JPH0317826B2 - - Google Patents

Info

Publication number
JPH0317826B2
JPH0317826B2 JP21007586A JP21007586A JPH0317826B2 JP H0317826 B2 JPH0317826 B2 JP H0317826B2 JP 21007586 A JP21007586 A JP 21007586A JP 21007586 A JP21007586 A JP 21007586A JP H0317826 B2 JPH0317826 B2 JP H0317826B2
Authority
JP
Japan
Prior art keywords
dihydroxybenzene
disulfonate
sodium
alkali
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21007586A
Other languages
Japanese (ja)
Other versions
JPS6366158A (en
Inventor
Nobuyoshi Nanbu
Kazuhiko Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIRESUTO GIKEN KK
Original Assignee
KIRESUTO GIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIRESUTO GIKEN KK filed Critical KIRESUTO GIKEN KK
Priority to JP21007586A priority Critical patent/JPS6366158A/en
Publication of JPS6366158A publication Critical patent/JPS6366158A/en
Publication of JPH0317826B2 publication Critical patent/JPH0317826B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は粗製1,2−ジヒドロキシベンゼン−
3,5−ジスルホン酸アルカリの水溶液から、再
結晶操作を繰り返し行なうことなく高収率で高純
度の精製1,2−ジヒドロキシベンゼン−3,5
−ジスルホン酸アルカリを得る方法に関するもの
である。 [従来の技術] 1,2−ジヒドロキシベンゼン−3,5−ジス
ルホン酸アルカリ、就中ナトリウム塩は1944年J.
Yoeによつて、また1951年にはG.
Schwarzenbachによつて、チタンおよび鉄の比
色定量試薬として紹介された。この1,2−ジヒ
ドロキシベンゼン−3,5−ジスルホン酸ナトリ
ウムを製造するに当たつては、通常1,2−ジヒ
ドロキシベンゼン(ピロカテコール)に濃硫酸お
よび発煙硫酸を作用させて、1,2−ジヒドロキ
シベンゼン−3,5−ジスルホン酸とし、この反
応液に硫酸ナトリウムまたは塩化ナトリウムを加
えて1,2−ジヒドロキシベンゼン−3,5−ジ
スルホン酸ナトリウムとした後、付着硫酸または
塩酸を分離し、更に水に溶解させて例えば水酸化
ナトリウムでPH4.0〜4.2に中和した後濃縮を行な
つて目的物質の結晶を得ている。カリウム塩の場
合もこれに準じて得られる。 [発明が解決しようとする問題点] ところが得られた結晶は本来白色であるべきも
のが濃赤色または濃青色に着色している。これは
原料物質中に混在している鉄イオンが系内に混入
するためであり、この鉄イオンは1,2−ジヒド
ロキシベンゼン−3,5−ジスルホン酸アルカリ
と鋭敏に反応(鉄の比色定量試薬として用いるく
らいである)して有色化合物を作り、これが1,
2−ジヒドロキシベンゼン−3,5−ジスルホン
酸アルカリを着色するのである。 従つてそのままでは商品価値が低いので再度水
に溶解させ再結晶操作を繰り返し行なつて白色結
晶を得ているのが現状である。尚再結晶操作後の
回収母液には1,2−ジヒドロキシベンゼン−
3,5−ジスルホン酸アルカリが含まれているの
で、次回再結晶液の一部として使用しているが鉄
イオンが多くなつてくるため連続2〜3回しか使
用できず、目的物質の収率は60〜65%と低いもの
であつた。 そこで本発明においては粗製1,2−ジヒドロ
キシベンゼン−3,5−ジスルホン酸アルカリか
ら再結晶操作を繰り返し行なうことなく高収率で
高純度の精製1,2−ジヒドロキシベンゼン−
3,5−ジスルホン酸アルカリを得ることのでき
る優れた精製方法の提供を目的としている。 [問題点を解決するための手段] 上記問題点を解決することのできた本発明と
は、粗製1,2−ジヒドロキシベンゼン−3,5
−ジスルホン酸アルカリの水溶液から1,2−ジ
ヒドロキシベンゼン−3,5−ジスルホン酸アル
カリを結晶化させるに当たり、該水溶液にポリア
ミノカルボン酸を添加し、加熱濃縮後冷却して
1,2−ジヒドロキシベンゼン−3,5−ジスル
ホン酸アルカリの結晶を析出させることを構成要
旨とするものである。 [作用] 本発明方法は前述のように精製1,2−ジヒド
ロキシベンゼン−3,5−ジスルホン酸アルカリ
(以下ナトリウムを代表例として説明する)の水
溶液から、再結晶操作を繰り返すことなく高純度
の1,2−ジヒドロキシベンゼン−3,5−ジス
ルホン酸ナトリウムを高収率で得ることができる
ものであり、粗製1,2−ジヒドロキシベンゼン
−3,5−ジスルホン酸ナトリウムを水に溶解
し、例えば水酸化ナトリウムでPH4.0〜4.2に調整
した後、ポリアミノカルボン酸を添加する。そし
てさらに加熱濃縮した後冷却して白色結晶を得
る。結晶採取後の母液は次回の精製に繰り返し使
用するが、鉄イオンはキレート化合物として捕捉
されているので、目的物質を再び汚染する恐れが
少なく、数回に亘つて繰り返し使用できる。この
ようにして得られた1,2−ジヒドロキシベンゼ
ン−3,5−ジスルホン酸ナトリウムは高純度の
白色結晶であり、この時の収率は85〜92%と高い
ものとなる。 また水酸化ナトリウム等でPH4.0〜4.2に調整す
るのは濃縮効率を考慮した為であり、PH4.0未満
ではナトリウム塩から遊離の酸に戻る恐れが強
く、一方PH4.2を超えると濃縮倍率を上げる必要
があり、目的物質の純度が低下する。 さらにまたポリアミノカルボン酸としては、一
般にキレート化剤として使用されているものを使
用することができ、それらの種類については一切
制限されないが、代表的には下記のものが例示さ
れる。 NTA(ニトリロ三酢酸) EDTA(エチレンジアミン四酢酸) DTPA(ジエチレントリアミン五酢酸) TTHA(トリエチレンテトラミン六酢酸) Methyl EDTA(ジアミノプロパン四酢酸) 等が例示される。これらのポリアミノカルボン
酸、たとえばEDTAは、粗製1,2−ジヒドロ
キシベンゼン−3,5−ジスルホン酸ナトリウム
水溶液中に含まれる鉄イオンと(1)式 のような可溶性で安定な錯塩を生成する。従つて
EDTA添加後の水溶液を加熱濃縮した後、冷却
すると[(1)式で示される錯塩は水中に溶解してお
り]高純度の1,2−ジヒドロキシベンゼン−
3,5−ジスルホン酸ナトリウムの白色結晶が析
出してくる。 ポリアミノカルボン酸の添加量は、溶液中の
Feイオンに対して等モル未満であると遊離鉄イ
オンが結晶に付着してくる可能性があるので鉄イ
オンの等モル以上とする。。上限については特段
の定めはないが、1,2−ジヒドロキシベンゼン
−3,5−ジスルホン酸ナトリウムに対して10%
超えるのは不経済である。従つて1,2−ジヒド
ロキシベンゼン−3,5−ジスルホン酸ナトリウ
ムの10%以下、好ましくは鉄イオンの等モルから
20倍量が望ましい。 以上のようにして得られた1,2−ジヒドロキ
シベンゼン−3,5−ジスルホン酸ナトリウムは
高純度のものであるから再結晶を繰り返し行なう
必要はない。 [実施例およびび比較例] (実施例) (1) 鉄イオン50ppmを含む粗製1,2−ジヒドロ
キシベンゼン−3,5−ジスルホン酸ナトリウ
ム100gを水300gに溶解し、水酸化ナトリウム
を加えてPH4.0としEDTA・2Na・2H2O66mgを
加え、加熱濃縮して全体が140mlになつたら加
熱を止め、冷却すると、1,2−ジヒドロキシ
ベンゼン−3,5−ジスルホン酸ナトリウムの
白色結晶87gを得た。この時の収率は87%であ
つた。 (2) さらに鉄イオン80ppmを含む粗製1,2−ジ
ヒドロキシベンゼン−3,5−ジスルホン酸ナ
トリウム100gを前回(1)の結晶採取後の母液100
gおよび水200gに溶解し、水酸化ナトリウム
を加えてPH4.1としDTPA・5H 113mgおよび水
酸化ナトリウム25mgを加えて全体が180mlにな
るまで加熱濃縮した後冷却すると、1,2−ジ
ヒドロキシベンゼン−3,5−ジスルホン酸ナ
トリウムの白色結晶92gを得た。この時の収率
は92%であつた。 さらに各種ポリアミノカルボン酸を粗製1,2
−ジヒドロキシベンゼン−3,5−ジスルホン酸
ナトリウム水溶液に作用させて精製した結果を第
1表に示す。
[Industrial Application Field] The present invention provides crude 1,2-dihydroxybenzene-
Purified 1,2-dihydroxybenzene-3,5 can be obtained in high yield and purity from an aqueous solution of alkali 3,5-disulfonic acid without repeating recrystallization operations.
- It relates to a method for obtaining an alkali disulfonic acid. [Prior art] 1,2-dihydroxybenzene-3,5-disulfonic acid alkali, especially sodium salt, was described in 1944 by J.
Yoe, and in 1951 by G.
Schwarzenbach introduced it as a colorimetric reagent for titanium and iron. In producing this sodium 1,2-dihydroxybenzene-3,5-disulfonate, 1,2-dihydroxybenzene (pyrocatechol) is usually reacted with concentrated sulfuric acid and fuming sulfuric acid to produce 1,2-dihydroxybenzene (pyrocatechol). Dihydroxybenzene-3,5-disulfonic acid is prepared, sodium sulfate or sodium chloride is added to this reaction solution to obtain sodium 1,2-dihydroxybenzene-3,5-disulfonic acid, and the adhering sulfuric acid or hydrochloric acid is separated, and further Crystals of the target substance are obtained by dissolving it in water, neutralizing it to pH 4.0 to 4.2 with, for example, sodium hydroxide, and then concentrating it. Potassium salts can also be obtained in a similar manner. [Problems to be Solved by the Invention] However, the obtained crystals, which should originally be white, are colored deep red or deep blue. This is due to iron ions mixed in the raw materials entering the system, and these iron ions react sensitively with alkali 1,2-dihydroxybenzene-3,5-disulfonic acid (colorimetric determination of iron). (It is used as a reagent) to make a colored compound, which is 1,
It colors alkali 2-dihydroxybenzene-3,5-disulfonic acid. Therefore, as it has low commercial value as it is, the current practice is to dissolve it in water again and repeat the recrystallization operation to obtain white crystals. The mother liquor recovered after the recrystallization operation contains 1,2-dihydroxybenzene-
Since it contains alkali 3,5-disulfonic acid, it is used as part of the recrystallization solution next time, but since iron ions increase, it can only be used two or three times in a row, and the yield of the target substance decreases. was low at 60-65%. Therefore, in the present invention, purified 1,2-dihydroxybenzene-3,5-disulfonic acid can be purified in high yield and with high purity without repeating recrystallization operations from alkali crude 1,2-dihydroxybenzene-3,5-disulfonic acid.
The object of the present invention is to provide an excellent purification method capable of obtaining alkali 3,5-disulfonic acid. [Means for solving the problems] The present invention that can solve the above problems is based on crude 1,2-dihydroxybenzene-3,5
- To crystallize alkali 1,2-dihydroxybenzene-3,5-disulfonate from an aqueous solution of alkali disulfonate, a polyaminocarboxylic acid is added to the aqueous solution, concentrated by heating, and then cooled. The gist of this method is to precipitate crystals of alkali 3,5-disulfonic acid. [Function] As mentioned above, the method of the present invention produces highly purified alkali 1,2-dihydroxybenzene-3,5-disulfonic acid from an aqueous solution (sodium will be explained below as a representative example) without repeating the recrystallization operation. Sodium 1,2-dihydroxybenzene-3,5-disulfonate can be obtained in high yield by dissolving crude sodium 1,2-dihydroxybenzene-3,5-disulfonate in water, e.g. After adjusting the pH to 4.0-4.2 with sodium oxide, polyaminocarboxylic acid is added. Then, the mixture is further concentrated by heating and then cooled to obtain white crystals. The mother liquor after crystal collection is used repeatedly for the next purification, but since the iron ions are captured as a chelate compound, there is little risk of contaminating the target substance again, and it can be used repeatedly several times. Sodium 1,2-dihydroxybenzene-3,5-disulfonate thus obtained is a highly pure white crystal, and the yield is as high as 85-92%. In addition, the reason why the pH is adjusted to 4.0 to 4.2 with sodium hydroxide, etc. is to take concentration efficiency into account. If the pH is less than 4.0, there is a strong possibility that the sodium salt will return to the free acid, while if the pH exceeds 4.2, it will be concentrated. It is necessary to increase the magnification, and the purity of the target substance decreases. Furthermore, as the polyaminocarboxylic acid, those commonly used as chelating agents can be used, and the types thereof are not limited at all, but the following are typically exemplified. Examples include NTA (nitrilotriacetic acid), EDTA (ethylenediaminetetraacetic acid), DTPA (diethylenetriaminepentaacetic acid), TTHA (triethylenetetraminehexaacetic acid), and Methyl EDTA (diaminopropanetetraacetic acid). These polyaminocarboxylic acids, such as EDTA, have the formula (1) with the iron ion contained in the crude sodium 1,2-dihydroxybenzene-3,5-disulfonate aqueous solution. Forms soluble and stable complex salts such as Accordingly
When the aqueous solution after addition of EDTA is concentrated by heating and then cooled, high purity 1,2-dihydroxybenzene is obtained [the complex salt represented by formula (1) is dissolved in water].
White crystals of sodium 3,5-disulfonate begin to precipitate. The amount of polyaminocarboxylic acid added is
If the amount is less than equimolar to Fe ions, free iron ions may adhere to the crystal, so the amount should be equal to or more than equimolar to iron ions. . There is no specific upper limit, but it is 10% for sodium 1,2-dihydroxybenzene-3,5-disulfonate.
Exceeding this is uneconomical. Therefore, from 10% or less of sodium 1,2-dihydroxybenzene-3,5-disulfonate, preferably from an equimolar amount of iron ions.
20 times the amount is recommended. Since the sodium 1,2-dihydroxybenzene-3,5-disulfonate obtained as described above is of high purity, there is no need for repeated recrystallization. [Examples and Comparative Examples] (Example) (1) 100 g of crude sodium 1,2-dihydroxybenzene-3,5-disulfonate containing 50 ppm of iron ions was dissolved in 300 g of water, and sodium hydroxide was added to adjust the pH to 4. Add 66 mg of EDTA, 2Na, and 2H 2 O, and heat and concentrate until the total volume is 140 ml. Stop heating and cool to obtain 87 g of white crystals of sodium 1,2-dihydroxybenzene-3,5-disulfonate. Ta. The yield at this time was 87%. (2) Furthermore, 100 g of crude sodium 1,2-dihydroxybenzene-3,5-disulfonate containing 80 ppm of iron ions was added to 100 g of the mother liquor obtained from the previous crystal collection in (1).
1,2-dihydroxybenzene- 92 g of white crystals of sodium 3,5-disulfonate were obtained. The yield at this time was 92%. In addition, various polyaminocarboxylic acids are crudely prepared from 1 and 2
Table 1 shows the results of purification by acting on an aqueous solution of sodium -dihydroxybenzene-3,5-disulfonate.

【表】 △:わずかに赤味を有す白色結晶性粉末
×:薄赤色結晶性粉末で品質的に問題有り
(比較例) (1) 鉄イオン50ppmを含む粗製1,2−ジヒドロ
キシベンゼン−3,5−ジスルホン酸ナトリウ
ム100gを水300gに溶解し水酸化ナトリウムを
加えてPH4.0とし全体を140mlまで加熱濃縮した
後冷却すると、準赤色結晶86gを得た。これを
さらに水に溶解して再結晶を繰り返すと65gの
結晶を得た。この時の収率は65%であつた。 (2) 鉄イオン100ppmを含む粗製1,2−ジヒド
ロキシベンゼン−3,5−ジスルホン酸ナトリ
ウム100gを(1)と同様に処理すると60gの結晶
が得られた。この時の収率は60%であつた。比
較例の結果も実施例の結果と共に第1表に記
す。 [発明の効果] 以上述べたように本発明方法によれば粗製1,
2−ジヒドロキシベンゼン−3,5−ジスルホン
酸アルカリから、再結晶を繰り返し行なうことな
く高収率で高純度の粗製1,2−ジヒドロキシベ
ンゼン−3,5−ジスルホン酸アルカリを得るこ
とができる。
[Table] △: White crystalline powder with a slight reddish tinge ×: Pale red crystalline powder with quality problems (comparative example) (1) Crude 1,2-dihydroxybenzene-3 containing 50 ppm of iron ions , 100 g of sodium 5-disulfonate was dissolved in 300 g of water, and sodium hydroxide was added to adjust the pH to 4.0.The whole solution was heated and concentrated to 140 ml, and then cooled to obtain 86 g of semi-red crystals. This was further dissolved in water and recrystallization was repeated to obtain 65 g of crystals. The yield at this time was 65%. (2) When 100 g of crude sodium 1,2-dihydroxybenzene-3,5-disulfonate containing 100 ppm of iron ions was treated in the same manner as in (1), 60 g of crystals were obtained. The yield at this time was 60%. The results of the comparative examples are also listed in Table 1 along with the results of the examples. [Effect of the invention] As described above, according to the method of the present invention, crude 1,
From alkali 2-dihydroxybenzene-3,5-disulfonic acid, crude alkali 1,2-dihydroxybenzene-3,5-disulfonic acid can be obtained in high yield and with high purity without repeating recrystallization.

Claims (1)

【特許請求の範囲】[Claims] 1 粗製1,2−ジヒドロキシベンゼン−3,5
−ジスルホン酸アルカリの水溶液から1,2−ジ
ヒドロキシベンゼン−3,5−ジスルホン酸アル
カリを結晶化させるに当たり、該水溶液にポリア
ミノカルボン酸を添加し、加熱濃縮後冷却して
1,2−ジヒドロキシベンゼン−3,5−ジスル
ホン酸アルカリの結晶を析出させることを特徴と
する1,2−ジヒドロキシベンゼン−3,5−ジ
スルホン酸アルカリの精製方法。
1 Crude 1,2-dihydroxybenzene-3,5
- To crystallize alkali 1,2-dihydroxybenzene-3,5-disulfonate from an aqueous solution of alkali disulfonate, a polyaminocarboxylic acid is added to the aqueous solution, concentrated by heating, and then cooled. A method for purifying alkali 1,2-dihydroxybenzene-3,5-disulfonate, which comprises precipitating crystals of alkali 3,5-disulfonate.
JP21007586A 1986-09-05 1986-09-05 Purification of 1,2-dihydroxybenzene-3,5-disulfonic acid alkali metal salt Granted JPS6366158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21007586A JPS6366158A (en) 1986-09-05 1986-09-05 Purification of 1,2-dihydroxybenzene-3,5-disulfonic acid alkali metal salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21007586A JPS6366158A (en) 1986-09-05 1986-09-05 Purification of 1,2-dihydroxybenzene-3,5-disulfonic acid alkali metal salt

Publications (2)

Publication Number Publication Date
JPS6366158A JPS6366158A (en) 1988-03-24
JPH0317826B2 true JPH0317826B2 (en) 1991-03-11

Family

ID=16583401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21007586A Granted JPS6366158A (en) 1986-09-05 1986-09-05 Purification of 1,2-dihydroxybenzene-3,5-disulfonic acid alkali metal salt

Country Status (1)

Country Link
JP (1) JPS6366158A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2902096B1 (en) * 2006-06-13 2011-03-18 Rhodia Recherches & Tech PROCESS FOR THE PREPARATION OF METAL DIHYDROXYBENZENEDISULFONATES

Also Published As

Publication number Publication date
JPS6366158A (en) 1988-03-24

Similar Documents

Publication Publication Date Title
US20080166281A1 (en) Methods for Producing Cesium Hydroxide Solutions
US4587109A (en) Process for the separate recovery of molybdenum and vanadium
US5312973A (en) Process for producing n-phosphono-methyl-imino-diacetic acid
US4299978A (en) Process for separating iminodiacetic acid from aqueous glycine solution
JPH0317826B2 (en)
US3808269A (en) Process for recovering iminodiacetic acid from sodium sulfate solutions
US2844579A (en) Process for thiamine monomtrate
JPS597711B2 (en) 6-Methyl-3 4-dihydro-1 2 3-oxathiazin-4-one-2 2-dioxide-potassium
EP0743283B1 (en) Recovery of gadolinium and its complexing agents from aqueous solutions containing their complexes
JP3003287B2 (en) Method for producing sodium N-alkylaminoethanesulfonate
US3985801A (en) Process for recovering glycine from sodium chloride solutions
US4007221A (en) Manufacture of nuclear-iodinated iodine compounds of aromatic character
US4348336A (en) Process for the isolation of 1-naphthylamine-4,6- and 1-naphthylamine-4,7-disulphonic acid
JP2993983B2 (en) Separation method of barium from water-soluble strontium salt
Pokras et al. The Reaction of p-Bromophenacyl Bromide with Chloride Ion1
US3355485A (en) Preparation of sodium cyclohexyl sulfamate free of sulfate ions
JP2915515B2 (en) Process for producing O-methylisourea sulfate
JPS623764B2 (en)
SU1328290A1 (en) Method of producing cesium mercaptobenzothazoleundecahydrododecaborate
US5097074A (en) Process for purifying 4,4'-dihydroxydiphenylsulfone
JPS5874525A (en) Separation of arsenious acid and gypsum from acidic aqueous solution of sulfuric acid containing arsenious acid and gypsum
JPS60146854A (en) Manufacture of nitrilotriacetate
JPH08157444A (en) Production of aminoethanesulfonic acid
US4705652A (en) Tetra-alkali metal salts of chromotropic acid, a process for their isolation and their use
JP4399972B2 (en) Process for producing β-alanine-N, N-diacetic acid trialkali metal salt