JPH0317844B2 - - Google Patents

Info

Publication number
JPH0317844B2
JPH0317844B2 JP56184039A JP18403981A JPH0317844B2 JP H0317844 B2 JPH0317844 B2 JP H0317844B2 JP 56184039 A JP56184039 A JP 56184039A JP 18403981 A JP18403981 A JP 18403981A JP H0317844 B2 JPH0317844 B2 JP H0317844B2
Authority
JP
Japan
Prior art keywords
glycidyl
inert solvent
monomer
water
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56184039A
Other languages
Japanese (ja)
Other versions
JPS5884819A (en
Inventor
Shigeji Oohayashi
Morio Nakamura
Takushi Yamamoto
Masato Fujikake
Toshiichi Nakanishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP18403981A priority Critical patent/JPS5884819A/en
Publication of JPS5884819A publication Critical patent/JPS5884819A/en
Publication of JPH0317844B2 publication Critical patent/JPH0317844B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は各種水溶液の増粘剤として用いるに適
した新規な粉末状の架橋化されたカルボキシル基
含有共重合体の製造方法に関するものである。 従来、このような重合体を製造するには、アク
リル酸などのα・β−不飽和カルボン酸にエチレ
ン性不飽和基を2個以上有する単量体、例えば蔗
糖のポリアリルエーテル,ヘキサアリルトリメチ
レントルスルホン,メチレンビスアクリルアミ
ド,トリアリルシアヌレート(米国特許第
2923692号),テトラアリル珪素(米国特許第
2985631号),リン酸トリアリル(米国特許第
3426004号),テトラアリルオキシエタン(特公昭
56−443号)等を共重合する方法が知られている。
しかしこれらの重合体は性能的に充分満足すべき
ものとはいえなかつた。 本発明者らはこのような従来公知の架橋共重合
体に比べ、より優れた増粘性能を有する架橋型カ
ルボキシル基含有水溶性共重合体の新規製造法に
ついて鋭意研究を重ねた結果、アクリル酸のごと
きα・β−不飽和カルボン酸とグリシジル基を有
する重合性単量体とを共重合し、次いで生成重合
体中のカルボキシル基とグリシジル基を適当な温
度下で反応させることにより架橋せしめる方法を
見い出した。 かくして得られた架橋共重合体は、水に溶解し
適当な塩基でPH7付近に中和した後は、従来公知
の共重合体が使用されるよりも低い濃度で、極め
て高粘性を示し、屋外に放置しても安定性が良好
で、かつ降伏値の高い塑性流動特性を有するゲル
状の生成物となる。 本発明によつて得られる架橋水溶性共重合体は
石膏,セメント等の固体懸濁安定剤として、水溶
性塗料,エマルジヨン塗料の増粘剤として、繊維
工業における捺染等の糊剤としてその他の分野に
おける増粘剤,ゲル化剤,分散剤および接着剤と
して有用である。 本発明に使用されるグリシジル基を有する重合
性単量体はエポキシ基とエチレン性不飽和基をそ
れぞれ1つ以上含有する単量体で、この反応系に
不活性な有機溶媒に溶解するものであれば、すべ
て使用することができる。具体的にはグリシジル
アクリレート,グリシジルメタクリレート,グリ
シジルクロトネート,グリシジルオレート等のグ
リシジルエステル類やビニルグリシジルエーテ
ル,イソプロペニルグリシジルエーテル,アリル
グリシジルエーテル,ブテニルグリシジルエーテ
ル等のグリシジルエーテル類などである。 特にグリシジルアクリレートおよびグリシジル
メタクリレートを使用した場合に好結果が得ら
れ、かつ経済的である。 製造される架橋水溶性共重合体について所望の
粘稠化特性を得るには、架橋剤の種類、その他の
条件により異なるのは勿論であるが、これらグリ
シジル基を有する重合性単量体の量は、混合単量
体に対して0.05〜10重量%の範囲、好ましくは
0.1〜3重量%の範囲である。諸条件により最適
添加量が決められ、過剰に添加すると三次元化が
いつそう進み不溶性のゲルが生成することがあ
る。また使用量が過少である場合はその効果がな
く、何ら架橋剤を加えない場合に似た液性を示す
ようになる。 本発明で用いるα・β−不飽和カルボン酸とし
ては、アクリル酸,メタクリル酸,クロトン酸,
マレイン酸,イタコン酸,フマル酸,ソルビン酸
および他のオレフイン系不飽和カルボン酸なる群
から選ばれた1種または2種以上の混合物であ
る。 これらの中でアクリル酸は安価で入手容易であ
り、また優れた性能を有する重合体が得られるの
で特に好ましい。 共重合反応はα・β−不飽和カルボン酸,グリ
シジル基を有する重合性単量体を溶解するが、生
成重合体を実質的に溶解しない溶媒中で公知の有
機ラジカル触媒を用い、20℃〜120℃、好ましく
は30℃〜90℃の範囲で行なうのがよい。 本発明で使用可能な溶媒としては、共重合反応
そのものに対して不活性である有機溶剤、たとえ
ばヘキサン,ヘプタン,オクタン,シクロヘキサ
ン,ベンゼン,トルエン,キシレン,クロロベン
ゼン,エチレンジクロライド,メチルイソブチル
ケトン等およびこれらの溶媒とそれ以外の他の溶
媒との混合物であつても、単量体を溶解し、実質
的に共重合体を溶解しないものであればすべて使
用可能である。たとえば、ベンゼン−ジオキサン
混合物,クロロベンゼン−メタノール混合物のご
ときものも有利に使用できる。しかし工業的には
ベンゼン,クロロベンゼン,エチレンジクロライ
ド等からなる群より選ばれた1種またはそれらの
混合物を使用するとき、いつそう好結果がもたら
される。 前記の公知の有機ラジカルル触媒とは、α・
α′−アゾビスイソブチロニトリル(以下AIBNと
称する),過酸化ベンゾイル,2.2′−アゾビス2.4
−ジメチルバレロニトリル,クメンハイドロパー
オキシド,第三級ブチルハイドロパーオキシド等
である。これら有機ラジカル触媒の使用量はその
種類や使用温度によつて差があるが、通常共重合
原料の合計量に対して0.1〜10重量%の範囲、好
ましくは0.3〜3重量%の範囲が適当である。触
媒を過剰に使用すると重合反応が極めて速く進行
し、除熱が困難となり所望の温度を維持すること
が不可能となる。 本発明では通常、α・β−不飽和カルボン酸単
量体とグリシジル基を有する重合性単量体とを共
重合させるが、必要に応じて前記2種の単量体と
共重合し得る重合性単量体を使用することも可能
である。重合性単量体としてアクリル酸メチル、
アクリル酸エチル等のアクリル酸アルキル類を用
いると好結果が得られる場合がある。 本発明における共重合体は通常、次のような処
方で製造される。撹拌器,温度計,窒素の吹込管
および冷却管を備えた反応器に、前記の原料単量
体,共重合触媒,有機溶媒を仕込む。この際共重
合原料の仕込濃度は諸条件により差異が生じるも
のの20重量%以下の範囲、好ましくは5〜15重量
%の範囲が適当である。該濃度が非常に高くなる
と重合反応が進行するにつれて、重合体の析出が
著しくなり系内の除熱が難しくなるとともに反応
物を均一に撹拌することが不可能となる。次いで
反応溶器上部空間ならびに仕込原料中に溶解して
いる酸素を除去するため、溶媒中に窒素ガスを吹
き込む。重合反応は水浴等で20℃〜120℃の所定
の温度に加熱することにより開始され、反応系内
は初期の透明な均一溶液から、次第に白色スラリ
ー状に変化する。なお、上述の方法とは別に、架
橋剤であるグリシジル基を有する重合性単量体を
重合の進行とともに連続的に重合系に添加するこ
ともできる。重合反応終了後、沈澱物を過し、
適当な溶剤で十分洗浄し、50℃〜160℃の温度で
乾燥する。かくして架橋水溶性共重合体は、かさ
比重の小さい白色微粉末状として得られる。 なお、乾燥工程中に重合体の架橋反応が同時に
進行するため、前記に示すように適当な温度範囲
が定められる。減圧下における低温乾燥では架橋
反応が進行せず、低粘度品となり、高温では重合
体が分解反応を起す危険がある。 また、乾燥の際に水や原料であるα・β−不飽
和カルボン酸が多く存在した場合、生成重合体は
塊状化したり、水に不溶なものになつたりするこ
とがある。よつて過工程において未反応の単量
体を完全に除去しておく必要がある。 前記の処法で得られた架橋重合体を多量の水に
溶解し、重合体中のカルボキシル基を適当な塩基
でPH7付近に中和することにより、水溶液は最高
粘度を示す。該架橋水溶性共重合体は所望の粘度
を得るのに、水中1%以下の濃度で十分満足でき
るものであり、この著しい増粘効果が大きな特徴
である。中和剤としては既知の塩基であれば何で
も使用でき、水酸化ナトリウム,水酸化カリウ
ム,炭酸ナトリウム,炭酸カリウム,水酸化アン
モニウム等の無機塩基の他にトリエタノールアミ
ン,トリエチルアミン等の有機塩基も使用可能で
ある。 以下、実施例を挙げて本発明をさらに具体的に
説明するが本発明がこれら実施例に限定されるも
のではない。 実施例 1 次の処方に従つて三次元化されたアクリル酸重
合体を製造した。 アクリル酸 30部 グリシジルメタクリレート 0.2部 ベンゼン 270部 AIBN 0.3部 反応は窒素雰囲気下で60℃で3時間行なつた。
共重合体生成物は白色のスラリー状態として得ら
れ、冷却後、過し、さらに該重合反応に使用し
た溶剤であるベンゼンで十分に洗浄した。次いで
該ケーキを約110℃で乾燥し、白色微細粉末状の
水溶性共重合体を得た。該粉末を多量の純水(イ
オン交換水)に分散させ、水酸化ナトリウム水溶
液を用いてPH7にまで中和し、0.3重量%の濃度
の粘稠溶液を調整した。該溶液をB型回転粘度計
により、25℃において回転数6rpmで測定したと
ころ、粘度は55000センチポイズであつた。 実施例 2 実施例1に示した方法に従い、溶媒としてベン
ゼンの代りに下記の溶媒を用いたこと以外は全く
同一処方で白色水溶性重合体を得た。ただし、生
成共重合体の洗浄にはそれぞれの反応に使用した
溶剤を用いた。これらの粉末を多量の純水(イオ
ン交換水)に分散させ、水酸化ナトリウム水溶液
を用いてPH7にまで中和し、0.3重量%の濃度の
粘稠溶液を調整した。該溶液をB型回転粘度計に
より、25℃において回転数6rpmで粘度測定した
ところ、表1に示す結果を得た。
The present invention relates to a method for producing a novel powdery crosslinked carboxyl group-containing copolymer suitable for use as a thickener for various aqueous solutions. Conventionally, in order to produce such a polymer, a monomer having two or more ethylenically unsaturated groups in an α/β-unsaturated carboxylic acid such as acrylic acid, such as polyallyl ether of sucrose, hexaallyltri Methylene torsulfone, methylene bisacrylamide, triallyl cyanurate (U.S. Patent No.
2923692), tetraallyl silicon (U.S. Patent No.
No. 2985631), triallyl phosphate (U.S. Patent No.
3426004), tetraallyloxyethane (Tokuko Sho
56-443) etc. is known.
However, these polymers could not be said to be fully satisfactory in terms of performance. The present inventors have conducted intensive research on a new method for producing a crosslinked carboxyl group-containing water-soluble copolymer that has better thickening performance than conventionally known crosslinked copolymers. A method of crosslinking by copolymerizing an α/β-unsaturated carboxylic acid such as the following with a polymerizable monomer having a glycidyl group, and then reacting the carboxyl group and glycidyl group in the resulting polymer at an appropriate temperature. I found out. The thus obtained cross-linked copolymer, after being dissolved in water and neutralized to pH around 7 with an appropriate base, exhibits extremely high viscosity at a lower concentration than conventionally known copolymers, and can be used outdoors. It becomes a gel-like product that has good stability even when left for a long time and has plastic flow characteristics with a high yield value. The crosslinked water-soluble copolymer obtained by the present invention can be used as a solid suspension stabilizer for plaster, cement, etc., as a thickener for water-soluble paints and emulsion paints, as a sizing agent for printing in the textile industry, and in other fields. Useful as thickeners, gelling agents, dispersants, and adhesives in The polymerizable monomer having a glycidyl group used in the present invention is a monomer containing one or more epoxy groups and one or more ethylenically unsaturated groups, and is soluble in an organic solvent inert to this reaction system. If you have them, you can use them all. Specifically, they include glycidyl esters such as glycidyl acrylate, glycidyl methacrylate, glycidyl crotonate, and glycidyl oleate, and glycidyl ethers such as vinyl glycidyl ether, isopropenyl glycidyl ether, allyl glycidyl ether, and butenyl glycidyl ether. Particularly good results are obtained when using glycidyl acrylate and glycidyl methacrylate, which is economical. In order to obtain the desired thickening properties of the crosslinked water-soluble copolymer to be produced, the amount of these polymerizable monomers having glycidyl groups is determined, although it will of course vary depending on the type of crosslinking agent and other conditions. is in the range of 0.05 to 10% by weight based on the mixed monomer, preferably
It ranges from 0.1 to 3% by weight. The optimum amount to be added is determined depending on various conditions, and if it is added in excess, three-dimensionalization may progress too much and an insoluble gel may be produced. Furthermore, if the amount used is too small, there will be no effect and the liquid will exhibit properties similar to those without any crosslinking agent. The α/β-unsaturated carboxylic acids used in the present invention include acrylic acid, methacrylic acid, crotonic acid,
It is one type or a mixture of two or more types selected from the group consisting of maleic acid, itaconic acid, fumaric acid, sorbic acid, and other olefinic unsaturated carboxylic acids. Among these, acrylic acid is particularly preferred because it is inexpensive, easily available, and provides a polymer with excellent performance. The copolymerization reaction is carried out using a known organic radical catalyst in a solvent that dissolves the polymerizable monomer having α/β-unsaturated carboxylic acid and glycidyl groups, but does not substantially dissolve the resulting polymer, and is carried out at 20°C to The temperature is preferably 120°C, preferably 30°C to 90°C. Examples of solvents that can be used in the present invention include organic solvents that are inert to the copolymerization reaction itself, such as hexane, heptane, octane, cyclohexane, benzene, toluene, xylene, chlorobenzene, ethylene dichloride, methyl isobutyl ketone, etc. Any mixture of the above solvent and other solvents can be used as long as it dissolves the monomer and does not substantially dissolve the copolymer. For example, benzene-dioxane mixtures and chlorobenzene-methanol mixtures can also be used advantageously. However, industrially, good results are always obtained when one selected from the group consisting of benzene, chlorobenzene, ethylene dichloride, etc. or a mixture thereof is used. The above-mentioned known organic radical catalysts are α・
α′-azobisisobutyronitrile (hereinafter referred to as AIBN), benzoyl peroxide, 2.2′-azobis2.4
-dimethylvaleronitrile, cumene hydroperoxide, tertiary butyl hydroperoxide, etc. The amount of these organic radical catalysts used varies depending on their type and temperature, but is usually in the range of 0.1 to 10% by weight, preferably in the range of 0.3 to 3% by weight based on the total amount of copolymerization raw materials. It is. If too much catalyst is used, the polymerization reaction will proceed extremely quickly, making it difficult to remove heat and making it impossible to maintain the desired temperature. In the present invention, an α/β-unsaturated carboxylic acid monomer and a polymerizable monomer having a glycidyl group are usually copolymerized, but if necessary, polymerization that can be copolymerized with the above two types of monomers is carried out. It is also possible to use sexual monomers. Methyl acrylate as a polymerizable monomer,
Good results may be obtained using alkyl acrylates such as ethyl acrylate. The copolymer in the present invention is usually produced according to the following formulation. The raw material monomer, copolymerization catalyst, and organic solvent are charged into a reactor equipped with a stirrer, a thermometer, a nitrogen blowing tube, and a cooling tube. At this time, although the concentration of the copolymerization raw material varies depending on various conditions, it is suitably in the range of 20% by weight or less, preferably in the range of 5 to 15% by weight. If the concentration becomes very high, as the polymerization reaction progresses, precipitation of the polymer will become significant, making it difficult to remove heat from the system and making it impossible to uniformly stir the reactants. Next, nitrogen gas is blown into the solvent in order to remove oxygen dissolved in the upper space of the reaction vessel and in the raw materials. The polymerization reaction is initiated by heating to a predetermined temperature of 20° C. to 120° C. in a water bath or the like, and the inside of the reaction system gradually changes from an initial transparent homogeneous solution to a white slurry. In addition, apart from the above-mentioned method, a polymerizable monomer having a glycidyl group as a crosslinking agent can also be continuously added to the polymerization system as the polymerization progresses. After the polymerization reaction is completed, the precipitate is filtered,
Thoroughly wash with a suitable solvent and dry at a temperature of 50°C to 160°C. In this way, the crosslinked water-soluble copolymer is obtained in the form of a fine white powder with a low bulk specific gravity. In addition, since the crosslinking reaction of the polymer proceeds simultaneously during the drying process, an appropriate temperature range is determined as described above. Low-temperature drying under reduced pressure does not allow the crosslinking reaction to proceed, resulting in a product with low viscosity, while at high temperatures there is a risk that the polymer may undergo a decomposition reaction. Furthermore, if a large amount of water or α/β-unsaturated carboxylic acid as a raw material is present during drying, the resulting polymer may form lumps or become insoluble in water. Therefore, it is necessary to completely remove unreacted monomers in the step. By dissolving the crosslinked polymer obtained by the above treatment method in a large amount of water and neutralizing the carboxyl groups in the polymer to a pH of around 7 with an appropriate base, the aqueous solution exhibits the highest viscosity. The crosslinked water-soluble copolymer can be used at a concentration of 1% or less in water to obtain the desired viscosity, and its remarkable thickening effect is a major feature. Any known base can be used as a neutralizing agent; in addition to inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, and ammonium hydroxide, organic bases such as triethanolamine and triethylamine are also used. It is possible. EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples. Example 1 A three-dimensional acrylic acid polymer was produced according to the following recipe. Acrylic acid 30 parts Glycidyl methacrylate 0.2 parts Benzene 270 parts AIBN 0.3 parts The reaction was carried out at 60° C. for 3 hours under a nitrogen atmosphere.
The copolymer product was obtained as a white slurry, which was cooled, filtered, and thoroughly washed with benzene, the solvent used in the polymerization reaction. The cake was then dried at about 110°C to obtain a water-soluble copolymer in the form of a fine white powder. The powder was dispersed in a large amount of pure water (ion-exchanged water) and neutralized to pH 7 using an aqueous sodium hydroxide solution to prepare a viscous solution with a concentration of 0.3% by weight. When the solution was measured using a B-type rotational viscometer at 25° C. and a rotational speed of 6 rpm, the viscosity was 55,000 centipoise. Example 2 A white water-soluble polymer was obtained according to the method shown in Example 1 with the exact same recipe except that the following solvent was used instead of benzene. However, the solvent used in each reaction was used to wash the produced copolymer. These powders were dispersed in a large amount of pure water (ion-exchanged water) and neutralized to pH 7 using an aqueous sodium hydroxide solution to prepare a viscous solution with a concentration of 0.3% by weight. The viscosity of the solution was measured using a B-type rotational viscometer at 25°C and a rotational speed of 6 rpm, and the results shown in Table 1 were obtained.

【表】 実施例 3 実施例1に示した方法に従い、下記の処方で三
次元化されたアクリル酸共重合体を製造した。 アクリル酸 30部 重合性グリシジル化合物 表2に示す エチレンジクロライド 270部 AIBN 0.3部 反応は窒素雰囲気下で60℃で3時間行なつた。
冷却後、過し、さらに該重合反応に使用した溶
剤であるエチレンジクロライドで十分に洗浄し
た。次いで該ケーキを約110℃で乾燥し、白色微
細粉末状の水溶性共重合体を得た。該粉末を多量
の純水(イオン交換水)に分散させ、水酸化ナト
リウム水溶液を用いてPH7にまで中和し、0.3重
量%の濃度の粘稠溶液を調整した。該溶液をB型
回転粘度計により、25℃において回転数6rpmで
粘度測定したところ、表2に示す結果を得た。
[Table] Example 3 According to the method shown in Example 1, a three-dimensional acrylic acid copolymer was produced using the following recipe. Acrylic acid 30 parts Polymerizable glycidyl compound Ethylene dichloride shown in Table 2 270 parts AIBN 0.3 parts The reaction was carried out at 60° C. for 3 hours under a nitrogen atmosphere.
After cooling, it was filtered and further washed thoroughly with ethylene dichloride, which was the solvent used in the polymerization reaction. The cake was then dried at about 110°C to obtain a water-soluble copolymer in the form of a fine white powder. The powder was dispersed in a large amount of pure water (ion-exchanged water) and neutralized to pH 7 using an aqueous sodium hydroxide solution to prepare a viscous solution with a concentration of 0.3% by weight. The viscosity of the solution was measured using a B-type rotational viscometer at 25°C and a rotational speed of 6 rpm, and the results shown in Table 2 were obtained.

【表】 実施例 4 実施例1に示す方法に従い、重合触媒の種類と
添加量および重合温度を表3に示すように変更し
た以外は全く同一処方で白色水溶性共重合体を
得、表3に示す結果を得た。
[Table] Example 4 A white water-soluble copolymer was obtained according to the method shown in Example 1 with the same recipe except that the type and amount of polymerization catalyst added and the polymerization temperature were changed as shown in Table 3. The results shown are obtained.

【表】 実施例 5 アクリル酸30部,エチレンジクロライド340部,
AIBN0.3部を反応溶器に仕込み、窒素雰囲気下
で60℃で重合させた。重合開始後、あらかじめ窒
素置換したグリシジルメタクリレート0.4部,エ
チレンジクロライド100部からなる混合溶液を約
1時間かけて滴下した。その後3時間重合を継続
させた。以後実施例3と同様に処理して粘度
70500センチポイズの白色微細状の水溶性共重合
体を得た。 比較例 1 グリシジルメタクリレートをリン酸トリアリル
またはテトラアリルオキシエタンに変えた以外は
実施例1と同様な処方で白色微細状の水溶性共重
合体を得た。生成共重合体の粘度はそれぞれ
45000,53000センチポイズであつた。これらの粘
稠液と実施例1で得た粘稠液を屋外に1週間放置
したところ、架橋剤にリン酸トリアリルを用いた
ものは1000センチポイズ,テトラアリルオキシエ
タンを用いたものは1800センチポイズに低下した
のに対し、実施例1で得たものは、15000センチ
ポイズであつた。
[Table] Example 5 30 parts of acrylic acid, 340 parts of ethylene dichloride,
0.3 parts of AIBN was charged into a reaction vessel and polymerized at 60°C under a nitrogen atmosphere. After the polymerization was started, a mixed solution consisting of 0.4 parts of glycidyl methacrylate and 100 parts of ethylene dichloride, which had been previously purged with nitrogen, was added dropwise over about 1 hour. Thereafter, polymerization was continued for 3 hours. Thereafter, the process was carried out in the same manner as in Example 3 to determine the viscosity.
A white, fine, water-soluble copolymer of 70,500 centipoise was obtained. Comparative Example 1 A fine white water-soluble copolymer was obtained using the same recipe as in Example 1 except that glycidyl methacrylate was changed to triallyl phosphate or tetraallyloxyethane. The viscosity of each copolymer produced is
It was 45,000, 53,000 centipoise. When these viscous liquids and the viscous liquid obtained in Example 1 were left outdoors for one week, the crosslinking agent using triallyl phosphate was 1000 centipoise, and the one using tetraallyloxyethane was 1800 centipoise. In contrast, that obtained in Example 1 was 15,000 centipoise.

Claims (1)

【特許請求の範囲】 1 α・β−不飽和カルボン酸単量体99.95〜90
重量%と、グリシジル基を有する重合性単量体
0.05〜10重量%とを、単量体は溶解するが、得ら
れる共重合体は溶解しない不活性溶媒中でラジカ
ル重合触媒の存在下に共重合させ、ついで生成重
合体を熱処理することを特徴とする増粘剤用架橋
型カルボキシル基含有水溶性共重合体の製造方
法。 2 α・β−不飽和カルボン酸単量体がアクリル
酸である特許請求の範囲第1項記載の方法。 3 グリシジル基を有する重合性単量体グリシジ
ルメタクリレートである特許請求の範囲第1項記
載の方法。 4 ラジカル重合触媒がα・α′−アゾビスイソブ
チロニトリルである特許請求の範囲第1項記載の
方法。 5 不活性溶媒がベンゼンである特許請求の範囲
第1項記載の方法。 6 不活性溶媒がクロロベンゼンである特許請求
の範囲第1項記載の方法。 7 不活性溶媒がエチレンジクロライドである特
許請求の範囲第1項記載の方法。 8 不活性溶媒がベンゼン、クロロベンゼン、お
よびエチレンジクロライドからなる群より選ばれ
た2種以上の混合物である特許請求の範囲第1項
記載の方法。 9 熱処理を50〜160℃の温度で行う特許請求の
範囲第1項記載の方法。
[Claims] 1 α/β-unsaturated carboxylic acid monomer 99.95-90
Weight% and polymerizable monomer with glycidyl group
0.05 to 10% by weight is copolymerized in the presence of a radical polymerization catalyst in an inert solvent that dissolves the monomer but does not dissolve the resulting copolymer, and then heat-treats the resulting polymer. A method for producing a crosslinked carboxyl group-containing water-soluble copolymer for use as a thickener. 2. The method according to claim 1, wherein the α/β-unsaturated carboxylic acid monomer is acrylic acid. 3. The method according to claim 1, wherein the polymerizable monomer glycidyl methacrylate has a glycidyl group. 4. The method according to claim 1, wherein the radical polymerization catalyst is α·α'-azobisisobutyronitrile. 5. The method according to claim 1, wherein the inert solvent is benzene. 6. The method according to claim 1, wherein the inert solvent is chlorobenzene. 7. The method according to claim 1, wherein the inert solvent is ethylene dichloride. 8. The method according to claim 1, wherein the inert solvent is a mixture of two or more selected from the group consisting of benzene, chlorobenzene, and ethylene dichloride. 9. The method according to claim 1, wherein the heat treatment is performed at a temperature of 50 to 160°C.
JP18403981A 1981-11-16 1981-11-16 Preparation of crosslinked copolymer containing carboxyl group Granted JPS5884819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18403981A JPS5884819A (en) 1981-11-16 1981-11-16 Preparation of crosslinked copolymer containing carboxyl group

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18403981A JPS5884819A (en) 1981-11-16 1981-11-16 Preparation of crosslinked copolymer containing carboxyl group

Publications (2)

Publication Number Publication Date
JPS5884819A JPS5884819A (en) 1983-05-21
JPH0317844B2 true JPH0317844B2 (en) 1991-03-11

Family

ID=16146283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18403981A Granted JPS5884819A (en) 1981-11-16 1981-11-16 Preparation of crosslinked copolymer containing carboxyl group

Country Status (1)

Country Link
JP (1) JPS5884819A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699539B2 (en) * 1984-11-26 1994-12-07 三菱レイヨン株式会社 Thermosetting preform
GB8910788D0 (en) * 1989-05-10 1989-06-28 Allied Colloids Ltd Absorbent products and their manufacture
US5280079A (en) * 1986-11-20 1994-01-18 Allied Colloids Limited Absorbent products and their manufacture
EP0268498B1 (en) * 1986-11-20 1992-10-21 Ciba Specialty Chemicals Water Treatments Limited Absorbent products and their manufacture
JP3321209B2 (en) * 1992-10-01 2002-09-03 住友精化株式会社 Method for producing cross-linked carboxyl group-containing polymer
JP3732557B2 (en) * 1995-07-12 2006-01-05 住友精化株式会社 Carboxyl group-containing polymer composition
US6565981B1 (en) 1999-03-30 2003-05-20 Stockhausen Gmbh & Co. Kg Polymers that are cross-linkable to form superabsorbent polymers
JP2000355614A (en) 1999-06-15 2000-12-26 Sumitomo Seika Chem Co Ltd Carboxylated polymer composition
JP4883844B2 (en) 2001-04-05 2012-02-22 住友精化株式会社 Carboxyl group-containing polymer particles
JP3940009B2 (en) 2002-03-18 2007-07-04 住友精化株式会社 Method for producing carboxyl group-containing water-soluble polymer
JP4759236B2 (en) 2004-07-28 2011-08-31 住友精化株式会社 Method for producing carboxyl group-containing water-soluble polymer
KR101409564B1 (en) 2006-05-12 2014-06-19 스미또모 세이까 가부시키가이샤 Process for producing granular carboxylated-polymer particle and granular carboxylated-polymer particle
KR100844181B1 (en) 2007-02-15 2008-07-04 애경정밀화학 주식회사 Composition for manufacturing a carboxylic group containing polymer and a polymer prepared thereof
US8304517B2 (en) 2007-06-19 2012-11-06 Sumitomo Seika Chemicals Co., Ltd. Method for producing granulated carboxyl group-containing polymer particle and granulated carboxyl group-containing polymer particle
US9896528B2 (en) 2014-10-10 2018-02-20 Sumitomo Seika Chemicals Co., Ltd. Carboxyl-group-containing polymer composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030932A (en) * 1973-07-19 1975-03-27
JPS50149726A (en) * 1974-05-23 1975-12-01

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030932A (en) * 1973-07-19 1975-03-27
JPS50149726A (en) * 1974-05-23 1975-12-01

Also Published As

Publication number Publication date
JPS5884819A (en) 1983-05-21

Similar Documents

Publication Publication Date Title
JPH0317844B2 (en)
US4748220A (en) Preparation of finely divided pulverulent crosslinked copolymers
US3620988A (en) Method of preparing bead-type polymers
EP0279892A2 (en) Polycarboxylic acids with small amount of residual monomer
US2842474A (en) Process for preparing a copolymer of 3-methylene-1-cyclobutene and another ethylenically unsaturated monomer and the copolymer
JPS5838445B2 (en) Acrylate Bunsan Eki no Seihou
US2647886A (en) Water-soluble heteropolymers from styrene, maleic anhydride and a cross-linking reactant
US3099636A (en) Polymeric acid salts of alkylaminoethyl methacrylate
US2326078A (en) Process of polymerizing methacrylic acid
US3032538A (en) Cross-linked carboxylic polymers
KR100298515B1 (en) Manufacturing method of crosslinked polymer containing carboxyl group
KR100447838B1 (en) Carboxylated polymer composition
JPS5867706A (en) Manufacture of copolymer from monoethylenically unsaturated mono- and dicarboxylic acid
EP0343490A2 (en) Process for producing crosslinked carboxyl group containing polymer
AU643797B2 (en) Precipitation polymerization of copolymers of a vinyl lactam and a polymerizable carboxylic acid using sub-surface feeding
JPS6213964B2 (en)
CA2379418A1 (en) Method for producing aqueous resin dispersion composition
JPH06228249A (en) Graft copolymer with improved phase bonding
JPS63258913A (en) Hardening water-based resin dispersion
JPS5813609A (en) Preparation of crosslinked ampholytic polymer
US3532675A (en) Polymerization process
SU430138A1 (en) METHOD OF OBTAINING POWDER PAINTS
SU1141102A1 (en) Method of obtaining graft copolymer
JPS6051489B2 (en) Manufacturing method of polyvinyl alcohol hydrogel
JPS58198511A (en) Production of new copolymer