JPH03177757A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH03177757A
JPH03177757A JP31719489A JP31719489A JPH03177757A JP H03177757 A JPH03177757 A JP H03177757A JP 31719489 A JP31719489 A JP 31719489A JP 31719489 A JP31719489 A JP 31719489A JP H03177757 A JPH03177757 A JP H03177757A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
compressor
pipe
suction pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31719489A
Other languages
Japanese (ja)
Other versions
JPH0814440B2 (en
Inventor
Mari Sada
真理 佐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP31719489A priority Critical patent/JPH0814440B2/en
Publication of JPH03177757A publication Critical patent/JPH03177757A/en
Publication of JPH0814440B2 publication Critical patent/JPH0814440B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To improve the utilization of heat exchangers by making it possible to change one of the heat exchangers connected in parallel with one another over to an evaporator and a condenser. CONSTITUTION:When a gas pipe of a heat exchanger 22 is allowed to communicate to the suction pipe of a compressor 21 by a three-way valve 9, the heat exchanger 22 works as an evaporator, and simultaneous operations that evaporate refrigerants having different evaporation temperatures are carried out by a heat exchanger 12 and the heat exchanger 22. In this case, both heat exchanger have different evaporation temperatures if their heat absorption sources are different from each other, while their evaporation temperatures become equal if their heat absorption sources are equal, by a check valve 3a provided on the way of a bypass 2 connecting the suction pipe 16 of a compressor 11 with the suction pipe 26 of the compressor 21. When the gas pipe of the heat exchanger 22 is allowed to communicate to a branched passage 29 by the three-way valve 9, the heat exchanger 22 works as a con denser, and simultaneous condensation operations can be carried out by the heat exchanger 22 and a heat exchanger 32. In this case, both heat exchangers have different condensation temperatures if their heat radiation sources are different from each other, while their condensa tion temperatures become equal if their heat radiation sources are equal, by a check valve 3b provided on the way of the outlet pipe of the compressor 21.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、熱交換器と圧縮機とを直列に接続した1対の
組を冷媒回路に並列配置した空気調和装置に係り、特に
熱交換器の利用性及び運転効率の向上対策に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an air conditioner in which a pair of a heat exchanger and a compressor connected in series are arranged in parallel in a refrigerant circuit. Concerning measures to improve equipment utilization and operational efficiency.

(従来の技術) 従来より、例えば実公昭62−18933号公報に開示
される如く、第1圧縮機(a+ )、第1熱交換器(b
l)及び第1減圧弁(cl)を第1配管(dl)により
直列に接続し、第1圧縮機(a;’ ) 、第2熱交換
器(bl)及び第2減圧弁(C2)を第2配管(dl)
で直列に接続する一方、第3熱交換器(b3)を第3配
管(d3)に介設し、該第3配管(d3)に対して上記
第1熱交換器(bり及び第2熱交換器(bl)が蒸発器
として機能するよう第1.第2配管(d+ )。
(Prior Art) Conventionally, as disclosed in, for example, Japanese Utility Model Publication No. 18933/1983, a first compressor (a+) and a first heat exchanger (b
l) and the first pressure reducing valve (cl) are connected in series by the first piping (dl), and the first compressor (a;'), the second heat exchanger (bl) and the second pressure reducing valve (C2) are connected in series. 2nd piping (dl)
and a third heat exchanger (b3) is interposed in the third pipe (d3), and the third heat exchanger (b3) and the second heat exchanger (b3) are connected in series to the third pipe (d3). The first and second piping (d+) so that the exchanger (bl) functions as an evaporator.

(dl)を並列に接続することにより、各熱交換器(b
+ )、(bz )における蒸発圧力をそれぞれ吸熱源
の違いに対応した異なる値に維持できるようにして、い
わゆる冷凍効率EERを低下させることなく、除湿機能
を発揮しうるようにした空気調和装置は公知の技術であ
る。
(dl) in parallel, each heat exchanger (b
An air conditioner that can maintain the evaporation pressures at + ) and (bz ) at different values corresponding to different heat absorption sources, and can perform the dehumidifying function without reducing the so-called refrigeration efficiency EER. This is a known technique.

(発明が解決しようとする課題) しかしながら、上記従来のものでは、各熱交換器(b+
 )、(bl)の蒸発圧力を異なる値に設定しうる利点
はあるものの、各熱交換器(b+ )。
(Problem to be Solved by the Invention) However, in the above conventional system, each heat exchanger (b+
), (b1), each heat exchanger (b+) has the advantage of being able to set the evaporation pressures of (bl) to different values.

(bl)の吸熱源の状態によっては、必ずしも全体とし
ての運転効率を十分高くすることができないという問題
があった。
There is a problem in that the overall operating efficiency cannot necessarily be made sufficiently high depending on the state of the heat absorption source (bl).

また、第1.第2熱交換器(bl)、(bz )がいず
れも蒸発器としての機能しか発揮できないように固定さ
れているために、その利用を十分図ることができず、圧
縮機を二台備えたメリットがあまりない。すなわち、例
えば、第2熱交換器(bl)を蓄熱槽に配置される蓄熱
コイルとすると、冷熱を蓄熱するものでは冷熱を蓄熱す
るためにしか利用できず、冷熱を取出すためのコイルが
別途必要となる。一方、暖熱を蓄熱するものでは蓄暖熱
を取り出すためにしか利用することができず、蓄暖熱を
するためのコイルが別途必要となるという問題があった
Also, 1st. Since the second heat exchangers (bl) and (bz) are both fixed so that they can only function as evaporators, they cannot be fully utilized, so the advantage of having two compressors is There aren't many. That is, for example, if the second heat exchanger (BL) is a heat storage coil placed in a heat storage tank, it can only be used to store cold heat, and a separate coil is required to extract cold heat. becomes. On the other hand, those that store warm heat can only be used to extract the stored warm heat, and there is a problem in that a separate coil is required to store the warm heat.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、並列に接続されている熱交換器の一方を蒸発器と
凝縮器とに切換えうるようにすることにより熱交換器の
利用性の向上を図るとともに、各熱交換器で同時蒸発又
は同時凝縮を行う際、吸熱源又は放熱源の変化に応じて
蒸発温度又は凝縮温度の異同を変えうる手段を講するこ
とにより、運転効率の向上を図ることにある。
The present invention has been made in view of the above, and its purpose is to improve the utilization of heat exchangers by allowing one of the heat exchangers connected in parallel to be switched between an evaporator and a condenser. In addition, when simultaneous evaporation or simultaneous condensation is performed in each heat exchanger, the operational efficiency can be improved by taking measures to change the evaporation temperature or condensation temperature according to changes in the heat absorption or heat radiation source. The aim is to improve the

(課題を解決するための手段) 上記目的を達成するため第1の解決手段は、第1図に示
すように、空気調和装置の構成として、第1圧縮II 
(11) 、該第1圧縮機(11)の吸入側に順次配置
される第1熱交換器(12)及び該第1熱交換器(12
)用の第1流量調節弁(13)を第1配管(14)で直
列に接続し、第2圧縮機(21)、該m2圧縮機(21
)の吸入側に順次配置される第2熱交換器(22)及び
該第2熱交換器(22)用の第2流量調節弁(23)を
第2配管(24)で直列に接続する一方、第3熱交換器
(32)及び該第3熱交換器(32)用の第3流量調節
弁(33)を第3配管(34)により直列に接続し、該
第3配管(34)に対して上記第1.第2配管(14)
、  (24)を互いに並列に接続する。
(Means for Solving the Problems) In order to achieve the above object, the first means for solving the problems is as shown in FIG.
(11), a first heat exchanger (12) and the first heat exchanger (12) disposed in sequence on the suction side of the first compressor (11);
) are connected in series through the first pipe (14), and the second compressor (21) and the m2 compressor (21
) and a second heat exchanger (22) arranged sequentially on the suction side of the second heat exchanger (22) and a second flow rate control valve (23) for the second heat exchanger (22) are connected in series by a second pipe (24). , a third heat exchanger (32) and a third flow control valve (33) for the third heat exchanger (32) are connected in series by a third pipe (34), On the other hand, the above 1. Second piping (14)
, (24) are connected in parallel with each other.

そして、上記第2圧縮機(21)の吐出管と第2熱交換
器(22)のガス管とをバイパス接続する分岐路(29
)と、第2熱交換器(22)のガス第2熱管を′M42
圧縮機(21)の吸入管と上記分岐路(29)とに選択
的に連通させるよう切換える接続切換機構(9)と、第
1圧縮機(11)の吸入管と第2圧縮機(21)の吸入
管とを冷媒のバイパス可能に接続するバイパス路(2)
と、該バイパス路(2)に介設され、第1圧縮機(11
)の吸入管側から第2圧縮機(21)の吸入管側への冷
媒の流通のみを許容する第1逆止弁(3a)と、上記第
2圧縮機(21)の吐出管において上記分岐路(29)
との接続部下流側に介設され、第2圧縮機(21)側か
らの冷媒の流通のみを許容する第2逆止弁(3b)とを
設ける構成としたものである。
A branch line (29) bypass-connects the discharge pipe of the second compressor (21) and the gas pipe of the second heat exchanger (22).
) and the second gas heat tube of the second heat exchanger (22) with 'M42
a connection switching mechanism (9) that selectively connects the suction pipe of the compressor (21) to the branch path (29); and the suction pipe of the first compressor (11) and the second compressor (21). Bypass passage (2) that connects the suction pipe of the refrigerant so that the refrigerant can be bypassed.
and a first compressor (11
) and a first check valve (3a) that allows refrigerant to flow only from the suction pipe side of the second compressor (21) to the suction pipe side of the second compressor (21), and the branch at the discharge pipe of the second compressor (21). Road (29)
A second check valve (3b) is provided on the downstream side of the connection part with the second compressor (21) and allows only the flow of refrigerant from the second compressor (21) side.

第2の解決手段は、第2図に示すように、上記第1の解
決手段に加えて、第1熱交換器(12)と第3熱交換器
(32)との間で冷凍サイクルを切換える主サイクル切
換機構(7)を設けたものである。
As shown in FIG. 2, the second solution, in addition to the first solution, switches the refrigeration cycle between the first heat exchanger (12) and the third heat exchanger (32). A main cycle switching mechanism (7) is provided.

第3の解決手段は、上記第2の解決手段における第3熱
交換器(32)を複数個配置し、該各第3熱交換器(3
2)、・・・のガス管を吐出ライン(37)と吸入ライ
ン(36)とに選択的に連通ずるよう切換える副サイク
ル切換機構(8)、・・・を設けたものである。
A third solution is to arrange a plurality of third heat exchangers (32) in the second solution, and each third heat exchanger (32) is arranged in a plurality.
2) A sub-cycle switching mechanism (8), . . . is provided for switching the gas pipes of . . . to selectively communicate with the discharge line (37) and the suction line (36).

(作用) 以上の構成により、請求項(1)の発明では、接続切換
機構(9)により、第2熱交換器(22)のガス管が第
2の圧縮機(21)の吸入管に連通するよう切換えられ
ると、第2熱交、換器(22)が蒸発器となり、第1熱
交換器(12)と第2熱交換器(22)とで冷媒が相異
なる蒸発温度で蒸発する同時蒸発運転が行われる。その
際、第1圧縮機(11)の吸入管と第2圧縮機(21)
の吸入管とを接続するバイパス路(2)に第1逆止弁(
3a)が介設されているので、画然交換器(12)、 
 (22)で、吸熱源が等しいときには蒸発温度が異な
り、吸熱源が変化して等しい状態になると蒸発温度が自
然に等しくなる。
(Function) With the above configuration, in the invention of claim (1), the gas pipe of the second heat exchanger (22) is connected to the suction pipe of the second compressor (21) by the connection switching mechanism (9). When switched to , the second heat exchanger (22) becomes an evaporator, and the refrigerant is simultaneously evaporated at different evaporation temperatures in the first heat exchanger (12) and the second heat exchanger (22). Evaporation operation is performed. At that time, the suction pipe of the first compressor (11) and the second compressor (21)
A first check valve (
3a), so the exchanger (12),
In (22), when the heat absorption sources are equal, the evaporation temperatures differ, and when the heat absorption sources change and become equal, the evaporation temperatures naturally become equal.

また接続切換機構(9)により、第2熱交換器(22)
のガス管が分岐路(29)に連通ずるよう切換えられる
と、第2熱交換器(22)が凝縮器として機能し、第2
熱交換器(22)及び第3熱交換器(32)で同時に冷
媒を凝縮させる同時凝縮運転が可能となる。その場合、
第2圧縮機(21)の吐出管に第2逆止弁(3b)が設
けられているので、各熱交換器(22)、(32)の放
熱源が異なるときには相異なる凝縮温度で、放熱源が変
化して等しくなったときには等しい凝縮温度で運転が行
われる。
In addition, the connection switching mechanism (9) connects the second heat exchanger (22).
When the gas pipe is switched to communicate with the branch line (29), the second heat exchanger (22) functions as a condenser and the second
Simultaneous condensation operation in which the refrigerant is condensed simultaneously in the heat exchanger (22) and the third heat exchanger (32) becomes possible. In that case,
Since the second check valve (3b) is provided in the discharge pipe of the second compressor (21), when the heat radiation sources of the heat exchangers (22) and (32) are different, the radiation is performed at different condensation temperatures. When the heat sources change and become equal, operation is performed at equal condensing temperatures.

すなわち、室内と吸熱源とで同時蒸発運転をすること、
或いは室内と放熱源とで同時凝縮運転をすることが可能
となって、第2熱交換器(22)の利用性が向上すると
ともに、その際、吸熱源や放熱源の変化に応じて蒸発温
度又は凝縮温度が自然に調節されて運転効率が向上する
In other words, simultaneous evaporation operation indoors and at the heat absorption source;
Alternatively, simultaneous condensing operation can be performed indoors and at the heat radiation source, improving the usability of the second heat exchanger (22), and at the same time, the evaporation temperature can be adjusted according to changes in the heat absorption source or heat radiation source. Or, the condensing temperature is naturally adjusted to improve operational efficiency.

請求項(2)の発明では、主サイクル切換機構(7)の
切換により、第1.第3熱交換器(12)。
In the invention of claim (2), the main cycle switching mechanism (7) switches the first cycle. Third heat exchanger (12).

(32)が蒸発器と凝縮器とにそれぞれ交互に切換えら
れるので、室内側で冷暖房運転が可能となるとともに、
第2熱交換器(22)を利用して冷暖房運転中に吸熱源
からの吸熱と放熱源への放熱が可能となり、上記請求項
(1)の発明の作用に加えて、熱交換器の利用性が顕著
に向上することになる。
(32) is alternately switched between the evaporator and the condenser, making heating and cooling operation possible indoors.
By using the second heat exchanger (22), it is possible to absorb heat from a heat absorption source and radiate heat to a heat radiation source during air-conditioning operation, and in addition to the effect of the invention of claim (1), the use of the heat exchanger performance will be significantly improved.

請求項(3)の発明では、上記請求項(3の発明の作用
に加えて、各副サイクル切換機構(8)、・・・の切換
により、複数個配置された第3熱交換器(32)、・・
・が蒸発器と凝縮器とにそれぞれ交互に切換えられ、室
内の空調要求に応じて、室内側で個別に冷暖房運転の切
換が可能になる。
In the invention of claim (3), in addition to the effect of the invention of claim (3), the plurality of third heat exchangers (32 ),...
The evaporator and condenser are alternately switched, and depending on the indoor air conditioning demand, it is possible to individually switch between cooling and heating operations indoors.

(実施例) 以下、本発明の実施例について、図面に基づき説明する
(Example) Hereinafter, an example of the present invention will be described based on the drawings.

第1図は本発明の第1実施例に係る空気調和装置の冷媒
配管系統を示し、(11)は第1インバータ(15)に
より運転周波数を可変に調節される第1圧縮機、(12
)は該第1圧縮機(11)の吸入管側に配置され、蒸発
器として機能する第1熱交換器である室外熱交換器、(
13)は該室外熱交換器(12)用の第1流量調節弁と
しての第1電動膨張弁であって、上記各機器(11)。
FIG. 1 shows a refrigerant piping system of an air conditioner according to a first embodiment of the present invention, in which (11) is a first compressor whose operating frequency is variably adjusted by a first inverter (15);
) is placed on the suction pipe side of the first compressor (11), and is a first heat exchanger that functions as an evaporator, an outdoor heat exchanger (
13) is a first electric expansion valve as a first flow control valve for the outdoor heat exchanger (12), and each of the above-mentioned devices (11).

(12)、(13)は、第1配管(14)により冷媒の
流通可能に順次直列に接続されている。また、(21)
は第2インバータ(25)により運転周波数を可変に調
節される第2圧縮機、(22)は該第2圧縮機(21)
の吸入側に配置されるとともに、蓄熱媒体としての水を
貯溜する蓄熱槽(図示せず)内に配置される第2熱交換
器とじての蓄熱熱交換器、(23)は該蓄熱熱交換器(
22)用の第2流量調節弁としての蓄熱電動膨張弁であ
って、上記各機器(21)、  (22)、  (23
)は、第2配管(24)により冷媒の流通可能に順次直
列に接続されている。一方、(32)は凝縮器として機
能する第3熱交換器である室内熱交換器、(33)は第
3流量調節弁としての室内電動膨張弁であって、上記各
機器(32)、  (33)は第3配管(34)により
冷媒の流通可能に直列に接続されている。そして、上記
第3配管(34)に対して、第1.第2配管(14)。
(12) and (13) are sequentially connected in series through a first pipe (14) so that refrigerant can flow therethrough. Also, (21)
(22) is a second compressor (21) whose operating frequency is variably adjusted by a second inverter (25);
A regenerative heat exchanger as a second heat exchanger is disposed on the suction side of the regenerative heat exchanger and is disposed in a heat storage tank (not shown) that stores water as a heat storage medium; (23) is the regenerative heat exchanger; vessel(
22) as a second flow rate control valve for each of the above-mentioned devices (21), (22), (23).
) are sequentially connected in series through a second pipe (24) so that refrigerant can flow therethrough. On the other hand, (32) is an indoor heat exchanger that is a third heat exchanger that functions as a condenser, and (33) is an indoor electric expansion valve that is a third flow rate regulating valve. 33) are connected in series through a third pipe (34) so that refrigerant can flow therethrough. Then, the first pipe (34) is connected to the third pipe (34). Second piping (14).

(24)が互いに並列に接続されており、上記室外熱交
換器(12)で空気との熱交換により得た冷熱を室内熱
交換器(32)側に移動させるようにした主冷媒回路(
1)が構成されている。
(24) are connected in parallel to each other, and the main refrigerant circuit (
1) is configured.

そして、上記蓄熱熱交換器(22)のガス管と上記第2
圧縮機(21)の吐出管である第2吐出管(27)とは
、分岐路(29)によりバイパス接続されていて、該分
岐路(29)と蓄熱熱交換器(22)のガス管との接続
部には、蓄熱熱交換器(22)のガス管を第2店縮機(
21)の吸入管である第2吸入管(26)と上記分岐路
(29)とに選択的に連通させるよう切換える接続切換
機構としての蓄熱三方切換弁(9)が設けられている。
The gas pipe of the regenerative heat exchanger (22) and the second
The second discharge pipe (27), which is the discharge pipe of the compressor (21), is connected to the second discharge pipe (27) by a branch passage (29), and the branch passage (29) and the gas pipe of the regenerative heat exchanger (22) are connected. The gas pipe of the regenerative heat exchanger (22) is connected to the connection part of the second compressor (
A heat storage three-way switching valve (9) is provided as a connection switching mechanism that selectively connects the second suction pipe (26), which is the suction pipe (21), to the branch path (29).

すなわち、蓄熱三方切換弁(9)が図中実線側に切換わ
ったときには蓄熱熱交換器(22)のガス管が第2吸入
管(26)に連通して蓄熱熱交換器(22)が蒸発器と
して機能する一方、蓄熱三方切換弁(9〉が図中破線側
に切換わると蓄熱熱交換器(22)のガス管が分岐路(
29)を介して第2吐出管(27)に違通し、蓄熱熱交
換器(22)が凝縮器として機能するようになされてい
る。
That is, when the heat storage three-way switching valve (9) switches to the solid line side in the figure, the gas pipe of the heat storage heat exchanger (22) communicates with the second suction pipe (26), and the heat storage heat exchanger (22) evaporates. On the other hand, when the heat storage three-way switching valve (9) switches to the broken line side in the figure, the gas pipe of the heat storage heat exchanger (22) switches to the branch path (
29) to the second discharge pipe (27), so that the regenerative heat exchanger (22) functions as a condenser.

さらに、第1圧縮機(11)の吸入管である第1吸入管
(16)と第2圧縮機(21)の吸入管である第2吸入
管(26)とはバイパス路(2)によりバイパス接続さ
れていて、第1吸入管(16)から第2吸入管(26)
側に冷媒をバイパスして流通させることにより、第1圧
縮機(11)を停止させて第2圧縮機(21)のみで二
台の熱交換器(12)及び(22)を運転することや、
蓄熱電動膨張弁(23)を閉じて室外熱交換器(12)
のみを二台の圧縮機(11)、  (21)で運転する
ことも可能になされている。
Furthermore, the first suction pipe (16), which is the suction pipe of the first compressor (11), and the second suction pipe (26), which is the suction pipe of the second compressor (21), are bypassed by a bypass path (2). connected from the first suction pipe (16) to the second suction pipe (26)
By bypassing and circulating the refrigerant to the side, it is possible to stop the first compressor (11) and operate the two heat exchangers (12) and (22) only with the second compressor (21). ,
Close the heat storage electric expansion valve (23) and close the outdoor heat exchanger (12).
It is also possible to operate only the compressors (11) and (21) with two compressors (11) and (21).

ここで、本発明の特徴として、上記バイパス路(2)に
は、バイパス路(2)における第1吸入管(16)側か
ら第2吸入管(26)側への冷媒の流通のみを許容する
機能を有する第1逆止弁(3a)が介設されている一方
、上記第1吐出管(27)のバイパス管(29)との接
合部(28)下流側には、第1吐出管(17)側からの
冷媒の流入を阻止して、第2圧縮機(21)側からの冷
媒の流通のみを許容する第2逆止弁(3b)が介設され
ている。
Here, as a feature of the present invention, the bypass path (2) allows only the flow of refrigerant from the first suction pipe (16) side to the second suction pipe (26) side in the bypass path (2). A functional first check valve (3a) is interposed, while a first discharge pipe (27) is provided downstream of the junction (28) with the bypass pipe (29). A second check valve (3b) is provided that prevents the refrigerant from flowing from the second compressor (21) side and only allows the refrigerant to flow from the second compressor (21) side.

したがって、請求項(1)の発明では、蓄熱熱交換器(
第2熱交換器)<22)が蓄熱三方切換弁(接続切換機
構)(9)により蒸発器と凝縮器とに切換え可能になさ
れているので、蓄熱熱交換器(22)を蓄熱槽への蓄熱
用と、蓄熱槽からの蓄熱の回収用とに利用することがで
きる。例えば蓄熱槽に暖熱を蓄えるときには、蓄熱三方
切換弁(9)を図中破線側に切換えて、第1.第2圧縮
機(11)、(21)からの吐出冷媒を室内熱交換器(
32)と蓄熱熱交換器(22)側とに分岐させ、室内熱
交換器(32)側で暖房運転を行う一方、蓄熱熱交換器
(22)側で冷媒の凝縮により蓄熱槽の蓄熱媒体に暖熱
を蓄える暖房及び蓄暖熱同時運転が可能となる。また、
蓄熱三方弁(9)を図中実線側に切換え、蓄熱熱交換器
(22)と室外熱交換器(12)とをそれぞれ蒸発器と
して機能させることにより、蓄暖熱回収暖房運転をする
ことができ、第2熱交換器(22)の利用性の向上を図
ることができる。
Therefore, in the invention of claim (1), the regenerative heat exchanger (
Since the second heat exchanger (22) can be switched between the evaporator and the condenser by the heat storage three-way switching valve (connection switching mechanism) (9), the heat storage heat exchanger (22) can be switched to the heat storage tank. It can be used for heat storage and for recovering heat from the heat storage tank. For example, when storing warm heat in a heat storage tank, the heat storage three-way switching valve (9) is switched to the side shown by the broken line in the figure. The refrigerant discharged from the second compressors (11) and (21) is transferred to the indoor heat exchanger (
32) and the regenerative heat exchanger (22) side, and the indoor heat exchanger (32) side performs heating operation, while the refrigerant condenses on the regenerative heat exchanger (22) side and becomes the heat storage medium of the heat storage tank. Simultaneous operation of heating and storage of warm heat becomes possible. Also,
By switching the heat storage three-way valve (9) to the solid line side in the figure and making the heat storage heat exchanger (22) and the outdoor heat exchanger (12) each function as an evaporator, it is possible to perform the heat storage heat recovery heating operation. This makes it possible to improve the usability of the second heat exchanger (22).

その場合、29の熱交換器(12)及び(22)がそれ
ぞれ個別に第1圧縮機(11)及び第2圧縮機(21)
により蒸発器として機能するよう運転され、第1吸入管
(16)と第2吸入管(26)との間を接続するバイパ
ス路(2)に第1吸入管(16)から第2吸入管(26
)への冷媒の流通のみを許容する第1逆止弁(3a)が
介設されているので、各熱交換器(12)、(22)の
吸熱源の差が大きいときには相異なる蒸発温度で運転す
ることができる。すなわち、室外熱交換器(12)と蓄
熱熱交換器(22)とでは吸熱源が異なるので、−台の
圧縮機で運転したのでは成績係数が悪化する虞れがある
が、各熱交換器(12)。
In that case, the 29 heat exchangers (12) and (22) are connected to the first compressor (11) and the second compressor (21), respectively.
The first suction pipe (16) is operated to function as an evaporator, and the second suction pipe (16) is connected to the bypass passage (2) connecting between the first suction pipe (16) and the second suction pipe (26). 26
) is provided with the first check valve (3a) that only allows the refrigerant to flow through the heat exchangers (12) and (22). Can drive. In other words, since the heat absorption sources are different between the outdoor heat exchanger (12) and the regenerative heat exchanger (22), there is a risk that the coefficient of performance will deteriorate if the number of compressors is operated. (12).

(22)の蒸発温度を変えることにより成績係数が向上
することになる。また、蓄熱槽の蓄熱量が変化して、吸
熱源の差があまりなくなると各熱交換器(12)、(2
2)の蒸発温度が自然に等しい値となるので、高い運転
効率で空気調和装置の運転を行うことができる。
By changing the evaporation temperature of (22), the coefficient of performance can be improved. In addition, if the amount of heat stored in the heat storage tank changes and the difference in heat absorption sources becomes less, each heat exchanger (12), (2
Since the evaporation temperatures of 2) naturally become the same value, the air conditioner can be operated with high operating efficiency.

例えば、第4図に示す従来のもののように、単に室外熱
交換器(12)と蓄熱熱交換器(22)とで蒸発温度を
変えただけで運転を続けるとすると、各熱交換器(12
)〜(32)の冷媒状態量(蒸発器については蒸発温度
、凝縮器については凝縮温度)が下記第1表に示される
状態■〜■のように変化する。
For example, as in the conventional system shown in FIG.
) to (32) (the evaporation temperature for the evaporator and the condensation temperature for the condenser) change as shown in the states (1) to (3) shown in Table 1 below.

第 表 その場合、上記状態Iでは、蒸発温度を変えることで第
1圧縮機(11) 、第2圧縮機(21)共に成績係数
が高い状態で運転されることになるが、状態■では、第
2圧縮機(21)は熱源のほとんどない蓄熱槽から暖熱
を無理に取ることになるため、成績係数がかえって悪化
し、全体としての運転効率が低下してしまう。ところが
、上記第1図に示される回路構成では、蓄熱熱交換器(
22)の蒸発温度が室外熱交換器(12)の蒸発温度よ
りも低下しようとすると第1吸入管(16)から第2吸
入管(26)に冷媒がバイパスされるので、両者の蒸発
温度は等しくなる。
In that case, in the above state I, both the first compressor (11) and the second compressor (21) will be operated with a high coefficient of performance by changing the evaporation temperature, but in state II, Since the second compressor (21) forcibly takes warm heat from the heat storage tank which has almost no heat source, the coefficient of performance deteriorates and the overall operating efficiency decreases. However, in the circuit configuration shown in FIG. 1 above, the regenerative heat exchanger (
When the evaporation temperature of 22) tries to fall below the evaporation temperature of the outdoor heat exchanger (12), the refrigerant is bypassed from the first suction pipe (16) to the second suction pipe (26), so the evaporation temperature of both becomes lower than that of the outdoor heat exchanger (12). be equal.

第2表 すなわち、上記第2表のような運転状態となる。Table 2 In other words, the operating conditions are as shown in Table 2 above.

つまり、各吸入管(16)、  (26)の間に冷媒を
流通させるバイパス路(2)を設けるとともに、逆止弁
(3)をバイパス路(2)に設けることにより、蓄熱熱
交換器(22)の熱源が十分ある間は蓄熱熱交換器(2
2)側の蒸発温度を高くして運転する一方、蓄熱槽の熱
源が少なくなったときには自然に同じ蒸発温度で運転す
ることになり、全体としての運転効率が向上することに
なる。
In other words, by providing a bypass path (2) for circulating refrigerant between each suction pipe (16) and (26), and providing a check valve (3) in the bypass path (2), the regenerative heat exchanger ( As long as there is a sufficient heat source for heat storage heat exchanger (22),
While the evaporation temperature on the 2) side is increased, when the heat source of the heat storage tank decreases, the evaporation temperature is naturally maintained at the same evaporation temperature, improving the overall operating efficiency.

同様に、蓄熱熱交換器(22)と室外熱交換器(32)
とで同時凝縮運転をする場合、第2吐出管(27)に第
2逆止弁(3b)が介設されているので、各熱交換器(
22)、(32)の放熱源の差が大きいとき例えば蓄熱
槽の水温が低い間は、第2逆止弁(3b)により凝縮温
度の差を維持する一方、蓄熱槽の蓄暖熱が増大して放熱
源の差がなくなると第2逆止弁(3b)を介して冷媒の
流通がなされ、各熱交換器(22)、(32)の凝縮温
度が自然に等しい値となり、装置の運転効率が向上する
Similarly, the regenerative heat exchanger (22) and the outdoor heat exchanger (32)
When performing simultaneous condensing operation with the heat exchangers (
When the difference between the heat radiation sources of 22) and (32) is large, for example, while the water temperature in the heat storage tank is low, the second check valve (3b) maintains the difference in condensation temperature, while increasing the heat stored in the heat storage tank. When the difference in the heat radiation sources disappears, the refrigerant flows through the second check valve (3b), and the condensing temperatures of the heat exchangers (22) and (32) naturally become equal, allowing the device to operate. Increased efficiency.

さらに、運転状態の変化に応じて、冷媒の循環量をそれ
ほど要しないときには、第1圧縮機(11)を停止させ
ることにより、第2圧縮機(21)のみで2台の熱交換
器つまり室外熱交換器(12)及び蓄熱熱交換器(22
)の運転をすることができるとともに、蓄熱熱交換器(
22)を使用せず、しかも要求能力が大きい時などには
、蓄熱電動膨張弁(23)を閉じて、1台の熱交換器つ
まり室外熱交換器(12)を2台の圧縮機(11) 。
Furthermore, depending on changes in operating conditions, when the amount of refrigerant to be circulated is not required, by stopping the first compressor (11), only the second compressor (21) can operate the two heat exchangers, that is, the outdoor heat exchanger. Heat exchanger (12) and regenerative heat exchanger (22)
), as well as a regenerative heat exchanger (
22) is not used and the required capacity is large, the heat storage electric expansion valve (23) is closed and one heat exchanger, that is, the outdoor heat exchanger (12) is used as the compressor (11). ).

(21)で運転することもでき、このような各熱交換器
(12)、(22)と圧縮機(11) 。
(21) can also be operated with each such heat exchanger (12), (22) and compressor (11).

(21)との接続関係を変化させることにより、運転状
態の変化に応じた効率のよい運転をすることができる。
By changing the connection relationship with (21), efficient operation can be achieved in response to changes in operating conditions.

なお、上記実施例では第2熱交換器(22)を蓄熱熱交
換器としたが、第2熱交換器(22)が例えば排熱回収
による熱交換器の場合には、室外熱交換器(12)とは
異なる高い蒸発温度で蒸発を行わせつる。
In the above embodiment, the second heat exchanger (22) is a regenerative heat exchanger, but if the second heat exchanger (22) is a heat exchanger using exhaust heat recovery, for example, an outdoor heat exchanger ( 12) The evaporation is carried out at a higher evaporation temperature different from that of 12).

また、上記実施例では第1熱交換器(12)を室外熱交
換器としたが、第1熱交換器(12)を室内熱交換器と
することもできる。その場合、冷房運転をしながら、蓄
熱三方切換弁(9)の接続を図中実線側に切換えて、蓄
熱熱交換器(22)で冷媒を蒸発させることにより蓄熱
槽に蓄冷熱をすることができ、その際、吸熱源が異なる
ときには相異なる蒸発温度で運転が行われる一方、吸熱
源が変化して等しくなると蒸発温度が相等しくなるよう
自然に調節される。また、蓄熱三方切換弁(9)接続を
図中破線側に切換えて蓄熱熱交換器(22)で冷媒を凝
縮させることにより、その蓄冷熱を利用して蓄冷熱回収
冷房運転をすることができ、その際、蓄熱槽の蓄冷熱が
十分ある間は、第2逆止弁(3b)により第1吐出管(
17)側から第2吐出管(27)側への冷媒の流通が阻
止されて、蓄熱熱交換器(22)の凝縮温度を室外熱交
換器(12)の凝縮温度よりも低い状態で運転すること
ができるとともに、蓄冷熱が少なくなると、両者の凝縮
温度が等しくなるよう自然に調節されて、運転効率の向
上効果を得ることができる。
Further, in the above embodiment, the first heat exchanger (12) is an outdoor heat exchanger, but the first heat exchanger (12) can also be an indoor heat exchanger. In that case, while operating the air conditioner, the connection of the heat storage three-way switching valve (9) is switched to the solid line side in the figure, and the refrigerant is evaporated in the heat storage heat exchanger (22), thereby storing cold heat in the heat storage tank. In this case, when the heat absorption sources are different, operation is performed at different evaporation temperatures, while when the heat absorption sources are changed and become equal, the evaporation temperatures are naturally adjusted to be equal. In addition, by switching the heat storage three-way switching valve (9) connection to the dashed line side in the figure and condensing the refrigerant in the heat storage heat exchanger (22), the stored cold heat can be used to perform the cold storage heat recovery cooling operation. At that time, while there is sufficient cold storage heat in the heat storage tank, the second check valve (3b) closes the first discharge pipe (
17) side to the second discharge pipe (27) side is blocked, and the condensing temperature of the storage heat exchanger (22) is operated in a state lower than the condensing temperature of the outdoor heat exchanger (12). In addition, when the amount of stored cold heat decreases, the condensation temperatures of the two are automatically adjusted to be equal, and the effect of improving operating efficiency can be obtained.

次に、請求項(2)の発明に係る第2実施例について、
第2図に基づき説明する。第2図は第2実施例に係る空
気調和装置の構成を示し、上記第1図の構成に加えて、
第1熱交換器である室外熱交換器(12)及び第3熱交
換器である室内熱交換器(32)との間で冷凍サイクル
を切換える主接続切換機構たる室外四路切換弁(7)が
配置されていて、該室外四路切換弁(7)の切換により
、室外熱交換器(12)のガス管と室内熱交換器(32
)のガス管とが第1吸入管(16)と第1.第2吐出管
(17)、(27)側とに交互に連通ずるようになされ
ている。すなわち、室外四路切換弁(7)が図中実線側
に切換えられたときには、室内熱交換器(32)が凝縮
器になって暖房運転が行われる一方、室外四路切換弁(
7)が図中破線側に切換わったときには、室内熱交換器
(32)が蒸発器となり冷房運転が行われる。ここで、
暖房運転時には、上記請求項(1)の発明と同様に、運
転条件に応じて、相異なる凝縮温度又は蒸発温度で、暖
房及び蓄冷熱同時運転又は蓄冷熱回収冷房運転を行うよ
うになされている。
Next, regarding the second embodiment according to the invention of claim (2),
This will be explained based on FIG. FIG. 2 shows the configuration of an air conditioner according to a second embodiment, and in addition to the configuration shown in FIG. 1 above,
The outdoor four-way switching valve (7) is the main connection switching mechanism that switches the refrigeration cycle between the outdoor heat exchanger (12), which is the first heat exchanger, and the indoor heat exchanger (32), which is the third heat exchanger. is arranged, and by switching the outdoor four-way switching valve (7), the gas pipe of the outdoor heat exchanger (12) and the indoor heat exchanger (32) are connected.
) gas pipe (16) and the first suction pipe (16). The second discharge pipe (17) and the second discharge pipe (27) are alternately communicated with each other. That is, when the outdoor four-way switching valve (7) is switched to the solid line side in the figure, the indoor heat exchanger (32) becomes a condenser and heating operation is performed, while the outdoor four-way switching valve (
7) is switched to the dashed line side in the figure, the indoor heat exchanger (32) becomes an evaporator and cooling operation is performed. here,
During heating operation, heating and cold storage heat simultaneous operation or cold storage heat recovery cooling operation are performed at different condensation temperatures or evaporation temperatures depending on the operating conditions, as in the invention of claim (1) above. .

一方、冷房運転時において、蓄熱三方切換弁(9)が破
線側に切換えられると、蓄熱熱交換器(22)及び室外
熱交換器(12)で冷媒を凝縮させることにより、蓄熱
槽の蓄冷熱を利用する蓄冷熱回収冷房運転が行われ、そ
の際、吸熱源が異なるときには相異なる蒸発温度に、吸
熱源が変化して等しくなったときには等しい蒸発温度に
自然に調節され、運転効率が向上する。
On the other hand, during cooling operation, when the heat storage three-way switching valve (9) is switched to the broken line side, the refrigerant is condensed in the heat storage heat exchanger (22) and the outdoor heat exchanger (12), thereby storing cold heat in the heat storage tank. Cooling storage and heat recovery cooling operation is carried out, and when the heat absorption sources are different, the evaporation temperatures are different, and when the heat absorption sources are changed and become equal, the evaporation temperatures are naturally adjusted to the same value, improving operational efficiency. .

したがって、請求項(2)の発明では、上記請求項(1
)の発明の効果に加えて、必要に応じて室内側で冷房運
転を行うことができるとともに、冷房及び蓄冷熱同時運
転や、蓄冷熱回収冷房運転が可能であり、その場合、他
の熱交換器(12)又は(32)との吸熱源又は放熱源
の大小関係の変化に応じて凝縮温度又は蒸発温度の異同
を自然に調節することができ、運転効率の向上を図るこ
とができるのである。
Therefore, in the invention of claim (2), the above claim (1)
) In addition to the effects of the invention, it is possible to perform cooling operation indoors as necessary, and simultaneous operation of cooling and cold storage heat, cooling operation with cold storage heat recovery, and in that case, other heat exchange The condensing temperature or evaporation temperature can be naturally adjusted according to the change in the size of the heat absorption source or heat radiation source with the vessel (12) or (32), and the operational efficiency can be improved. .

次に、請求項(3)の発明について、第3図に基づき説
明する。第3図は第3実施例に係る空気調和装置の構成
を示し、上記第2図に示す空気調和装置の構成に加えて
、2台の室内熱交換器(32)。
Next, the invention of claim (3) will be explained based on FIG. 3. FIG. 3 shows the configuration of an air conditioner according to a third embodiment, which includes two indoor heat exchangers (32) in addition to the configuration of the air conditioner shown in FIG. 2 above.

(32)が冷媒回路(1)内で並列に配置され、さらに
、各室内熱交換器(32)、(32)のガス管側には、
各室内熱交換器(32)、  (32)のガス管を吐出
ライン(37)と吸入ライン(36)とに選択的に連通
させるよう切換える副サイクル切換機構としての29の
室内四路切換弁(8)(8)がそれぞれ配置されている
。すなわち、室内側の要求の変化に応じて各室内熱交換
器(32)、  (32)を凝縮器又は蒸発器として機
能させ、冷暖房運転を個別に行うことができるようにな
されている。なお、(CA)、・・・はいずれも、各四
路切換弁<7)、  (8)、  (8)の−接続ボー
トと吸入ライン(36)との間に介設されたキャピラリ
チューブである。
(32) are arranged in parallel in the refrigerant circuit (1), and furthermore, on the gas pipe side of each indoor heat exchanger (32), (32),
29 indoor four-way switching valves (29) serve as sub-cycle switching mechanisms that switch the gas pipes of each indoor heat exchanger (32), (32) to selectively communicate with the discharge line (37) and the suction line (36). 8) (8) are arranged respectively. That is, each indoor heat exchanger (32), (32) is made to function as a condenser or an evaporator in response to changes in indoor demand, so that heating and cooling operations can be performed individually. In addition, (CA), ... are all capillary tubes interposed between the - connection boat of each four-way switching valve <7), (8), and (8) and the suction line (36). be.

請求項(3)の発明では、上記請求項(2)の発明の効
果に加えて、各室内で空調要求の変化に応じて、個別に
冷暖房運転を切換えることができ、そのように室内側の
トータルの要求が複雑に変化するような場合にも、第1
.第2熱交換器(12)。
In the invention of claim (3), in addition to the effect of the invention of claim (2), the heating and cooling operation can be switched individually according to changes in air conditioning demand in each room, and in this way, the indoor Even when total requirements change in a complex manner, the first
.. Second heat exchanger (12).

(22)の蒸発温度又は凝縮温度の異同の自然調節や各
熱交換器(12)、  (22)と各圧縮機(11)、
  (21)との接続関係もしくは運転台数の変更が可
能となって、全体として運転効率の向上効果が顕著に得
られることになる。
Natural adjustment of the evaporation temperature or condensation temperature of (22), each heat exchanger (12), (22) and each compressor (11),
It becomes possible to change the connection relationship with (21) or the number of operating units, resulting in a significant improvement in overall operating efficiency.

なお、上記各実施例では、接続切換機構を蓄熱三方切換
弁(9)で構成したが、接続切換機構として、第2吸入
管(26)(又は第2吐出管(27))及び分岐路(2
9)にそれぞれ開閉弁を介設し、その開閉を切換えるこ
とにより第2熱交換器(22)のガス管の接続切換を行
うこともできることはいうまでもない。
In each of the above embodiments, the connection switching mechanism was configured with the heat storage three-way switching valve (9), but the connection switching mechanism also included the second suction pipe (26) (or second discharge pipe (27)) and the branch path 2
It goes without saying that the connection of the gas pipes of the second heat exchanger (22) can be changed by interposing an on-off valve in each of the heat exchangers (9) and switching the opening and closing of the valve.

(発明の効果) 以上説明したように、請求項(1)の発明によれば、第
1.第2熱交換器をそれぞれ第1.第2圧縮機の吸入側
に直列接続した1対の組を第3熱交換器に対して並列に
接続し、第2熱交換器のガス管の接続を第2圧縮機の吐
出管と吸入管とに切換え可能にするとともに、第1圧縮
機の吸入管と第2圧縮機の吸入管との間をバイパスで接
続して、該バイパス路に第1圧縮機の吸入管側からの冷
媒の流通のみを許容する第1逆止弁を設ける一方、第2
吐出管に第2圧縮機側からの冷媒の流通のみを許容する
第2逆止弁を設けたので、第2熱交換器を蒸発器と凝縮
器の双方に機能させることにより、第1.第2熱交換器
において吸熱源の変化に応じて冷媒の蒸発温度を自然に
調節する同時蒸発運転と、第2.第3熱交換器において
、放熱源の変化に応じて冷媒の凝縮温度を自然に調節す
る同時凝縮運転とが可能となり、よって、熱交換器の利
用性及び運転効率の向上を図ることができる。
(Effects of the Invention) As explained above, according to the invention of claim (1), the first. The second heat exchanger is connected to the first heat exchanger. A pair of sets connected in series on the suction side of the second compressor are connected in parallel to the third heat exchanger, and the gas pipes of the second heat exchanger are connected to the discharge pipe and suction pipe of the second compressor. In addition, the suction pipe of the first compressor and the suction pipe of the second compressor are connected by a bypass, and refrigerant flows from the suction pipe side of the first compressor into the bypass passage. A first check valve is provided that allows only
Since the second check valve that only allows the flow of refrigerant from the second compressor side is provided in the discharge pipe, by making the second heat exchanger function as both the evaporator and the condenser, the second check valve can function as both the evaporator and the condenser. a simultaneous evaporation operation in which the evaporation temperature of the refrigerant is naturally adjusted in accordance with changes in the heat absorption source in the second heat exchanger; In the third heat exchanger, a simultaneous condensing operation in which the condensing temperature of the refrigerant is naturally adjusted according to changes in the heat radiation source is possible, and therefore the usability and operating efficiency of the heat exchanger can be improved.

請求項(2の発明によれば、上記請求項(1)の発明に
おいて、第1熱交換器と第3熱交換器との間で冷凍サイ
クルを交互に切換えるようにしたので、暖房及び蓄暖熱
同時運転、蓄暖熱回収暖房運転。
According to the invention of claim (2), in the invention of claim (1), the refrigeration cycle is alternately switched between the first heat exchanger and the third heat exchanger, so that heating and storage of heat can be achieved. Simultaneous heating operation, storage heat recovery heating operation.

冷房及び蓄冷熱同時運転、蓄冷熱回収冷房運転をするこ
とができ、よって、上記請求項(1)の発明の効果に加
えて、熱交換器の利用性を顕著に向上させることかでき
る。
Simultaneous cooling and cold storage heat operation and cold storage heat recovery cooling operation can be performed, and therefore, in addition to the effect of the invention of claim (1), the usability of the heat exchanger can be significantly improved.

請求項(3)の発明によれば、上記請求項(3の発明に
加えて、複数台の第3熱交換器を配置し、各第3熱交換
器のガス管を吐出ラインと吸入ラインとに選択的に連通
させるよう切換えるようにしたので、上記請求項(2)
の発明の効果に加えて、各第3熱交換器で個別に蒸発運
転と凝縮運転とを切換えてすることができる。
According to the invention of claim (3), in addition to the invention of claim (3), a plurality of third heat exchangers are arranged, and the gas pipe of each third heat exchanger is connected to a discharge line and a suction line. Since the switch is made to selectively communicate with the
In addition to the effects of the invention, each third heat exchanger can be individually switched between evaporation operation and condensation operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は本発明の実施例を示し、第1図は第1
実施例に係る空気調和装置の構成を示す冷媒配管系統図
、第2図は第2実施例に係る空気調和装置の構成を示す
冷媒配管系統図、讐寺嗣巷褐着44MFk第3図は第3
実施例に係る空気調和装置の構成を示す冷媒配管系統図
である。第4図は従来の空気調和装置の構成を示す冷媒
配管系統図である。 1  主冷媒回路 3a 第1逆止弁 3b 第2逆止弁 7  室外四路切換弁 (主サイクル切換機構) 8  室内四路切換弁 (副サイクル切換機構) 9  蓄熱三方切換弁 (接続切換機構) 11.21  第1.第2圧縮機 12 室外熱交換器 (第1熱交換器) 22 蓄熱熱交換器 (第2熱交換器) 32 室内熱交換器 (第3熱交換器) 13 室外電動膨張弁 (第1流量調節弁) 23 蓄熱電動膨張弁 (第2流量調節弁) 33 室内電動膨張弁 (第3流ffi調節弁) 14゜ 24゜ 4 第1〜第3配管 29 分岐路 第 図
1 to 3 show embodiments of the present invention, and FIG. 1 is a first embodiment of the present invention.
FIG. 2 is a refrigerant piping system diagram showing the configuration of the air conditioner according to the second embodiment. FIG. 3 is the refrigerant piping system diagram showing the configuration of the air conditioner according to the second embodiment. 3
1 is a refrigerant piping system diagram showing the configuration of an air conditioner according to an example. FIG. 4 is a refrigerant piping system diagram showing the configuration of a conventional air conditioner. 1 Main refrigerant circuit 3a First check valve 3b Second check valve 7 Outdoor four-way switching valve (main cycle switching mechanism) 8 Indoor four-way switching valve (sub-cycle switching mechanism) 9 Heat storage three-way switching valve (connection switching mechanism) 11.21 1st. Second compressor 12 Outdoor heat exchanger (first heat exchanger) 22 Regenerative heat exchanger (second heat exchanger) 32 Indoor heat exchanger (third heat exchanger) 13 Outdoor electric expansion valve (first flow rate adjustment valve) 23 Heat storage electric expansion valve (second flow rate control valve) 33 Indoor electric expansion valve (third flow ffi control valve) 14°24°4 1st to 3rd piping 29 Branch path diagram

Claims (3)

【特許請求の範囲】[Claims] (1)第1圧縮機(11)、該第1圧縮機(11)の吸
入側に順次配置される第1熱交換器(12)及び該第1
熱交換器(12)用の第1流量調節弁(13)を第1配
管(14)で直列に接続し、第2圧縮機(21)、該第
2圧縮機(21)の吸入側に順次配置される第2熱交換
器(22)及び該第2熱交換器(22)用の第2流量調
節弁(23)を第2配管(24)で直列に接続する一方
、第3熱交換器(32)及び該第3熱交換器(32)用
の第3流量調節弁(33)を第3配管(34)により直
列に接続し、該第3配管(34)に対して上記第1、第
2配管(14)、(24)を互いに並列に接続するとと
もに、上記第2圧縮機(21)の吐出管と第2熱交換器
(22)のガス管とをバイパス接続する分岐路(29)
と、第2熱交換器(22)のガス管を第2圧縮機(21
)の吸入管と上記分岐路(29)とに選択的に連通させ
るよう切換える接続切換機構(9)と、第1圧縮機(1
1)の吸入管と第2圧縮機(21)の吸入管とを冷媒の
バイパス可能に接続するバイパス路(2)と、該バイパ
ス路(2)に介設され、第1圧縮機(11)の吸入管側
から第2圧縮機(21)の吸入管側への冷媒の流通のみ
を許容する第1逆止弁(3a)と、上記第2圧縮機(2
1)の吐出管において上記分岐路(29)との接続部下
流側に介設され、第2圧縮機(21)側からの冷媒の流
通のみを許容する第2逆止弁(3b)とを備えたことを
特徴とする空気調和装置。
(1) A first compressor (11), a first heat exchanger (12) disposed in sequence on the suction side of the first compressor (11), and the first
A first flow rate control valve (13) for the heat exchanger (12) is connected in series with the first pipe (14), and sequentially connected to the second compressor (21) and the suction side of the second compressor (21). The second heat exchanger (22) to be arranged and the second flow rate control valve (23) for the second heat exchanger (22) are connected in series with the second pipe (24), while the third heat exchanger (32) and a third flow rate control valve (33) for the third heat exchanger (32) are connected in series by a third pipe (34), and the first, A branch line (29) connecting the second pipes (14) and (24) in parallel with each other and bypass-connecting the discharge pipe of the second compressor (21) and the gas pipe of the second heat exchanger (22). )
and the gas pipe of the second heat exchanger (22) is connected to the second compressor (21).
) and a connection switching mechanism (9) that selectively connects the suction pipe of the first compressor (1
a bypass passage (2) connecting the suction pipe of 1) and the suction pipe of the second compressor (21) so that the refrigerant can be bypassed; a first check valve (3a) that allows refrigerant to flow only from the suction pipe side of the second compressor (21) to the suction pipe side of the second compressor (21);
1), a second check valve (3b) is provided on the downstream side of the connection with the branch path (29) and allows flow of refrigerant only from the second compressor (21) side. An air conditioner characterized by:
(2)第1熱交換器(12)と第3熱交換器(32)と
の間で冷凍サイクルを切換える主サイクル切換機構(7
)を備えたことを特徴とする請求項(1)記載の空気調
和装置。
(2) Main cycle switching mechanism (7) that switches the refrigeration cycle between the first heat exchanger (12) and the third heat exchanger (32)
) The air conditioner according to claim (1).
(3)第3熱交換器(32)は複数個配置されていて、
該各第3熱交換器(32),・・・のガス管を吐出ライ
ン(37)と吸入ライン(36)とに選択的に連通する
よう切換える副サイクル切換機構(8),・・・を備え
たことを特徴とする請求項(2)記載の空気調和装置。
(3) A plurality of third heat exchangers (32) are arranged,
A sub-cycle switching mechanism (8), . . . that switches the gas pipes of the third heat exchangers (32), . The air conditioner according to claim 2, further comprising: an air conditioner.
JP31719489A 1989-12-05 1989-12-05 Air conditioner Expired - Fee Related JPH0814440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31719489A JPH0814440B2 (en) 1989-12-05 1989-12-05 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31719489A JPH0814440B2 (en) 1989-12-05 1989-12-05 Air conditioner

Publications (2)

Publication Number Publication Date
JPH03177757A true JPH03177757A (en) 1991-08-01
JPH0814440B2 JPH0814440B2 (en) 1996-02-14

Family

ID=18085507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31719489A Expired - Fee Related JPH0814440B2 (en) 1989-12-05 1989-12-05 Air conditioner

Country Status (1)

Country Link
JP (1) JPH0814440B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003062718A1 (en) * 2002-01-24 2003-07-31 Daikin Industries, Ltd. Refrigerating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003062718A1 (en) * 2002-01-24 2003-07-31 Daikin Industries, Ltd. Refrigerating device
US6938430B2 (en) 2002-01-24 2005-09-06 Daikin Industries, Ltd. Refrigerating device

Also Published As

Publication number Publication date
JPH0814440B2 (en) 1996-02-14

Similar Documents

Publication Publication Date Title
CN206919454U (en) Heat exchanger and air-conditioning device for air-conditioning device
JP3858015B2 (en) Refrigerant circuit and heat pump water heater
JP2804527B2 (en) Air conditioner
JP5283587B2 (en) Air conditioner
JP2004317091A (en) Air conditioner, refrigerant circuit of air conditioner and control method for refrigerant circuit in air conditioner
JP2698118B2 (en) Air conditioner
JP2684814B2 (en) Air conditioner
JP3719296B2 (en) Refrigeration cycle equipment
JP2760500B2 (en) Multi-room air conditioner
JP2910260B2 (en) Air conditioner and operation controller of air conditioner
JP2698117B2 (en) Air conditioner
JPH03177757A (en) Air conditioner
JP2698179B2 (en) Air conditioning
JP2611440B2 (en) Operation control device for air conditioner
JP2712641B2 (en) Air conditioner
JPH09318178A (en) Air conditioner
JPH03191260A (en) Air conditioning apparatus
JPH0528440Y2 (en)
JP2605422B2 (en) Air conditioner
KR100544873B1 (en) Multi-air conditioner for both cooling and heating which air cooling efficiency is improved
JPS592832B2 (en) Heat recovery air conditioner
JP2682157B2 (en) Air conditioner
JPH04257661A (en) Two stage compression refrigerating cycle device
JPH0339870A (en) Air conditioning apparatus
JP3569546B2 (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080214

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees