に関す
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a radiation-resistant molding material and a radiation-shielding molding material, and more specifically, it is suitable for use as, for example, a nuclear reactor material, a breeder reactor material, or an aerospace material. This invention relates to radiation-resistant molding materials and radiation-shielding molding materials that can be used.

[従来技術および発明か解決しようとする課題]原子力
産業の発展に伴い、原子炉、増殖炉などの放射線発生箇
所の周辺で使用される機器が、今後益々多くなるものと
予想される。
[Prior Art and Problems to be Solved by the Invention] With the development of the nuclear power industry, it is expected that more and more equipment will be used in the vicinity of radiation generating locations such as nuclear reactors and breeder reactors.

したがって、これらの機器に使用される成形材料には優
れた耐放射線性か要求される。
Therefore, molding materials used in these devices are required to have excellent radiation resistance.

しかしながら、従来、多く用いられている有機材料は、
耐放射線性に劣り、また、放射線照射により劣化を起こ
し、材質そのものの特性が著しく損なわれてしまうと言
う問題点がある。
However, conventionally used organic materials are
There are problems in that it has poor radiation resistance, and also deteriorates due to radiation irradiation, resulting in significant loss of the characteristics of the material itself.

特に高分子材料は、分子鎖切断や解重合が起こるため性
能が低下すると言う問題点がある。
In particular, polymeric materials have a problem in that their performance deteriorates due to molecular chain scission and depolymerization.

そこで、このような事情から耐放射線性に優れた新しい
高分子材料が望まれている。
Under these circumstances, a new polymer material with excellent radiation resistance is desired.

本発明は前記の実情に基いてなされたものである。The present invention has been made based on the above-mentioned circumstances.

本発明の目的は、耐放射線性に優れた材料および放射線
遮蔽性に優れた材料を提供することにある。
An object of the present invention is to provide a material with excellent radiation resistance and a material with excellent radiation shielding properties.

[課題を解決するための手段] 前記目的を遠戚するための、請求項1に記載の発明は、
次式(1): () で表わされる繰り返し単位を有する重合体を含有するこ
とを特徴とする耐放射線性成形材料であり。
[Means for solving the problem] The invention according to claim 1, which is a distant relative of the above object,
A radiation-resistant molding material characterized by containing a polymer having a repeating unit represented by the following formula (1): ().

前記請求項2に記載の発明は、前記請求項1に記載の重
合体と、鉛および/または鉛化合物とを含有することを
特徴とする放射線遮蔽性成形材料であり。
The invention according to claim 2 is a radiation-shielding molding material containing the polymer according to claim 1 and lead and/or a lead compound.

前記請求項3に記載の発明は、前記鉛および/または鉛
化合物の含有割合が5〜80重量%である前記請求項1
に記載の放射線遮蔽性成形材料である。
The invention according to claim 3 is characterized in that the content of the lead and/or lead compound is 5 to 80% by weight.
The radiation-shielding molding material described in .

く耐放射線性成形材料〉 一重合体一 本発明における耐放射線性成形材料は一般式(I)で表
される繰り返し単位を有する重合体を主たる構成成分と
することを特徴としている。
Radiation-resistant molding material> Monopolymer The radiation-resistant molding material of the present invention is characterized by containing a polymer having a repeating unit represented by general formula (I) as a main component.

本発明における一般式(I)で表される繰り返し単位を
有する重合体は、N−メチル−2−ピロリドンを溶媒と
する濃度0.5 g/dlの溶液において30℃で測定
したときの還元粘度[ηsp/clが0.3〜2.0d
jL/gであるのが望ましい。
The polymer having the repeating unit represented by the general formula (I) in the present invention has a reduced viscosity measured at 30°C in a solution with a concentration of 0.5 g/dl using N-methyl-2-pyrrolidone as a solvent. [ηsp/cl is 0.3 to 2.0d
It is desirable that it be jL/g.

なお、本発明における前記重合体は1本発明の目的を阻
害しない範囲で前記繰り返し単位(1)以外の繰り返し
単位を有していても良い。
In addition, the said polymer in this invention may have repeating units other than the said repeating unit (1) in the range which does not impede the objective of this invention.

他の繰り返し単位として、例えば以下の構造の繰り返し
単位を挙げることができる。
Examples of other repeating units include repeating units having the following structure.

上記構造の繰り返し単位(■)は、加熱により容易に脱
水して前記式(I)で表わされる繰り返し単位に変化す
ることができる。
The repeating unit (■) of the above structure can be easily dehydrated by heating and converted into the repeating unit represented by the above formula (I).

本発明における重合体は、たとえば1次のようにして製
造することができる。
The polymer in the present invention can be produced, for example, in a primary manner.

すなわち、4.4゛−ビス(2,3−ジカルボキシフェ
ノキシ)ビフェニルジ酸無水物とベンジジンとを中性の
極性溶媒中で反応させて得られる。
That is, it is obtained by reacting 4.4'-bis(2,3-dicarboxyphenoxy)biphenyldiacid anhydride and benzidine in a neutral polar solvent.

前記4.4°−ビス(2,3−ジカルボキシフェノキシ
)ビフェニルジ酸無水物は1次の式で示すことができ。
The 4.4°-bis(2,3-dicarboxyphenoxy)biphenyl diacid anhydride can be represented by the following formula.

ベンジジンは以下の構造を有する化合物である。Benzidine is a compound with the following structure.

前記中性極性溶媒としては、たとえば、ジメチルホルム
アミド、ジメチルアセドアくド、N−メチルピロリドン
、ジメチルスルホキシド、スルホラン、ジフェニルスル
ホン、ジメチルイミダゾリジノン等を挙げることができ
る。
Examples of the neutral polar solvent include dimethylformamide, dimethylacedoacide, N-methylpyrrolidone, dimethylsulfoxide, sulfolane, diphenylsulfone, and dimethylimidazolidinone.

なお、これらの中性極性溶媒は、一種単独で用いてもよ
く、二種以上を混合溶媒などとして併用してもよく、あ
るいは、他の不活性有機溶媒、たとえば、水分を反応系
外に留去するための共沸溶媒であるベンゼン、トルエン
、キシレン等の芳香族炭化水素溶媒等との混合溶媒等と
して用いてもよい。
These neutral polar solvents may be used alone, or two or more may be used in combination as a mixed solvent, or other inert organic solvents, such as water can be retained outside the reaction system. It may also be used as a mixed solvent with an aromatic hydrocarbon solvent such as benzene, toluene, xylene, etc., which is an azeotropic solvent for removal.

ベンジジンに対する4、4°−ビス(2,3−ジカルボ
キシフェノキシ)ビフェニルジ酸無水物の使用割合は、
実質的に等モル量である。
The ratio of 4,4°-bis(2,3-dicarboxyphenoxy)biphenyldiacid anhydride to benzidine is:
substantially equimolar amounts.

前記重合反応を行うに際しての反応温度は、通常O〜5
0℃であり、反応時間は、通常5分間〜lO時間、好ま
しくは30分間〜1時間である。
The reaction temperature in carrying out the polymerization reaction is usually 0 to 5
The reaction time is usually 5 minutes to 10 hours, preferably 30 minutes to 1 hour.

重合反応後に得られる反応生成液を通常の手法により、
たとえば溶媒を使用して重合体を析出させ、これを捕集
し、精製操作に封することにより前記式(I)て表わさ
れる繰り返し単位を有する重合体を単離することかでき
る。
The reaction product liquid obtained after the polymerization reaction is treated by a normal method.
For example, the polymer having the repeating unit represented by formula (I) can be isolated by precipitating the polymer using a solvent, collecting it, and subjecting it to a purification operation.

なお、ベンジジンと4,4゛−ビス(2,3−ジカルボ
キシフェノキシ)ビフェニルジ酸無水物とを反応させる
と、重合体中に前記式HI)で表わされる繰り返し単位
か一部含まれるようになるが、これによって本発明の目
的はいささかも阻害されない。
In addition, when benzidine and 4,4'-bis(2,3-dicarboxyphenoxy)biphenyldiacid anhydride are reacted, a part of the repeating unit represented by the above formula HI) is contained in the polymer. However, this does not in any way impede the purpose of the present invention.

このようにして得られた重合体は、それ自体耐放射線性
に優れた素材である。
The polymer thus obtained is itself a material with excellent radiation resistance.

それ故に、この重合体は、押出成形、射出成形、プレス
成形、注型成形などの成形方法により様々な形状の成形
品またとえば、バイブ等の管材、棒材、板材、シート、
フィルム、電線被覆。
Therefore, this polymer can be molded into various shapes by extrusion molding, injection molding, press molding, cast molding, etc., such as pipe materials such as vibrators, bars, plates, sheets, etc.
Film, wire coating.

コーチインク材、コネクター、箱体、トレイバッキング
、濾紙などに成形することにより耐放射線性成形材料と
して用いることができる。
It can be used as a radiation-resistant molding material by molding it into coach ink materials, connectors, boxes, tray backings, filter paper, etc.

そして、前記重合体は無機質強化材と組み合わせること
により、すなわち、前記重合体と無機質強化材との組を
物を形成することにより、あるいは前記重合体と無機質
強化材との複合体を形成することにより、その機械的強
度かさらに高められる。
The polymer may be combined with an inorganic reinforcement, that is, by forming a combination of the polymer and the inorganic reinforcement, or by forming a composite of the polymer and the inorganic reinforcement. This further increases its mechanical strength.

前記無機質強化材としては、ガラス繊維、ガラスマット
、炭素繊絨、グラファイト、カーボンブラック、アスベ
スト、フェライト、ジルコニア、チタニア、マイカ、ク
レー、タルク、炭素カルシウム、炭酸マグネシウム、ド
ロマイト、硫酸カルシウム、硫酸マグネシウム、ケイ酸
カルシウム、モンモリロナイト、ベントナイト、炭化ケ
イ素、チッ化ケイ素、チッ化ホウ素などが挙げられる。
The inorganic reinforcing materials include glass fiber, glass mat, carbon fiber carpet, graphite, carbon black, asbestos, ferrite, zirconia, titania, mica, clay, talc, calcium carbon, magnesium carbonate, dolomite, calcium sulfate, magnesium sulfate, Examples include calcium silicate, montmorillonite, bentonite, silicon carbide, silicon nitride, and boron nitride.

これらの無機質強化材は、一種単独で使用しても良いし
、あるいは二種以上を併用しても良い。
These inorganic reinforcing materials may be used alone or in combination of two or more.

前記無機質強化材の形態については、特に制限はなく、
粒状、板状、繊維状のいずれの形態であって良い。
There is no particular restriction on the form of the inorganic reinforcing material,
It may be in any form of granules, plates, or fibers.

もっとも、好ましい無機質強化材は、繊維状無機質強化
材である。
However, the preferred inorganic reinforcing material is a fibrous inorganic reinforcing material.

前記繊維状無機質強化材としては、耐熱性、機械的強度
、耐薬品性等の点からガラス繊維、炭素am、芳香族ポ
リアミド繊維などが挙げられる。
Examples of the fibrous inorganic reinforcing material include glass fiber, carbon am, aromatic polyamide fiber, etc. from the viewpoint of heat resistance, mechanical strength, chemical resistance, and the like.

これらは、耐熱性、機械的強度、耐薬品性等の向上に寄
ケする。これらは一種または二種以上を用いることがで
きる。
These contribute to improving heat resistance, mechanical strength, chemical resistance, and the like. These can be used alone or in combination of two or more.

これらの繊維状無機質強化材の使用形態としては、チョ
ップストランドマット、m統長繊維マット、織物(フィ
ラメント糸織物、紡績織物、ストレッチ織物等)、編物
(メリヤス、ジャージ等)などがあり、これらも一種を
、または二種以上を組み合わせて使用することができる
Forms of use of these fibrous inorganic reinforcement materials include chopped strand mats, m-length fiber mats, woven fabrics (filament yarn fabrics, spun fabrics, stretch fabrics, etc.), and knitted fabrics (stockinette, jersey, etc.). One kind or a combination of two or more kinds can be used.

無機質強化材として繊維状無機質強化材を使用する場合
、その繊維状無機質強化材の繊維径は通常5〜20gm
、好ましくは7〜15g園であり、そのアスペクト比は
通常100〜3,000であり、好ましくは500〜2
,000である。
When using a fibrous inorganic reinforcement as the inorganic reinforcement, the fiber diameter of the fibrous inorganic reinforcement is usually 5 to 20 g.
, preferably 7 to 15 g, and its aspect ratio is usually 100 to 3,000, preferably 500 to 2
,000.

重合体と無機質強化材との組成物あるいは重合体と無機
質強化材との複合体において、重合体の使用量は通常2
0〜85重量%、好ましくは30〜80重量%、したか
って無機質強化材は通常15〜80重量%、好ましくは
20〜70重量%である。
In compositions of polymers and inorganic reinforcements or composites of polymers and inorganic reinforcements, the amount of polymer used is usually 2
0 to 85% by weight, preferably 30 to 80% by weight, so the mineral reinforcement is usually 15 to 80% by weight, preferably 20 to 70% by weight.

重合体の使用量か20重量%を下回ったり85重1%を
上回ったりすると、耐熱積層体の機械的強度か低下する
If the amount of the polymer used is less than 20% by weight or more than 85% by weight, the mechanical strength of the heat-resistant laminate decreases.

前記重合体と前記無機質強化材との組成物は、混線機等
により調製することができ、また、前記重合体と無機質
強化材との複合体を製造するには1例えば次の3通りの
方法を採用すればよい。
The composition of the polymer and the inorganic reinforcing material can be prepared using a mixer or the like, and the composite of the polymer and the inorganic reinforcing material can be produced by one of the following three methods. should be adopted.

(イ)ポリエーテル系共重合体の粉末またはベレットを
繊維強化材のマットや織物等の一ヒに均一に散布して加
熱加圧成形する方法。
(a) A method in which powder or pellets of a polyether copolymer is uniformly dispersed onto a fiber reinforced mat, fabric, etc. and molded under heat and pressure.

(ロ)ポリエーテル系共重合体のベレットから押出成形
や圧縮成形等によりシートを製造し、このシートな繊維
状無機質強化材のマットや織物等に重ねあわせて加熱加
圧する方法。
(b) A method in which a sheet is manufactured from a pellet of polyether copolymer by extrusion molding, compression molding, etc., and this sheet is laminated on a mat, fabric, etc. of fibrous inorganic reinforcing material, and heated and pressed.

(ハ)上記(イ)、(ロ)の方法を適宜組み合わせる方
法。
(c) A method that appropriately combines the methods (a) and (b) above.

この重合体と無機質強化材との組成物および重合体と無
機質強化材との複合物は、前記重合体と同様にして各種
の成形量にして使用することができる。
The composition of the polymer and the inorganic reinforcing material and the composite of the polymer and the inorganic reinforcing material can be used in various molding amounts in the same manner as the above polymer.

〈放射線遮蔽性成形材料〉 請求項2に記載の放射線遮蔽性成形材料は、請求項1に
記載の重合体(場合により前記重合体と無機質強化材)
と鉛粒子および/または鉛化合物とを特徴する 請求項2に記載の重合体については前述の通りである。
<Radiation-shielding molding material> The radiation-shielding molding material according to claim 2 comprises the polymer according to claim 1 (and optionally the polymer and an inorganic reinforcing material).
The polymer according to claim 2, which comprises lead particles and/or a lead compound, is as described above.

前記鉛粒子の大きさについては、特に制限がなく、その
用途に応じて適宜に決定することができる。−例を挙げ
ると、使用する鉛粒子の粒径は5〜500 pL臘、特
に10〜100#Lmである。
The size of the lead particles is not particularly limited and can be appropriately determined depending on the intended use. - By way of example, the particle size of the lead particles used is between 5 and 500 pL, especially between 10 and 100 #Lm.

前記鉛化合物としては、鉛を含む無機化合物てあっても
鉛を含む有機化合物であってもよく、たとえば、硫化鉛
、−酸化鉛、炭酸鉛、硫酸鉛、水酸化鉛、塩化鉛、ヨウ
化鉛、硝酸鉛、鉛白、クロム酸鉛、二酸化鉛、正鉛酸カ
ルシウム、メタ鉛酸カルシウム、鉛丹、三二酸化鉛、酢
酸鉛、プロピオン酸鉛、などが挙げられる。
The lead compound may be an inorganic compound containing lead or an organic compound containing lead, such as lead sulfide, -lead oxide, lead carbonate, lead sulfate, lead hydroxide, lead chloride, and iodide. Lead, lead nitrate, white lead, lead chromate, lead dioxide, calcium positive lead acid, calcium meta lead acid, red lead, lead sesquioxide, lead acetate, lead propionate, and the like.

これらの鉛化合物の形態については、特に制限がなく、
粉末状で用いても良いし、塊状で用いても良い。
There are no particular restrictions on the form of these lead compounds;
It may be used in powder form or in lump form.

前記鉛または鉛化合物は、それぞれの一種単独で使用し
ても良いし、あるいは、二種以上を併用しても良い、ま
た、鉛と鉛化合物とを併用しても良い。
The lead or lead compound may be used alone or in combination of two or more types, or lead and a lead compound may be used in combination.

本発明において、前記鉛粒子および/または鉛化合物と
重合体とを有する組成物としての放射線遮蔽性成形材料
において重要な点は、前記鉛粒子および/または鉛化合
物の含有割合(鉛粒子および/または鉛化合物と重合体
との合計量に対する含有割合)が、5〜80重量%、特
に20〜80重量%であることである。
In the present invention, an important point in the radiation-shielding molding material as a composition having the lead particles and/or lead compound and a polymer is the content ratio of the lead particles and/or lead compound (lead particles and/or The content ratio of the lead compound and the polymer relative to the total amount is 5 to 80% by weight, particularly 20 to 80% by weight.

この鉛粒子および/または鉛化合物の含有割合か5〜8
0重量%の範囲内であると、この放射線遮蔽性成形材料
は放射線特に電子線やγ線の遮蔽効果が大きくて、しか
も放射線による放射線遮蔽性成形材料の機械的強度等の
劣化が極めて小さい。
The content of lead particles and/or lead compounds is 5 to 8.
When the amount is within the range of 0% by weight, the radiation-shielding molding material has a large radiation-shielding effect, particularly electron beams and gamma rays, and the deterioration of the mechanical strength of the radiation-shielding molding material due to radiation is extremely small.

逆に、前記含有割合が5重量%未満であると、放射線の
遮蔽効果が乏しく、一方、80重量%を越えると、材料
がもろくなる。
Conversely, if the content is less than 5% by weight, the radiation shielding effect will be poor, while if it exceeds 80% by weight, the material will become brittle.

以上に説明したように、この放射線遮蔽性成形材料は特
定の重合体と特定の配合割合の鉛粒子および/または鉛
化合物とを含有することにより優れた放射線遮蔽性と耐
放射線性とを有するのであるが、本発明の目的を阻害し
ない範囲で、またその用途に応じて他の成分を含んでい
ても良い。
As explained above, this radiation-shielding molding material has excellent radiation-shielding properties and radiation resistance by containing a specific polymer and a specific blending ratio of lead particles and/or lead compounds. However, other components may be included as long as they do not impede the purpose of the present invention and depending on the intended use.

他の成分としては1例えば、他の種類の熱可塑性樹脂、
熱硬化性樹脂、酸化防止剤、紫外線吸収剤、難燃剤、帯
電防止剤、滑剤1着色剤1表面処理剤等を挙げることが
できる。
Other components include 1, for example, other types of thermoplastic resins,
Examples include a thermosetting resin, an antioxidant, an ultraviolet absorber, a flame retardant, an antistatic agent, a lubricant, a colorant, and a surface treatment agent.

さらに他の成分として、例えば黒鉛、酸化ホウ素、炭化
ホウ素、ホウ素含有鉱石を配合すると、中性子の遮蔽に
有効である。
Furthermore, when other components such as graphite, boron oxide, boron carbide, and boron-containing ore are blended, it is effective for shielding neutrons.

この放射線遮蔽性成形材料の調製は、混合混線方法によ
り調製することができる。
This radiation-shielding molding material can be prepared by a mixing crosstalk method.

たとえば、全成分を予備混合しておき、この予備混合物
と残る成分とを混練する方法、あるいは、前記重合体と
鉛および/または鉛化合物とを配合し1次いで他の任意
成分を添加し、これを混合あるいは混練する方法等が挙
げられる。
For example, a method of premixing all components and kneading this premix with the remaining components, or a method of blending the polymer and lead and/or a lead compound, then adding other optional components, and then kneading the premix with the remaining components; Examples include a method of mixing or kneading.

前記混合ないし混練は、たとえば、リボンブレンダー 
タンブルミキサー、ヘンシェルミキサー、オーブンロー
ル、パンバリミキサー、ヘンシェルミキサー、単軸スク
リュー押出機、2輌スクリユ一押出機、単軸往復動スク
リュー混線機等により行うことができる。
The mixing or kneading may be carried out using, for example, a ribbon blender.
This can be carried out using a tumble mixer, a Henschel mixer, an oven roll, a panburi mixer, a Henschel mixer, a single screw extruder, a two-screw single extruder, a single reciprocating screw mixer, or the like.

このようにして得られる放射線遮蔽性成形材料は、射出
成形、プレス成形、押出成形等の各種の成形法により種
々の成形量に成形される。
The radiation-shielding molding material thus obtained is molded into various molding amounts by various molding methods such as injection molding, press molding, and extrusion molding.

[実施例] 次に、この発明の実施例を示し、この発明についてさら
に具体的に説明する。
[Example] Next, an example of the present invention will be shown and the present invention will be explained in more detail.

(実施例1) ディーンスタルクトラップ、アルゴンガス吹込管、攪拌
装置を備えた1リットル反応器に4.4°−ビス(2,
3−ジカルボキシフェノキシ)ビフェニルシ酸無水物7
1.76g (0,15モル)、ベンジジン27.64
 g (0,15モル)、ジメチルアセトアミド700
mJ1を入れ、アルゴンガスな吹き込みながら室温て 
120分反応させた。
(Example 1) 4.4°-bis(2,
3-dicarboxyphenoxy)biphenyl sialic acid anhydride 7
1.76 g (0.15 mol), benzidine 27.64
g (0.15 mol), dimethylacetamide 700
Add mJ1 and bring to room temperature while blowing argon gas.
The reaction was allowed to take place for 120 minutes.

この溶液からその7 m lをサンプリングし、メタノ
ール中で再沈した。
7 ml of this solution was sampled and reprecipitated in methanol.

得られたポリアミック酸をN−メチル−2−ピロリドン
中で30℃、0.5g/d文の濃度で還元粘度を測定し
たところ、0.5dJl /gであった。
The reduced viscosity of the obtained polyamic acid was measured in N-methyl-2-pyrrolidone at 30 DEG C. at a concentration of 0.5 g/d, and it was found to be 0.5 dJl/g.

このポリアミック酸は赤外線吸収スペクトル分析の結果
より、下記の構造単位を有するものと確認された。
This polyamic acid was confirmed to have the following structural unit based on the results of infrared absorption spectrum analysis.

次にこの溶液を170”Cに加熱しながら3時間かけて
閉環反応させた。
Next, this solution was subjected to a ring-closing reaction for 3 hours while being heated to 170''C.

反応終了後、生成物をメタノール中に注入して重合体を
分離した。
After the reaction was completed, the product was poured into methanol to separate the polymer.

得られた重合体の収量は92.5gてあった。The yield of the obtained polymer was 92.5 g.

このようにして得られた重合体を、温度380°Cで熱
プレスし、厚さ200ミクロンのフィルムを作製した。
The thus obtained polymer was hot pressed at a temperature of 380°C to produce a film with a thickness of 200 microns.

このフィルムに毎時21メガプレイ(MGy)の電子線
を第1表に示した照射量にて照射した後に、4張試験を
行った。
After this film was irradiated with an electron beam of 21 megaplays per hour (MGy) at the dose shown in Table 1, a 4-layer test was conducted.

引張試験はASTIII D882に準拠(以下同様)
して測定した。
Tensile test is based on ASTIII D882 (the same applies below)
It was measured by

結果を第1表に示す。The results are shown in Table 1.

(比較例1) ポリエーテルエーテルケトン樹脂製のフィルム(PEE
K)[ICI社製:ヴイクトレックス■450G]を使
用して、実施例1と同様に電子線照射後の引張強度の測
定を行った。
(Comparative Example 1) Polyetheretherketone resin film (PEE
K) [Manufactured by ICI: Victrex ■450G] The tensile strength after electron beam irradiation was measured in the same manner as in Example 1.

結果を第1表に示す。The results are shown in Table 1.

(比較例2) 芳香族ポリイミド樹脂製のフィルム[デュポン社製カプ
トン■]を使用して、実施例1と同様に電子線を照射し
て引張試験を行った。
(Comparative Example 2) A tensile test was conducted using an aromatic polyimide resin film [Kapton ■ manufactured by DuPont] by irradiating it with an electron beam in the same manner as in Example 1.

結果を第1表に示す。The results are shown in Table 1.

(実施例2) 前記実施例1で製造した重合体を、ガラス繊維マット(
日本板ガラス製)上に重量比でl:lの割合で400°
Cの熱プレスを使用して含浸させ厚さ約l麿朧のシート
を作製した。
(Example 2) The polymer produced in Example 1 was mixed into a glass fiber mat (
(manufactured by Nippon Sheet Glass) at a weight ratio of 1:1 at 400°
A sheet having a thickness of about 1 liter was prepared by impregnation using a heat press of C.

このシートを使って、第2表に示した照射量にて電子線
照射後、実施例1と同様に引張試験を行った。
Using this sheet, a tensile test was conducted in the same manner as in Example 1 after irradiation with an electron beam at the dose shown in Table 2.

結果を第2表に示す。The results are shown in Table 2.

(比較例3) IC1社PEEKフィルム(ポリエーテルエーテルケト
ン樹脂)を使用してガラス繊維を含浸したほかは実施例
2と同様に引張試験を行った。
(Comparative Example 3) A tensile test was conducted in the same manner as in Example 2, except that a PEEK film (polyetheretherketone resin) manufactured by IC1 was used and impregnated with glass fiber.

結果を第2表に示す。The results are shown in Table 2.

(実施例3) 実施例1で製造したポリエーテルイミドを炭素1jAI
aマツト(東し社製)上に重量比て1.lの割合で40
0℃の熱プレスを使用して含浸させ厚さ約l■會のシー
トを作製した。
(Example 3) The polyetherimide produced in Example 1 was
A weight ratio of 1. 40 in l proportion
A sheet having a thickness of about 1 inch was prepared by impregnation using a hot press at 0°C.

このシートを使って、第3表に示した照射量にて電子線
照射後、実施例1と同様に引張試験を行った。
Using this sheet, a tensile test was conducted in the same manner as in Example 1 after irradiation with an electron beam at the dose shown in Table 3.

結果を第3表に示す。The results are shown in Table 3.

(比較例4) ICI社製PEEにフィルム(ポリエーテルエーテルケ
トン樹脂)を使用して実施例3と同様に引張試験を行っ
た。
(Comparative Example 4) A tensile test was conducted in the same manner as in Example 3 using a film (polyetheretherketone resin) on PEE manufactured by ICI.

結果を第3表に示す。The results are shown in Table 3.

(実施例4〜6および参考例1.2) 実施例1で製造した重合体に第4表に示した鉛化合物を
ブレンドし、厚さlamのシートを作製した。
(Examples 4 to 6 and Reference Example 1.2) The polymer produced in Example 1 was blended with the lead compounds shown in Table 4 to prepare a sheet having a thickness of lam.

このシートを使用して曲げ強度および放射線遮蔽特性を
測定した。
This sheet was used to measure bending strength and radiation shielding properties.

結果を第4表に示す。The results are shown in Table 4.

第 表 ポリエーテルエーテルケトン樹脂 (IC1社製) 芳香族ボリイくト樹脂 (デュポン社製) 第 表 第 表 第 表 ◎:遮蔽性非常に良好、Q、A敵性υ>!、X;遮蔽性
不良[発明の効果] (1)請求項1の発明により、特定の繰り返し単位を有
する重合体、または前記重合体を主たる構成成分とする
組成物により、耐放射線性に優れた耐放射線性成形材料
を提供することができる。
Table: Polyetheretherketone resin (manufactured by IC1) Aromatic polyester resin (manufactured by DuPont) Table ◎: Very good shielding property, Q, A hostility υ>! , A radiation-resistant molding material can be provided.

(2)また、請求項2の発明により、重合体と鉛粒子お
よび/または鉛化合物とを有する。耐放射線性に優れた
放射線遮蔽性成形材料を提供することができる。
(2) Also, according to the invention of claim 2, it includes a polymer, lead particles, and/or a lead compound. A radiation-shielding molding material with excellent radiation resistance can be provided.

Claims (3)

【特許請求の範囲】[Claims] (1)次式( I ): ▲数式、化学式、表等があります▼ ( I ) で表わされる繰り返し単位を有する重合体を含有するこ
とを特徴とする耐放射線性成形材料。
(1) The following formula (I): ▲There are mathematical formulas, chemical formulas, tables, etc.▼ A radiation-resistant molding material characterized by containing a polymer having a repeating unit represented by (I).
(2)前記請求項1に記載の重合体と、鉛および/また
は鉛化合物とを含有することを特徴とする放射線遮蔽性
成形材料。
(2) A radiation-shielding molding material containing the polymer according to claim 1 and lead and/or a lead compound.
(3)前記鉛および/または鉛化合物の含有割合が5〜
80重量%である前記請求項1に記載の放射線遮蔽性成
形材料。
(3) The content ratio of the lead and/or lead compound is 5 to 5.
The radiation-shielding molding material according to claim 1, which is 80% by weight.
JP1318458A 1989-12-07 1989-12-07 Radiation-resistant molding material and radiation-screening molding material Pending JPH03179056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1318458A JPH03179056A (en) 1989-12-07 1989-12-07 Radiation-resistant molding material and radiation-screening molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1318458A JPH03179056A (en) 1989-12-07 1989-12-07 Radiation-resistant molding material and radiation-screening molding material

Publications (1)

Publication Number Publication Date
JPH03179056A true JPH03179056A (en) 1991-08-05

Family

ID=18099346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1318458A Pending JPH03179056A (en) 1989-12-07 1989-12-07 Radiation-resistant molding material and radiation-screening molding material

Country Status (1)

Country Link
JP (1) JPH03179056A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7327821B2 (en) 2003-03-03 2008-02-05 Mitsubishi Heavy Industries, Ltd. Cask, composition for neutron shielding body, and method of manufacturing the neutron shielding body
JP2014092530A (en) * 2012-11-07 2014-05-19 Nuclear Fuel Ind Ltd Neutron absorption member, critical state occurrence preventing method, and fissile material recovery method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7327821B2 (en) 2003-03-03 2008-02-05 Mitsubishi Heavy Industries, Ltd. Cask, composition for neutron shielding body, and method of manufacturing the neutron shielding body
JP2014092530A (en) * 2012-11-07 2014-05-19 Nuclear Fuel Ind Ltd Neutron absorption member, critical state occurrence preventing method, and fissile material recovery method

Similar Documents

Publication Publication Date Title
JP6339184B2 (en) Polymer material
DE2952440A1 (en) NEW CROSS-CROSSLINKABLE RESIN COMPOSITION AND METHOD FOR PRODUCING A LAMINATE USING THIS COMPOSITION
JPH11302507A (en) Epoxy resin composition for fiber-reinforced composite material, intermediate substrate for fiber-reinforced composite material and fiber-reinforced composite material
JP2008214547A (en) Prepreg for fiber-reinforced composite material, and fiber-reinforced composite material
JP2005239939A (en) Fiber reinforced resin composite material
Atef et al. Effect of gamma irradiation and lead content on the physical and shielding properties of PVC/NBR polymer blends
GB2057460A (en) Composites of polymeric material and thermosetting resinous fibres and particles
WO2006046534A1 (en) Heat-resistant composite material
JP2008214561A (en) Resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material
JP2005272672A (en) Flame-retardant master batch, thermosetting resin composition, prepreg and fiber-reinforced composite material
JPS633058A (en) Thermoplastic resin composition
CN109929132A (en) A kind of glass fiber compound material and its processing technology of high intensity
JP2000239488A (en) Resin composition
Jun et al. Synergistic effect of a novel charring agent and ammonium polyphosphate on the flame retardancy of acrylonitrile butadiene styrene
JPH03179056A (en) Radiation-resistant molding material and radiation-screening molding material
JP2000063518A (en) Low-dielectric polyimide containing crosslinkable group and its production
JPS58164639A (en) Curable resin composition
JPS60250026A (en) Epoxy resin composition
WO2016136540A1 (en) Prepreg, and fiber-reinforced composite material
Wang et al. Corn stalk biochar-reinforced high-density polyethylene material: flame-retardant and anti-aging properties
JP2005281634A (en) Flame-retardant master batch for use in thermosetting resin, and method for producing thermosetting resin composition, prepreg, and fiber-reinforced composite material
JP2640496B2 (en) Composition for producing imide group-containing polymer containing no diamine and method for producing the polymer
JPH01156367A (en) Resin composition for composite material
JP2016172834A (en) Carbon fiber-reinforced thermoplastic plastic, and housing for electric/electronic device
JPS6354419A (en) Thermosetting resin composition