JPH0317851B2 - - Google Patents

Info

Publication number
JPH0317851B2
JPH0317851B2 JP60086009A JP8600985A JPH0317851B2 JP H0317851 B2 JPH0317851 B2 JP H0317851B2 JP 60086009 A JP60086009 A JP 60086009A JP 8600985 A JP8600985 A JP 8600985A JP H0317851 B2 JPH0317851 B2 JP H0317851B2
Authority
JP
Japan
Prior art keywords
epoxy resin
acid
acrylic acid
modified epoxy
meth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60086009A
Other languages
Japanese (ja)
Other versions
JPS6151023A (en
Inventor
Sadao Shigematsu
Tadashi Shibazaki
Yuzuru Akyama
Akira Matsumura
Tomiji Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP8600985A priority Critical patent/JPS6151023A/en
Publication of JPS6151023A publication Critical patent/JPS6151023A/en
Publication of JPH0317851B2 publication Critical patent/JPH0317851B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Epoxy Resins (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、従来よりも一段と諸性能の優れた変
性エポキシ樹脂の製法に関する。 [従来の技術] 空気硬化型のいわゆる空乾性塗料は家具、内装
材、家庭用品等の塗装などに広く使用されてい
る。該塗料は硬化速度、乾燥速度、研磨性、塗膜
硬度及び耐水性等の面で優れた性質を有してお
り、実用性の極めて高い塗料の一つとして益々そ
の需要は伸びつつある。 [発明が解決しようとする問題点] しかし、近年技術革新あるいは社会要請の高度
化に伴ない、かかる塗料の上記性質を一層向上せ
しめるとともに湿気・水気の多い場所に用いる際
には同時に防食性も付与した塗料が要求されてい
る。 [問題点を解決するための手段] しかるに本発明者らは上記課題を解決すべく、
空乾性塗料に関し鋭意研究を重ねた。その結果、
2官能ビスフエノールA型エポキシ樹脂中のエポ
キシ基に不飽和多塩基酸又はその無水物とペンタ
エリスリトールトリアリルエーテルとの部分エス
テル化物(以下、単に部分エステル化物と略す)
を結合せしめた変性エポキシ樹脂は従来品と比較
して防食性、塗膜硬度が非常に優れていること、
更に該エポキシ基にアクリル酸又はメタクリル酸
(以下、(メタ)アクリル酸と略記する)を反応さ
せて該変性エポキシ樹脂中に(メタ)アクリロキ
シ基を同時に存在させると前記性質の向上に加え
て、塗膜のゲル化速度、しいては空乾性を著しく
向上させうることを見出し、本発明を完成するに
到つた。 本発明における2官能ビスフエノールA型エポ
キシ樹脂(以下、単にエポキシ樹脂という)と
は、次のような構造式を持つ化合物で該式中nは
通常0〜3の範囲から適宜選ばれる。 又、該エポキシ樹脂のエポキシ当量は100〜500、
好ましくは180〜300の範囲が良く、100以下では
ガラス転移温度が低すぎて乾燥速度及び防食性が
落ちる傾向があり、500以上では本発明の変性エ
ポキシ樹脂を製造した時にアリルエーテル基、
(メタ)アクリロキシ基の官能基当量が低くなり
すぎて硬化速度が落ちるので好ましくない。 本発明に用いる部分エステル化物中には少くと
も1個のカルボキシル基が残存しており、かかる
カルボキシル基とエポキシ樹脂中のエポキシ基を
反応させるのである。 不飽和多塩基酸としてはマレイン酸、フマル
酸、イタコン酸、シストラコン酸及びこれらの無
水物等が用いられる。この際、目的とする変性エ
ポキシ樹脂の性能が低下しない範囲で飽和多塩基
酸、例えばフタル酸、イソフタル酸、テレフタル
酸、ヘツト酸、アジピン酸、セバシン酸、コハク
酸、アゼライン酸等を併用することもできる。 上記不飽和多塩基酸とペンタエリスリトールト
リアリルエーテルを反応させる場合、通常反応温
度40〜150℃、反応時間で実施される。 上記変性エポキシ樹脂においてエポキシ樹脂成
分は、全ポリマーに対して20〜80重量%存在すれ
ば充分に目的は達せられるがより好ましくは40〜
70重量%の範囲において防食性が顕著に発揮され
る。又アリルエーテル基は全ポリマーに対して5
〜20重量%の範囲から選ばれる。エポキシ樹脂成
分が20重量%より少いと塗膜硬度及び防食性が低
下する傾向が見られ、80重量%を越えて使用する
と粘度が高くなりすぎて実用上問題が残る。 前記部分エステル化物に加えて更に(メタ)ア
クリル酸をエポキシ樹脂中のエポキシ基に結合せ
しめると部分エステル化物単独の時に較べて塗膜
の硬化速度が著しく向上する、即ち空乾性の非常
に優れた変性エポキシ樹脂が得られる。(メタ)
アクリル酸も又、分子中のカルボキシル基が、エ
ポキシ樹脂中のエポキシ基と反応して結合するの
である。 部分エステル化物及び(メタ)アクリル酸をエ
ポキシ樹脂と結合せしめるには、通常まず部分エ
ステル化物を前記した方法を用いて製造し、これ
とエポキシ樹脂及び(メタ)アクリル酸を反応さ
せる方法がとられるが、エポキシ樹脂及びこれと
当モル量程度の部分エステル化物を最初に反応さ
せた後、エポキシ樹脂中の残りのエポキシ基に
(メタ)アクリル酸を反応させたり、あるいは逆
にエポキシ樹脂及びこれと当モル量程度の(メ
タ)アクリル酸を最初に反応させ、しかる後に部
分エステル化物を反応させる方法も実施可能であ
る。反応温度は通常60〜120℃、触媒として2−
ヒドロキシパラトルイジン、2−メチルイミダゾ
ール、トリメチルベンジルアンモニウムクロライ
ド等が使用される。 (メタ)アクリル酸成分は全ポリマーに対して
5〜50重量%であることが望ましい。 本発明の変性エポキシ樹脂の分子量は500〜
3000、より好ましくは550〜2500の範囲が好適で
ある。分子量が500以下になると塗装粘度が低す
ぎて硬化速度及び防食性が低下するし、3000以上
の場合は該粘度が高すぎて、スチレン等を大量に
使用せねば塗装粘度に致らず結果として硬化速度
及び防食性の低下を招くので避けるべきである。 更に該変性エポキシ樹脂を塗料用に用いる時
は、一般に重合性単量体と混合する。重合性単量
体としてはスチレン、ビニルトルエン、クロロス
チレン、α−メチルスチレン、ジビニルベンゼ
ン、(メタ)アクリル酸エステル、グリシジル
(メタ)アクリレート、酢酸ビニル、ジアリルフ
タレート、トリアリルシアヌレート、トリメチロ
ールプロパントリアクリレート、トリメチロール
プロパントリメタクリレート、桐油、アマニ油、
大豆油、綿実油、サフラワ油、やし油などが挙げ
られる。 更に添加剤として顔料、充填剤、硬化剤、硬化
促進剤、希釈剤、熱可塑性樹脂などを添加しても
良い。 顔料としてチタン白、シアニンブルー、クリー
ムイエロー、ウオツチングレツド、ベンガラ、カ
ーボンブラツク、アニリンブラツクなどが挙げら
れる。 硬化剤としてはメチルエチルケトンパーオキサ
イド、シクロヘキサノンパーオキサイド、ベンゾ
イルパーオキサイド、ジクミルパーオキサイド、
ターシヤリーブチルパーベンゾエートなどが挙げ
られる。 硬化促進剤としてはオクチル酸コバルト、ナフ
テン酸マンガンなどが挙げられる。 希釈剤としては酢酸エチル、トルエン、キシレ
ン、メタノール、エタノール、ブタノール、アセ
トン、メチルエチルケトン、メチルイソブチルケ
トン、セルソルブ、ジアセトンアルコールなどが
挙げられる。 熱可塑性樹脂としてはセルロースアセテートブ
チレート、ニトロセルロース、塩化ビニル樹脂、
酢酸ビニル樹脂、アクリル樹脂及びこれらの共重
合体、ブチル化メラミン酸、ブチル化尿素などが
挙げられる。 その他の添加剤としてはりん酸、酒石酸、亜り
ん酸、油脂類、シリコーンオイル、界面活性剤
類、パラフインワツクスなどが挙げられる。 [作用] 本発明の変性エポキシ樹脂は、特に塗料用とし
て有用であり、任意の場所に使用できる。例えば
木工塗料(家具、楽器等)、自動車補修パテ、
FRP成型、注型成型を対象物としてあげられる
が、本発明の優れた特徴として防食性が非常に良
いので重防食用フレークコーテイング塗料、
FRP成型物のゲルコート塗装用に最適である。 又、塗料以外にも接着剤、成型物等として適宜
使用可能である。 [実施例] 以下実施例を挙げて本発明を具体的に説明す
る。尚、例中「%」とあるのはいずれも重量基準
である。 実施例 1 ペンタエリスリトールトリアリルエーテル1.0
モル、無水マレイン酸1.0モルを反応温度60〜70
℃で3時間反応を行つて部分エステル化物を得
た。これにビスフエノールAジグリシジルエーテ
ル(n=1のもの)1.0モル及びアクリル酸1.1モ
ル及び全系に対して0.3%量の2−ヒドロキシエ
チルパラトルイジンを一括仕込みして90℃で10時
間反応させた後、60℃に冷却、メタノールを対全
系2%加え、更に1時間反応させ、10mmHgで30
分間減圧処理を行い、スチレンで希釈して樹脂分
60%、酸価5.0mgKOH/g、粘度3700cps、全ポ
リマーに対するエポキシ樹脂分及びアクリル成分
の含有量が各54%、8%の変性エポキシ樹脂を
得、これにハイドロキノンを全系に対して0.03%
量加えて、塗料化し後記する方法で性能評価を行
つた。 結果を表に示す。 対照例 1,2 実施例1において用いた変性エポキシ樹脂の代
わりに無水マレイン酸2モルとビスフエノールA
ジグリシジルエーテル(n=0のもの)1モルの
反応物(対照例1)、アクリル酸2モルとビスフ
エノールAジグリシジルエーテル(n=0のも
の)1モルの反応物(対照例2)を用いてこれを
塗料化してその性能を評価した。 結果を表に記す。 性能評価は次の方法で行つた。 1 表面乾燥性 得られた樹脂分60%の塗料をスチレン溶液で更
に50%に希釈した後、オクテン酸コバルト(コバ
ルト含有量8%)を0.5%及びパーメツクN(日本
油脂製メチルエチルケトンパーオキサイド55%溶
液)を1%添加した。これを0.5mm、アプリケー
タでガラス板上に塗布し、指触乾燥性を確認後、
塗面上にカーボン紙を置き、これに5cm×5cm巾
に5Kgの荷重をかけ、カーボンの残り具合の程度
でタツクの有無を判定した。完全タツクフリーの
状態ではカーボンの転移は全く見られない。 2 鉛筆硬度 JIS K5401に基づき鉛筆の後を消しゴムで消し
てみて、キズがついていない時の硬度値で示し
た。 3 防食性 以下に記する条件で塗面の変化の状態及びテス
トピースの重量変化(%)を調べた。 耐純水性 :90℃の純水中72時間浸漬 耐酸性 :30%の塩酸中6ケ月(常温) 耐アルカリ性:50%水酸化ナトリウム水溶液中
6ケ月(常温) 【表】
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a modified epoxy resin that has various properties that are even better than conventional ones. [Prior Art] Air-curing so-called air-drying paints are widely used for painting furniture, interior materials, household goods, and the like. This paint has excellent properties in terms of curing speed, drying speed, abrasiveness, coating hardness, water resistance, etc., and as one of the most practical paints, the demand for it is increasing. [Problems to be solved by the invention] However, in recent years, as technological innovations and social demands have become more sophisticated, the above-mentioned properties of such paints have been further improved, and at the same time corrosion resistance has also been improved when used in humid and wet areas. The applied paint is required. [Means for Solving the Problems] However, in order to solve the above problems, the present inventors have
We have conducted extensive research into air-drying paints. the result,
Partial esterification product of unsaturated polybasic acid or its anhydride and pentaerythritol triallyl ether in the epoxy group in bifunctional bisphenol A type epoxy resin (hereinafter simply referred to as partial esterification product)
The modified epoxy resin that has been bonded with has superior corrosion resistance and coating hardness compared to conventional products.
Furthermore, when the epoxy group is reacted with acrylic acid or methacrylic acid (hereinafter abbreviated as (meth)acrylic acid), a (meth)acryloxy group is simultaneously present in the modified epoxy resin, in addition to improving the above properties. The present inventors have discovered that the gelation rate and air drying properties of coating films can be significantly improved, and have completed the present invention. The bifunctional bisphenol A type epoxy resin (hereinafter simply referred to as epoxy resin) in the present invention is a compound having the following structural formula, in which n is usually appropriately selected from the range of 0 to 3. In addition, the epoxy equivalent of the epoxy resin is 100 to 500,
Preferably, it is in the range of 180 to 300; if it is less than 100, the glass transition temperature will be too low and the drying speed and corrosion resistance will tend to decrease; if it is more than 500, allyl ether groups,
This is not preferable because the functional group equivalent of the (meth)acryloxy group becomes too low and the curing speed decreases. At least one carboxyl group remains in the partially esterified product used in the present invention, and this carboxyl group is reacted with the epoxy group in the epoxy resin. As the unsaturated polybasic acid, maleic acid, fumaric acid, itaconic acid, cistraconic acid, anhydrides thereof, etc. are used. At this time, saturated polybasic acids, such as phthalic acid, isophthalic acid, terephthalic acid, hettic acid, adipic acid, sebacic acid, succinic acid, azelaic acid, etc., may be used in combination without deteriorating the performance of the target modified epoxy resin. You can also do it. When the unsaturated polybasic acid and pentaerythritol triallyl ether are reacted, the reaction is usually carried out at a reaction temperature of 40 to 150°C and a reaction time. In the above-mentioned modified epoxy resin, the purpose can be sufficiently achieved if the epoxy resin component is present in an amount of 20 to 80% by weight based on the total polymer, but it is more preferably 40 to 80% by weight.
Corrosion resistance is significantly exhibited in the range of 70% by weight. Also, the allyl ether group is 5% of the total polymer.
~20% by weight. If the epoxy resin component is less than 20% by weight, there is a tendency for the coating film hardness and corrosion resistance to decrease, and if it is used in excess of 80% by weight, the viscosity becomes too high, which remains a practical problem. In addition to the above partially esterified product, when (meth)acrylic acid is further bonded to the epoxy group in the epoxy resin, the curing speed of the coating film is significantly improved compared to when the partially esterified product is used alone, that is, it has excellent air drying properties. A modified epoxy resin is obtained. (meta)
The carboxyl group in the molecule of acrylic acid also reacts with the epoxy group in the epoxy resin and bonds to it. In order to combine a partially esterified product and (meth)acrylic acid with an epoxy resin, a method is usually used in which a partially esterified product is first produced using the method described above and then reacted with the epoxy resin and (meth)acrylic acid. However, after first reacting an epoxy resin and an equimolar amount of a partially esterified product with the epoxy resin, the remaining epoxy groups in the epoxy resin are reacted with (meth)acrylic acid, or conversely, the epoxy resin and the partially esterified product are reacted with the remaining epoxy groups in the epoxy resin. It is also possible to carry out a method in which an equimolar amount of (meth)acrylic acid is first reacted, and then a partially esterified product is reacted. The reaction temperature is usually 60 to 120℃, and 2-
Hydroxy para-toluidine, 2-methylimidazole, trimethylbenzylammonium chloride, etc. are used. The (meth)acrylic acid component is desirably 5 to 50% by weight based on the total polymer. The molecular weight of the modified epoxy resin of the present invention is 500~
A range of 3000, more preferably 550 to 2500 is suitable. If the molecular weight is less than 500, the coating viscosity will be too low, resulting in a decrease in curing speed and anti-corrosion properties.If the molecular weight is more than 3000, the viscosity will be too high and the coating viscosity will not be achieved unless a large amount of styrene etc. is used. It should be avoided as it causes a decrease in hardening speed and corrosion protection. Furthermore, when the modified epoxy resin is used for paints, it is generally mixed with a polymerizable monomer. Polymerizable monomers include styrene, vinyltoluene, chlorostyrene, α-methylstyrene, divinylbenzene, (meth)acrylic acid ester, glycidyl (meth)acrylate, vinyl acetate, diallyl phthalate, triallyl cyanurate, and trimethylolpropane. triacrylate, trimethylolpropane trimethacrylate, tung oil, linseed oil,
Examples include soybean oil, cottonseed oil, safflower oil, and coconut oil. Further, additives such as pigments, fillers, curing agents, curing accelerators, diluents, thermoplastic resins, etc. may be added. Examples of pigments include titanium white, cyanine blue, cream yellow, watching red, red iron, carbon black, and aniline black. As a curing agent, methyl ethyl ketone peroxide, cyclohexanone peroxide, benzoyl peroxide, dicumyl peroxide,
Examples include tertiary butyl perbenzoate. Examples of the curing accelerator include cobalt octylate and manganese naphthenate. Examples of the diluent include ethyl acetate, toluene, xylene, methanol, ethanol, butanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, cellosolve, diacetone alcohol, and the like. Thermoplastic resins include cellulose acetate butyrate, nitrocellulose, vinyl chloride resin,
Examples include vinyl acetate resin, acrylic resin, copolymers thereof, butylated melamine acid, butylated urea, and the like. Other additives include phosphoric acid, tartaric acid, phosphorous acid, oils and fats, silicone oil, surfactants, paraffin wax, and the like. [Function] The modified epoxy resin of the present invention is particularly useful as a paint, and can be used in any location. For example, wood paint (furniture, musical instruments, etc.), automobile repair putty,
FRP molding and cast molding can be mentioned as target objects, but the excellent feature of the present invention is that it has very good anti-corrosion properties, so heavy-duty anti-corrosion flake coating paint,
Ideal for gel coat coating of FRP moldings. In addition to paints, it can also be used appropriately as adhesives, molded products, etc. [Example] The present invention will be specifically described below with reference to Examples. In addition, all "%" in the examples are based on weight. Example 1 Pentaerythritol triallyl ether 1.0
mol, maleic anhydride 1.0 mol reaction temperature 60~70
The reaction was carried out at ℃ for 3 hours to obtain a partially esterified product. To this, 1.0 mol of bisphenol A diglycidyl ether (n=1), 1.1 mol of acrylic acid, and 2-hydroxyethyl para-toluidine in an amount of 0.3% based on the total system were charged at once and reacted at 90°C for 10 hours. After that, it was cooled to 60℃, methanol was added at 2% to the total system, and the reaction was further continued for 1 hour.
Depressurize for a minute and dilute with styrene to remove the resin.
A modified epoxy resin with an acid value of 5.0 mgKOH/g, a viscosity of 3700 cps, and a content of epoxy resin and acrylic component of the total polymer of 54% and 8%, respectively, was obtained, and hydroquinone was added at 0.03% of the total system.
In addition, it was made into a paint and its performance was evaluated using the method described below. The results are shown in the table. Control Examples 1 and 2 2 moles of maleic anhydride and bisphenol A were used instead of the modified epoxy resin used in Example 1.
1 mole of diglycidyl ether (n = 0) reactant (Control Example 1), 2 moles of acrylic acid and 1 mole of bisphenol A diglycidyl ether (n = 0) reactant (Control Example 2). This was made into a paint and its performance was evaluated. Record the results in the table. Performance evaluation was performed using the following method. 1 Surface drying property After diluting the resulting paint with a resin content of 60% to 50% with a styrene solution, 0.5% cobalt octenoate (cobalt content 8%) and Permek N (methyl ethyl ketone peroxide 55% manufactured by NOF) were added. solution) was added at 1%. Apply 0.5mm of this onto a glass plate with an applicator and check that it is dry to the touch.
Carbon paper was placed on the painted surface, a load of 5 kg was applied to a 5 cm x 5 cm width, and the presence or absence of tack was determined based on the degree of carbon remaining. In a completely tack-free state, no carbon transfer is observed. 2. Pencil hardness Based on JIS K5401, the hardness of the pencil was erased with an eraser, and the hardness was shown when there were no scratches. 3 Corrosion resistance The state of change in the painted surface and the weight change (%) of the test piece were investigated under the conditions described below. Pure water resistance: 72 hours immersion in pure water at 90℃ Acid resistance: 6 months in 30% hydrochloric acid (at room temperature) Alkali resistance: 6 months in 50% sodium hydroxide aqueous solution (at room temperature) [Table]

Claims (1)

【特許請求の範囲】 1 2官能ビスフエノールA型エポキシ樹脂中の
エポキシ基に (a) 不飽和多塩基酸又はその無水物とペンタエリ
スリトールトリアリルエーテルとの部分エステ
ル化物及び (b) アクリル酸又はメタクリル酸を結合せしめる
ことを特徴とする変性エポキシ樹脂の製法。 2 不飽和多塩基酸又はその無水物が無水マレイ
ン酸である特許請求の範囲第1項記載の変性エポ
キシ樹脂の製法。
[Scope of Claims] 1. The epoxy group in the bifunctional bisphenol A type epoxy resin contains (a) a partially esterified product of an unsaturated polybasic acid or its anhydride and pentaerythritol triallyl ether, and (b) acrylic acid or A method for producing a modified epoxy resin characterized by binding methacrylic acid. 2. The method for producing a modified epoxy resin according to claim 1, wherein the unsaturated polybasic acid or its anhydride is maleic anhydride.
JP8600985A 1985-04-22 1985-04-22 Production of modified epoxy resin Granted JPS6151023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8600985A JPS6151023A (en) 1985-04-22 1985-04-22 Production of modified epoxy resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8600985A JPS6151023A (en) 1985-04-22 1985-04-22 Production of modified epoxy resin

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10259782A Division JPS58219232A (en) 1982-06-14 1982-06-14 Preparation of unsaturated polyester modified with epoxy resin

Publications (2)

Publication Number Publication Date
JPS6151023A JPS6151023A (en) 1986-03-13
JPH0317851B2 true JPH0317851B2 (en) 1991-03-11

Family

ID=13874687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8600985A Granted JPS6151023A (en) 1985-04-22 1985-04-22 Production of modified epoxy resin

Country Status (1)

Country Link
JP (1) JPS6151023A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219232A (en) * 1982-06-14 1983-12-20 Nippon Synthetic Chem Ind Co Ltd:The Preparation of unsaturated polyester modified with epoxy resin
JPS6086008A (en) * 1983-10-17 1985-05-15 Senichi Masuda Ozonizer with high performance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219232A (en) * 1982-06-14 1983-12-20 Nippon Synthetic Chem Ind Co Ltd:The Preparation of unsaturated polyester modified with epoxy resin
JPS6086008A (en) * 1983-10-17 1985-05-15 Senichi Masuda Ozonizer with high performance

Also Published As

Publication number Publication date
JPS6151023A (en) 1986-03-13

Similar Documents

Publication Publication Date Title
JPH032915B2 (en)
JPS62260869A (en) High solid coating composition
US4411955A (en) Reactive hardenable binder mixture, process for preparing hardened products and use of the mixture for the preparation of coatings
JPS60226566A (en) Surface paint composition
JP2001335683A (en) Unsaturated polyester resin composition and putty paint
JPH0317851B2 (en)
US5262482A (en) Polymer compositions useful as flow aids, and coating compositions containing the polymer compositions
JPH0317850B2 (en)
JPS6140248B2 (en)
KR100596514B1 (en) Automotive paint composition
JP2002167426A (en) Curable resin composition, clear coating material composition, and method for coating
US4329269A (en) One package system cold-setting type coating compositions
JPH0216938B2 (en)
JP3583445B2 (en) Resin composition for water-based paint and paint
JPS61101513A (en) Curing of unsaturated polyester
JPH0150329B2 (en)
KR100193392B1 (en) Manufacturing method of thermosetting resin for coatings and coating composition containing the same
JP2951369B2 (en) Putty composition
JPH02258861A (en) Hybrid amino resin composition
JPH03250079A (en) Resin composition for water-based coating material, and water-based coating material prepared therefrom
JPH0317861B2 (en)
JPH04170427A (en) Production of vinylated alkyd resin and coating composition containing same
JPH04339822A (en) Production of vinyl-modified alkyd resin and coating material
JP3102577B2 (en) Unsaturated polyester resin composition and coating composition using the same
JPS62101666A (en) Paint resin composition