JPH03178940A - Production of pentafluorodichloropropanes - Google Patents

Production of pentafluorodichloropropanes

Info

Publication number
JPH03178940A
JPH03178940A JP2016380A JP1638090A JPH03178940A JP H03178940 A JPH03178940 A JP H03178940A JP 2016380 A JP2016380 A JP 2016380A JP 1638090 A JP1638090 A JP 1638090A JP H03178940 A JPH03178940 A JP H03178940A
Authority
JP
Japan
Prior art keywords
reaction
catalyst
tfe
results
same procedure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016380A
Other languages
Japanese (ja)
Other versions
JPH0786090B2 (en
Inventor
Hiroichi Aoyama
博一 青山
Hisafumi Yasuhara
尚史 安原
Sei Kono
聖 河野
Satoru Koyama
哲 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2016380A priority Critical patent/JPH0786090B2/en
Priority to DE1990605770 priority patent/DE69005770T2/en
Priority to EP19900118809 priority patent/EP0421322B1/en
Publication of JPH03178940A publication Critical patent/JPH03178940A/en
Publication of JPH0786090B2 publication Critical patent/JPH0786090B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To economically obtain the subject specific compound in high yield and high selectivity without necessity of separation of catalyst by reacting fluorodichloromethane and tetrafluoroethylene in the presence of specific catalyst containing aluminum. CONSTITUTION:Fluorodichloromethane is reacted with tetrafluoroethylene in the presence of a catalyst expressed by the formula AlClxFyOz (x to z are numbers satisfying x+y+2z=3, 0<x<3, 0<=y<3 and 0<=z<3/2) preferably in a molar ratio of former : latter = 1 : 2-1 : 10 and at a temperature of from -20 deg.C to +100 deg.C to advantageously afford 1,1,1,2,2-pentafluoro-3,3- dichloropropane and 1,1,2,2,3-pentafluoro-1,3,-dichloropropane usable as a substitute for industrially important 1,1,2-trichloro-1,2,2-trifluoroethane with a slight effect to the earth environment.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、産業上重要な]、C2−ト’Jクロロ1 2
.2−トリフルオロエタンの代替化合物として使用する
ことができ地球環境に及はす影響が少ないLl、1,2
.2−ペンタフルオロ−3,3ジクロロプロパン(以下
、R225caという。)および1,1,2,2.3−
ペンタフルオロ−1,3ジクロロプロパン(以下、R−
225cbという。)の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is industrially important], C2-t'Jchloro1 2
.. Ll, 1,2 can be used as a substitute for 2-trifluoroethane and has little impact on the global environment.
.. 2-pentafluoro-3,3 dichloropropane (hereinafter referred to as R225ca) and 1,1,2,2.3-
Pentafluoro-1,3 dichloropropane (hereinafter referred to as R-
It is called 225cb. ).

[従来の技術] 従来、R225caおよびC1)の製造方法として、テ
トラフルオロエチレン(以下、TFEという。)とフル
オロジクロロメタン(以下、R−21という。)を無水
塩化アルミニウムなとの触媒を用いて15°C〜100
0Cの温度で反応させる工業的製造方性が知られている
〔米国特許筒2,462,402号、ジャーナル・オブ
・ジ・アメリカン・ケミカル・ソサエティー(J ou
rnal of theAmerican Chemi
cal 5ociety)第71巻(1979年)、コ
レクションズ・オブ・チェコスロバキア・ケミカル・コ
ミュニケーションズ (Collections of Czechoslo
vakia ChemicalCommunicati
ons)第36巻(1867年)参照〕。
[Prior Art] Conventionally, as a method for producing R225ca and C1), tetrafluoroethylene (hereinafter referred to as TFE) and fluorodichloromethane (hereinafter referred to as R-21) were reacted using a catalyst such as anhydrous aluminum chloride. °C~100
It is known that an industrial method of manufacturing the reaction at a temperature of 0C [US Pat. No. 2,462,402, Journal of the American Chemical Society]
rnal of the American Chemi
cal 5ociety) Volume 71 (1979), Collections of Czechoslovak Chemical Communications (Collections of Czechoslo)
vakia Chemical Communicati
ons) Volume 36 (1867)].

また、R225caの製造方法として、テトラフルオロ
エチレンをジグライム中、セシウムフルオライトと反応
させた後、クロロホルムと反応させる製造方法が知られ
ている(米国特許第3.38L042号参照ン。
Furthermore, as a method for producing R225ca, a method is known in which tetrafluoroethylene is reacted with cesium fluorite in diglyme and then reacted with chloroform (see US Pat. No. 3.38L042).

しかしながら、無水塩化アルミニウムを用いて15°C
〜100°Cの反応温度でオーI・クレープまたはガラ
ス反応容器中、パッチ方式で反応を行う上記の方法は、
[1的とする生成物の選択率および収率(46〜58%
)が低く、工業的には非経済的であるという問題点かあ
った。また、反応終了後に反応生成物と触媒を分離する
ためには、真空下に冷却したトラップに反応生成物を捕
集するか、希塩酸で触媒を処理した後に反応生成物を分
離(。
However, using anhydrous aluminum chloride at 15 °C
The above method involves carrying out the reaction in a patch mode in an O-I crepe or glass reaction vessel at a reaction temperature of ~100 °C.
[1 Selectivity and yield of product (46-58%)
) was low, making it uneconomical from an industrial perspective. In addition, in order to separate the reaction product and the catalyst after the reaction is completed, the reaction product can be collected in a trap cooled under vacuum, or the reaction product can be separated after treating the catalyst with dilute hydrochloric acid.

なければならないという問題点かあった。There was a problem that it had to be done.

また、セシウムフルオライドを用いる方法は、選択率、
収率は良いものの、原料となるセシウムフルオライドが
非常に高価であるので、工業的規模での経済的製造には
全く適しCいない。
In addition, the method using cesium fluoride has a high selectivity,
Although the yield is good, the raw material, cesium fluoride, is very expensive, so it is not suitable at all for economical production on an industrial scale.

上記従来法は、l皮相としてバッチ方式で行うことしか
できず、反応のモル比については具体的には1:1しか
示されていない。
The above conventional method can only be carried out superficially in a batch manner, and the molar ratio of the reaction is specifically indicated as only 1:1.

[発明の開示] 本発明者は、上記文献に記載された製造方法を詳細に検
討し、選択率、収率の向上を鋭意検討した結果、アルミ
ニウムを含む特定の触媒の存在下、R−21とT F 
l”:を反応させると、R225caおよびC10の収
率および選択率か飛躍的に向上すること、またこの方法
によれば反応生成物と触媒の分離も必要でなくなること
を見い出し、本発明を完成するに至った。
[Disclosure of the Invention] As a result of detailed study of the production method described in the above-mentioned literature and intensive study on improving selectivity and yield, the inventors of the present invention discovered that R-21 in the presence of a specific catalyst containing aluminum. and T.F.
The present invention was completed based on the discovery that the yield and selectivity of R225ca and C10 can be dramatically improved by reacting ``l'':, and that this method eliminates the need for separation of the reaction product and catalyst. I ended up doing it.

すなわち、本発明は、式、 八QCQxFyO2〔式中
、x、y:16よびZは、x+ y−L 2 z= 3
、Q<x<3.0≦y<3.0≦z<3/2を満たず数
である。〕 で示される触媒の存在下、フルオロジクロロメタンとテ
トラフルオロエチレンを反応さぜることを特徴とするl
、1,1,2.2−ペンタフルオロ−33−ジクロロプ
ロパンおよび1,1,2.2.3−ペンタフルオロ−l
+3−ジクロロプロパンの製造方法である。
That is, the present invention is based on the formula, 8QCQxFyO2 [where x, y: 16 and Z are
, Q<x<3.0≦y<3.0≦z<3/2. ] A method characterized by reacting fluorodichloromethane and tetrafluoroethylene in the presence of a catalyst represented by
, 1,1,2.2-pentafluoro-33-dichloropropane and 1,1,2.2.3-pentafluoro-l
This is a method for producing +3-dichloropropane.

本発明の好ましい態様においては、触媒を所定量充填後
、R−21とTFEを所定のモル比および流速て、好ま
しくは気相にて所定の温度で流通させる。反応管出口よ
り得られる反応混合物から、公知の方法、例えば精留な
どにより分離生成し、目的どするR  225ca、c
bを得ることができる。
In a preferred embodiment of the present invention, after filling a predetermined amount of catalyst, R-21 and TFE are allowed to flow at a predetermined molar ratio and flow rate, preferably in a gas phase, at a predetermined temperature. From the reaction mixture obtained from the outlet of the reaction tube, the desired R 225ca, c is separated and produced by a known method such as rectification.
b can be obtained.

反応管出口より得られる反応混合物は、R225caお
よびcbを20 : 80〜80 : 20の割合で含
む。
The reaction mixture obtained from the outlet of the reaction tube contains R225ca and cb in a ratio of 20:80 to 80:20.

本発明で使用される上記塩素化フッ素化アルミナ触媒は
、活性アルミナに100〜700’Cでクロロ炭化水素
、クロロフルオロ炭化水素、フルオロ炭化水素、塩化水
素またはこれらの混合物を作用させて製造することがで
き、通常以下のようにして得られる。ステンレス、ハス
テロイまたはガラス製の反応管に所定のアルミナを充填
後、乾燥窒素気流下300〜500°Cに加熱し、十分
にアルミナを乾燥させる。その後、所定の温度、通常は
100〜600°C1好ましくは200〜400°Cで
、所定のフロンを所定時間単独で、もしくは塩化水素ガ
スまたは酸素と混合して、流通させることにより得られ
る。フロン処理の温度が1000Cより低い場合には、
処理に要する時間が長くなりすぎ実用的でないし、60
0’Cより高い場合には、アルミナ表面に炭素の付着が
生じ活性が低くなってしまう傾向にある。この炭素の付
着による活性の低下は、特公昭61−27375号公報
に示されているように、酸素または空気の共存により防
ぐことも可能である。
The chlorinated fluorinated alumina catalyst used in the present invention can be produced by reacting activated alumina with a chlorohydrocarbon, a chlorofluorohydrocarbon, a fluorohydrocarbon, hydrogen chloride, or a mixture thereof at 100 to 700'C. can be obtained, and is usually obtained as follows. After filling a reaction tube made of stainless steel, Hastelloy, or glass with a predetermined amount of alumina, the tube is heated to 300 to 500° C. under a stream of dry nitrogen to thoroughly dry the alumina. Thereafter, a predetermined temperature, usually 100 to 600° C., preferably 200 to 400° C., is obtained by flowing a predetermined fluorocarbon alone or in a mixture with hydrogen chloride gas or oxygen for a predetermined period of time. If the temperature of Freon treatment is lower than 1000C,
The time required for processing is too long and it is not practical.
When the temperature is higher than 0'C, carbon tends to adhere to the alumina surface and the activity tends to decrease. This reduction in activity due to the adhesion of carbon can also be prevented by the coexistence of oxygen or air, as shown in Japanese Patent Publication No. 61-27375.

塩化水素ガスで処理する場合も同様に行える。The same method can be used when treating with hydrogen chloride gas.

乾燥窒素気流下、400〜800′Cに加熱し、充分に
活性アルミナを乾燥させる。その後、所定の温度、通常
は300〜700’Cで塩化水素ガスをそのまま、ある
いは窒素、アルゴン等の不活性ガスで、又は、R−12
、R−21等のクロロフルオロ炭化水素で希釈して流通
させる。通常の流通時間は、3〜10時間である。
The activated alumina is sufficiently dried by heating to 400 to 800'C under a stream of dry nitrogen. Thereafter, at a predetermined temperature, usually 300 to 700'C, hydrogen chloride gas is applied directly, or with an inert gas such as nitrogen or argon, or R-12
, R-21 and the like and distributed. Typical flow times are 3 to 10 hours.

アルミナは一般に市販されている、通常γ−アルミナを
主成分とする脱水用、触媒用として用いられる多孔質ア
ルミナであれば任意のものが使用できる。例えば、ネオ
ビード(Neobead) CSMHB、GB、D(水
沢化学工業(株))、住友化学下業(株)製活性アルミ
ナKHA、NKH]、N K O3などか用いられる。
Any commercially available alumina can be used as long as it is a porous alumina that is usually made of γ-alumina as a main component and is used for dehydration and catalyst purposes. For example, Neobead CSMHB, GB, D (Mizusawa Chemical Industry Co., Ltd.), activated alumina KHA, NKH (manufactured by Sumitomo Chemical Co., Ltd.), N K O3, etc. are used.

また、り00炭化水素またはりI′JOフルオロ炭化水
素は、水素を含まないものどしては、炭素数1〜3、好
ましくは1〜2のものが使用され、特に好ましくは、四
塩化炭素、フルオロトリクロロメタン、ジフルオロジク
ロロメタン、トリフルオロクロロメタン、1,1.2−
1−リクロロ−122−トリフルオロエタン、l 、 
]、 、 ]1−1−リクロロ22.2−hリフルオロ
エタン、1..1,2.2テトラフルオロ−1,2,−
ジクロロエタン、11.1.2−テトラフルオロ−2,
2−ジクロロエタン、1.1,2.2−テトラクロロ−
1,2−ジフルオロエタン、1..1,1..2−テト
ラクロロ−22−ジフルオロエタンが挙げられる。水素
を含むクロロ炭化水素またはクロロフルオロ炭化水素ど
して、炭素数1〜3、好ましくは1〜2のもの、特に好
ましくは、フルオロジクロロメタン、ジフルオロクロロ
メタン、]、  1  ]、−)リフルオロ2.2−ジ
クロロエタン、]、 、 ]、 、 2− )リフルオ
O−1.2−ジク0ロエタン、1. 、 ] 、 1−
1−リフルオロ−2−クロロエタンが挙げられる。
Furthermore, as the RI00 hydrocarbon or the RI'JO fluorohydrocarbon, those containing 1 to 3 carbon atoms, preferably 1 to 2 carbon atoms, are used, particularly preferably carbon tetrachloride. , fluorotrichloromethane, difluorodichloromethane, trifluorochloromethane, 1,1.2-
1-lichloro-122-trifluoroethane, l,
], , ]1-1-lichloro22.2-hlifluoroethane, 1. .. 1,2.2tetrafluoro-1,2,-
dichloroethane, 11.1.2-tetrafluoro-2,
2-dichloroethane, 1.1,2.2-tetrachloro-
1,2-difluoroethane, 1. .. 1,1. .. 2-tetrachloro-22-difluoroethane is mentioned. Hydrogen-containing chlorohydrocarbons or chlorofluorohydrocarbons having 1 to 3 carbon atoms, preferably 1 to 2 carbon atoms, particularly preferably fluorodichloromethane, difluorochloromethane, ], 1 ], -) refluoro2. 2-dichloroethane, ], , ], , 2-) refluoro-1.2-dichloroethane, 1. , ] , 1-
1-lifluoro-2-chloroethane is mentioned.

また、塩素化フッ素化アルミナ触媒は、20〜4、50
 ’Cでフッ化水素、300〜500 ’Cでフッ化硫
黄(S F 4、S F 、等)、フッ化スルノリル、
フッ化チオニル、20〜450°Cてフッ化アンモニウ
ム(酸性フッ化アンモニウl\、中性フッ化アンモニウ
ムなど)の無機フッ化物を作用させたのち、クロロフル
オロ炭化水素、クロロ炭化水素又は、塩化水素を作用さ
せることにより製造することができる。
In addition, the chlorinated fluorinated alumina catalyst is 20 to 4,50
Hydrogen fluoride at 'C, sulfur fluoride (SF4, SF, etc.) at 300-500'C, sulnoryl fluoride,
After treating thionyl fluoride with an inorganic fluoride such as ammonium fluoride (acidic ammonium fluoride, neutral ammonium fluoride, etc.) at 20 to 450°C, chlorofluorohydrocarbon, chlorohydrocarbon, or hydrogen chloride It can be produced by reacting with

本発明においてR−2]とT F Eのモル比は12以
上、好ましくは1・2〜110である。
In the present invention, the molar ratio of R-2] to TFE is 12 or more, preferably 1.2 to 110.

モル比が1.2より小さいとR−21がR−22(ジフ
ルオロクロロメタン)、R−230リフルオロメタン)
、クロロホルムに変化する割合が大きくなり好ましくな
い。モル比1:2以」二では転化率、選択率共に大きな
差は認められない。しかし、TFE割合を大きくずれば
するほとT F Eのりすイクル量が増え経済的とはい
えなくなる。従って、−I−限は約110である。
When the molar ratio is less than 1.2, R-21 becomes R-22 (difluorochloromethane), R-230 (difluorochloromethane)
, the rate of conversion to chloroform increases, which is undesirable. At a molar ratio of 1:2 or more, no significant difference in conversion rate or selectivity is observed. However, the larger the TFE ratio is, the more the TFE cycle amount increases, making it uneconomical. Therefore, the -I- limit is approximately 110.

本発明の方法を気相で行う場合、原料ガスはそのまま流
通させてもよいが、窒素、アルゴンなどの不活性ガスま
たは本反応の生成物で希釈して流通させることもできる
。反応圧力は、特に限定されない。減圧下でも可能であ
るが、通常装置が複雑になるので常圧以−1−が好まし
い。生成物か酸化しない圧力を上限とする。また、反応
は、一般的にSO8またはハステロイC製の反応管中で
行なわれるが、犬気汗下に反応を行う場合にはガラス管
にても十分に実施できる。
When carrying out the method of the present invention in the gas phase, the raw material gas may be passed through as it is, but it may also be passed through after being diluted with an inert gas such as nitrogen or argon or a product of this reaction. The reaction pressure is not particularly limited. Although it is possible to carry out the process under reduced pressure, it is preferable to use a pressure below normal pressure, since the equipment usually becomes complicated. The upper limit is the pressure at which the product does not oxidize. Further, the reaction is generally carried out in a reaction tube made of SO8 or Hastelloy C, but if the reaction is carried out under dog sweat, it can also be carried out satisfactorily in a glass tube.

反応温度は、−20〜+150°C1好ましくは20〜
−ト100°Cの範囲の温度である。反応温度が150
°Cより高くなると、副反応生成物の量が増加し、目的
とするR  225ca、 cbの選択率が低下する。
The reaction temperature is -20 to +150°C, preferably 20 to +150°C.
- temperature in the range of 100°C. reaction temperature is 150
When the temperature is higher than °C, the amount of side reaction products increases and the selectivity of target R 225ca and cb decreases.

本発明の方法は、気相のみならず液相として行うことも
できる。l液相にて流通させる場合には、T F Eを
反応系内でt肢化させる必要があり、加圧条件下にて反
応させることが必須となる。
The method of the invention can be carried out not only in the gas phase but also in the liquid phase. When flowing in a liquid phase, it is necessary to make TFE into a t-limb within the reaction system, and it is essential to carry out the reaction under pressurized conditions.

本発明に関して使用されるR−21、TFE、アルミナ
、各種クロロ炭化水素、クロロフルオロ炭化水素はいず
れも現在、工業的に製造されているものである。
R-21, TFE, alumina, various chlorohydrocarbons, and chlorofluorohydrocarbons used in the present invention are all currently produced industrially.

[発明の効果] 本発明の方法によれば、R225caおよびcbを高収
率および高選択率で得ることができる。また、触媒分離
処理が不必要なので経済的である。
[Effects of the Invention] According to the method of the present invention, R225ca and cb can be obtained in high yield and high selectivity. In addition, it is economical because catalyst separation treatment is unnecessary.

[実施例] 以下、本発明を実施例において説明する。[Example] The present invention will be explained below with reference to Examples.

実凰想」− 内径20mmの5US316製反応管にネオビードGB
40m(!を充填し、乾燥窒素気流中400°Cで6時
間乾燥させた。その後、内温300°Cまで冷却し、窒
素を止め、R−21を75cc/分の流速で流通させた
。反応管出口ガスをカスクロマトグラフにより分析し、
生成してくる二酸化炭素の量がもはや減少しなくなるま
でR−21の流通を続けた。その後、冷却し、触媒組成
をウノ]・ブリッジ(P、 Woodbridge)ら
(ネイチ+ −(N ature)229.626ぐ1
.97+、))による熱加水分解決に準じた方法によっ
て測定した。内温か30°Cになった時点でR−21を
20cc/分およびT F Eを60 cc/分(モル
比■、3)の流速により気相で流通させた。3時間後に
反応前出[」ガスをガスクロマトグラフにより分析した
ところ第1表に示すような結果が得られた。表中、R−
224はくジクロロテトラフルオロフロパン)を表す。
Jitsouso” - Neobead GB in a 5US316 reaction tube with an inner diameter of 20mm
It was filled with 40 m (!) and dried at 400°C for 6 hours in a stream of dry nitrogen. Thereafter, it was cooled to an internal temperature of 300°C, the nitrogen supply was stopped, and R-21 was allowed to flow at a flow rate of 75 cc/min. Analyze the reaction tube outlet gas using a gas chromatograph,
R-21 was continued to flow until the amount of carbon dioxide produced no longer decreased. Thereafter, it was cooled and the catalyst composition was changed to that of Woodbridge et al.
.. It was measured by a method similar to the thermal hydrolysis solution by 97+, )). When the internal temperature reached 30[deg.] C., R-21 was passed through in the gas phase at a flow rate of 20 cc/min and TFE at a flow rate of 60 cc/min (molar ratio ■, 3). After 3 hours, the pre-reaction gas was analyzed by gas chromatography, and the results shown in Table 1 were obtained. In the table, R-
224 represents dichlorotetrafluorofuropane).

また、他の実施例のものも含めて触媒組成を第2表に示
す。
Further, the catalyst compositions including those of other examples are shown in Table 2.

実施例2 ネオビー1”GBをネオビードCに、R−21をジフル
オロクロロメタン(R−22)に代えた以外は実施例1
と同様の手順を繰り返した。結果を第1表に示す。
Example 2 Example 1 except that Neobead 1”GB was replaced with Neobead C and R-21 was replaced with difluorochloromethane (R-22).
The same procedure was repeated. The results are shown in Table 1.

実施例3 R−21をジクロロジフルオロメタン(R−12)に代
えた以外は実施例1と同様の手順を繰り返した。結果を
第1表に示す。
Example 3 The same procedure as Example 1 was repeated except that R-21 was replaced with dichlorodifluoromethane (R-12). The results are shown in Table 1.

失嵐徊4 1 R−21をテトラフルオロジクロロエタン(R114)
に代えた以外は実施例1と同様の手順を繰り返した。結
果を第1表に示す。
Lost Arashi 4 1 R-21 to tetrafluorodichloroethane (R114)
The same procedure as in Example 1 was repeated except that . The results are shown in Table 1.

実樵色1 R−21を四塩化炭素(CCC4)に代えた以外は実施
例1と同様の手順を繰り返した。結果を第1表に示す。
Jitsukiiro 1 The same procedure as in Example 1 was repeated except that R-21 was replaced with carbon tetrachloride (CCC4). The results are shown in Table 1.

塞A舛−6− ネオビートGBを住良化学工業(株)製活性アルミナ 
N K H3に代えた以外は実施例1と同様の手順を繰
り返した。結果を第1表に示す。
Block A-6- Neobeat GB made of activated alumina manufactured by Sumira Chemical Co., Ltd.
The same procedure as in Example 1 was repeated except that N K H3 was used. The results are shown in Table 1.

笈施週ヱ 不才ビート CBを住良化学工業(株)製活性アルミナ
K I(八に代えた以夕fは実施例Iと同様の手順を繰
り返した。結果を第1表に示す。
The same procedure as in Example I was repeated except that CB was replaced with activated alumina KI (available from Sumira Chemical Industries, Ltd.).

実麺例迂 R−21とTFEの反応温度を30°Cから一20°C
に変えた以外は実施例1と同様の手順を繰り返した。結
果を第1表に示す。
The reaction temperature of real noodles example round R-21 and TFE was changed from 30°C to -20°C.
The same procedure as in Example 1 was repeated except that . The results are shown in Table 1.

尖極廻手 2 R−21とTFEの反応温度を300Cから80°Cに
変えた以外は実施例1ど同様の手順を繰り返した。結果
を第1表に示す。
The same procedure as in Example 1 was repeated except that the reaction temperature of R-21 and TFE was changed from 300C to 80C. The results are shown in Table 1.

実施例10 R−2]/TFEのモル比を1:3から1;10に変え
た以外は実施例1と同様の手順を繰り返した。結果を第
1表に示す。
Example 10 The same procedure as Example 1 was repeated except that the molar ratio of R-2]/TFE was changed from 1:3 to 1:10. The results are shown in Table 1.

実施例11 R−2+、/TFEのモル比を1:3から1:1に変え
た以外は実施例1の手順を繰り返した。結果を第1表に
示す。
Example 11 The procedure of Example 1 was repeated except that the molar ratio of R-2+,/TFE was changed from 1:3 to 1:1. The results are shown in Table 1.

笑奥廻1l− R−21とTFEの反応温度を30°Cから160°C
に変えた以外は実施例1と同様の手順を繰り返した。結
果を第1表に示す。
Sho Okumawari 1l - Reaction temperature of R-21 and TFE from 30°C to 160°C
The same procedure as in Example 1 was repeated except that . The results are shown in Table 1.

実適uL旦 R−21とTFEの反応温度を30’Cから200′C
に変えた以外は実施例1と同様の手順を繰り返した。結
果を第1表に示す。
The reaction temperature of R-21 and TFE is set from 30'C to 200'C.
The same procedure as in Example 1 was repeated except that . The results are shown in Table 1.

実施例14 内径20mrtrのハステロイC製反応管に活性アルミ
ナ(住良化学工業(株)製NKH3)20zCを充填し
、乾燥窒素気流下400’Cで6時間乾燥させた。
Example 14 A reaction tube made of Hastelloy C with an inner diameter of 20 mrtr was filled with activated alumina (NKH3 manufactured by Sumira Chemical Co., Ltd.) 20zC and dried at 400'C for 6 hours under a stream of dry nitrogen.

その後、内温300°Cまで冷却し、窒素を50*(!
/分、乾燥塩化水素カスを100 m(1/分の流速で
反応管中で混合させながら流通させた。3時間後、加熱
をやめ、窒素気流下冷却し、触媒の調製を終えた。
After that, it was cooled to an internal temperature of 300°C, and nitrogen was added to 50*(!
/min, and dried hydrogen chloride residue was passed through the reaction tube at a flow rate of 100 m (1/min) while mixing. After 3 hours, heating was stopped and the reaction tube was cooled under a nitrogen stream to complete the preparation of the catalyst.

」二記触媒を内径8關のガラス反応管に2.5cc充填
し、気相にてR−21を10cc/分、TFEを60 
cc/分(モル比1:6)の流速で反応管人口で混合し
たのち流通させた。この際、触媒層の内温か55°Cに
なるように反応管外部を温度調節した。反応開始から1
時間後、反応管出口ガスをガスクロマトグラフにより分
析したところ第3表に示すような結果が得られた。表中
、R−224はジクロロテトラフルオロプロパンを示す
。また、実施例15〜24のものも含めて触媒組成を第
4表に示す。
2.5 cc of the catalyst described above was packed into a glass reaction tube with an inner diameter of 8 mm, and R-21 was added at 10 cc/min and TFE was added at 60 cc/min in the gas phase.
After mixing in the reaction tube at a flow rate of cc/min (molar ratio 1:6), the mixture was allowed to flow. At this time, the temperature outside the reaction tube was adjusted so that the internal temperature of the catalyst layer was 55°C. 1 from the start of the reaction
After a period of time, the gas at the outlet of the reaction tube was analyzed by gas chromatography, and the results shown in Table 3 were obtained. In the table, R-224 represents dichlorotetrafluoropropane. Further, the catalyst compositions including those of Examples 15 to 24 are shown in Table 4.

実施例15 実施例14における触媒調製時の乾燥温度を600°C
1乾燥塩化水素ガスでの処理温度を500°Cにかえた
以外は、同様に行なった。結果を第3表に示す。
Example 15 The drying temperature during catalyst preparation in Example 14 was set to 600°C.
1 The same procedure was carried out except that the temperature of the treatment with dry hydrogen chloride gas was changed to 500°C. The results are shown in Table 3.

実奥世11 実施例1/Iにおける触媒調製時の乾燥la度を8oo
’c、乾燥塩化水素ガスでの処理温度を7000Cにか
えた以外は、同様に行なった。結果を第3表に示す。
Miokuyo 11 Drying la degree during catalyst preparation in Example 1/I was 8oo
'c, The same procedure was carried out except that the treatment temperature with dry hydrogen chloride gas was changed to 7000C. The results are shown in Table 3.

実施例17 実施例14におけるR−21とT F Eとの反応の際
の反応温度を100°Cにかえた以外は、同様に行なっ
た。結果を第3表に示す。
Example 17 The same procedure as in Example 14 was carried out except that the reaction temperature during the reaction between R-21 and TFE was changed to 100°C. The results are shown in Table 3.

実−峰遡j8 実施例15におけるR−21とT F Eとの反応の際
の反応温度を100°Cにかえた以外は、同様に行なっ
た。結果を第3表に示す。
The same procedure as in Example 15 was carried out except that the reaction temperature during the reaction between R-21 and TFE was changed to 100°C. The results are shown in Table 3.

失麺訟1−Ll 実施例15にお1プるR−21とT F Eとの反応の
際のR−21およびTFEの流速をそれぞれ15 0 cc/分、10cc/分(モル比l;1)にかえた
以外は、同様に行なった。結果を第3表に示す。
The flow rates of R-21 and TFE during the reaction of R-21 and TFE in Example 15 were 150 cc/min and 10 cc/min, respectively (molar ratio 1; The same procedure was carried out except that 1) was changed. The results are shown in Table 3.

大鼻週1里 実施例15におけるR−21とTFEとの反応の際のR
−21およびTFEの流速をそれぞれ10 cc/分、
100cc/分(モル比1:10)にかえた以外は、同
様に行なった。結果を第3表に示す。
R during the reaction of R-21 and TFE in Example 15
-21 and TFE flow rates of 10 cc/min, respectively;
The same procedure was carried out except that the flow rate was changed to 100 cc/min (molar ratio 1:10). The results are shown in Table 3.

実施例21 実施例15におけるR−21どTFEとの反応の際の反
応温度を150°Cにかえた以外は、同様に行なった。
Example 21 The same procedure as in Example 15 was carried out except that the reaction temperature during the reaction with TFE such as R-21 was changed to 150°C.

結果を第3表に示す。The results are shown in Table 3.

大施輿ヱ4 実施例15における触媒調製時において、活性アルミナ
をネオビード CB(水沢化学工業(株))にかえた以
外は、同様に行なった。結果を第3表にホす。
4. The same procedure as in Example 15 was repeated except that Neobead CB (manufactured by Mizusawa Chemical Industry Co., Ltd.) was used instead of activated alumina. The results are shown in Table 3.

害農し塁−l 実施例15におけるR−21とTFEとの反応の際のR
−21およびTFEの流速をそれぞれ10 cc/分、
30cc/分(モル比1:3)にかえた以6 外は、同様に行なった。結果を第3表に示す。
Harmful agriculture-l R during the reaction between R-21 and TFE in Example 15
-21 and TFE flow rates of 10 cc/min, respectively;
The same procedure was carried out except that the flow rate was changed to 30 cc/min (molar ratio 1:3). The results are shown in Table 3.

大堀共4」一 実施例15における触媒調製時において、塩化水素(1
00xL’分)とR−2](100xL’分)との混合
ガスて処理した以外は、同様に行なった。
During the catalyst preparation in Example 15, hydrogen chloride (1
The same procedure was carried out except that the treatment was performed using a mixed gas of 00xL' minutes) and R-2] (100xL' minutes).

結果を第3表に示す。The results are shown in Table 3.

塩奴発1 銀内張すしたオートクレーブに無水塩化アルミニウム5
gを仕込んだ。このオートクレーブを、固体二酸化炭素
−アセトン混合物中で冷却し、減圧し、そこにシリンダ
ーからフルオロジクロロメタン52g(0,5モル)お
よびテトラフルオロエチレン50g(0,5モル)を蒸
留して入れた。オートクレーブを閉じ、撹拌しなから1
00’Cで10時間加熱した。オートクレーブを開き、
生成物を取り出し、水と塩酸の混合物で洗った。225
caとcbの混合物4.7g(0,23モル)を得た。
1. Anhydrous aluminum chloride in a silver-lined autoclave 5.
I prepared g. The autoclave was cooled in a solid carbon dioxide-acetone mixture, evacuated, and 52 g (0.5 mol) of fluorodichloromethane and 50 g (0.5 mol) of tetrafluoroethylene were distilled into it from the cylinder. Close the autoclave and do not stir.1
Heated at 00'C for 10 hours. Open the autoclave and
The product was removed and washed with a mixture of water and hydrochloric acid. 225
4.7 g (0.23 mol) of a mixture of ca and cb was obtained.

収率はR21基準で46.3%であった。ガスクロマト
グラフで分析した結果を第1表に示す。
The yield was 46.3% based on R21. Table 1 shows the results of gas chromatograph analysis.

第2表 第4表Table 2 Table 4

Claims (1)

【特許請求の範囲】 1、式:AlClQ_xF_yO_z 〔式中、x、yおよびzは、x+y+2z=3、0<x
<3、0≦y<3、0≦z<3/2を満たす数である。 〕 で示される触媒の存在下、フルオロジクロロメタンとテ
トラフルオロエチレンを反応させることを特徴とする1
,1,1,2,2−ペンタフルオロ−3,3−ジクロロ
プロパンおよび1,1,2,2,3−ペンタフルオロ−
1,3−ジクロロプロパンの製造方法。
[Claims] 1. Formula: AlClQ_xF_yO_z [In the formula, x, y and z are x+y+2z=3, 0<x
The number satisfies <3, 0≦y<3, and 0≦z<3/2. ] 1 characterized by reacting fluorodichloromethane and tetrafluoroethylene in the presence of a catalyst represented by
, 1,1,2,2-pentafluoro-3,3-dichloropropane and 1,1,2,2,3-pentafluoro-
Method for producing 1,3-dichloropropane.
JP2016380A 1989-09-30 1990-01-26 Method for producing pentafluorodichloropropanes Expired - Lifetime JPH0786090B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016380A JPH0786090B2 (en) 1989-09-30 1990-01-26 Method for producing pentafluorodichloropropanes
DE1990605770 DE69005770T2 (en) 1989-09-30 1990-10-01 Process for the production of pentafluorodichloropropanes.
EP19900118809 EP0421322B1 (en) 1989-09-30 1990-10-01 Process for preparing penta-fluorodichloropropanes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-256608 1989-09-30
JP25660889 1989-09-30
JP2016380A JPH0786090B2 (en) 1989-09-30 1990-01-26 Method for producing pentafluorodichloropropanes

Publications (2)

Publication Number Publication Date
JPH03178940A true JPH03178940A (en) 1991-08-02
JPH0786090B2 JPH0786090B2 (en) 1995-09-20

Family

ID=26352716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016380A Expired - Lifetime JPH0786090B2 (en) 1989-09-30 1990-01-26 Method for producing pentafluorodichloropropanes

Country Status (1)

Country Link
JP (1) JPH0786090B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992009548A1 (en) * 1990-11-27 1992-06-11 Asahi Glass Company Ltd. Process for producing dichloropentafluoropropane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992009548A1 (en) * 1990-11-27 1992-06-11 Asahi Glass Company Ltd. Process for producing dichloropentafluoropropane
US6191327B1 (en) 1990-11-27 2001-02-20 Asahi Glass Company Ltd. Method for producing dichloropentafluoropropanes

Also Published As

Publication number Publication date
JPH0786090B2 (en) 1995-09-20

Similar Documents

Publication Publication Date Title
JP6827246B2 (en) Method for producing halogenated butene compound
JPH04226927A (en) Process for producing 1,1,1,2-tetrafluorochloroethane and pentafluoroethane
US3431067A (en) Method of manufacturing a fluorination catalyst
JPH06293676A (en) Preparation of pentafluoroethane by disproportionation of tetrafluorochloroethane
JP2813750B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
KR102566765B1 (en) Method for producing cyclobutene
US6297411B1 (en) Mixed fluorination catalyst
JPH03178940A (en) Production of pentafluorodichloropropanes
JPH0352830A (en) Preparation of 1,1,1-trifluoro-2- chloroethane
JPH09169672A (en) Production of pentafluoroethane
JPH03169829A (en) Substitution of halogen
EP0421322B1 (en) Process for preparing penta-fluorodichloropropanes
TWI798518B (en) The production method of cyclobutane
JPH04224528A (en) Method for production of fluorine containing ethane derivative, catalytic mixture and fluorinated hydrocarbon solution
US5406009A (en) Catalytic equilibration to improve the relative yield of selected halocarbons
CN107602338B (en) Synthetic method of low-carbon chain perfluoroalkyl iodide
RU2807184C9 (en) Method for obtaining cyclobutane
RU2807184C2 (en) Method for obtaining cyclobutene
RU2230727C2 (en) Tetrafluorochloriethane dismutation-mediated pentafluoroethane production method
JPH0145455B2 (en)
RU2784315C1 (en) Method for production of cyclobutene
JPH03251546A (en) Production of pentafluorodichloropropanes
JPH01258630A (en) Method for isomerizing hydrogen-containing chlorofluorohydrocarbon
WO2004045763A1 (en) Porous aluminum fluoride
JPH03505328A (en) Vapor phase fluorination method