JPH03177589A - Corrosion inhibitor - Google Patents

Corrosion inhibitor

Info

Publication number
JPH03177589A
JPH03177589A JP31599389A JP31599389A JPH03177589A JP H03177589 A JPH03177589 A JP H03177589A JP 31599389 A JP31599389 A JP 31599389A JP 31599389 A JP31599389 A JP 31599389A JP H03177589 A JPH03177589 A JP H03177589A
Authority
JP
Japan
Prior art keywords
corrosion
added
ppm
corrosion inhibitor
nitrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31599389A
Other languages
Japanese (ja)
Inventor
Kazutaka Sakiyama
崎山 和孝
Hideho Sadahiro
貞弘 秀穂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Silica Corp
Original Assignee
Nippon Silica Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Silica Industrial Co Ltd filed Critical Nippon Silica Industrial Co Ltd
Priority to JP31599389A priority Critical patent/JPH03177589A/en
Publication of JPH03177589A publication Critical patent/JPH03177589A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Details Of Measuring And Other Instruments (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE:To satisfactorily prevent the corrosion of structural materials by using sodium silicate, nitrite and sodium molybdate as the effective components of a corrosion inhibitor and incorporating aminosilane as required. CONSTITUTION:Sodium silicate, nitrite and sodium molybdate are used as the effective components of a corrosion inhibitor to be added to water brought into contact with apparatus using ferrous metals as structural material, and aminosilane is incorporated as required. The concn. of the nitrite is regulated to >=5ppm, that of the sodium silicate to 5-100ppm (expressed in terms of SiO2) and that of the sodium molybdate to >=5ppm. The aminosilane is N-phenyl-gamma- aminopropyltrimethoxysilane or N-beta-aminoethyl-gamma-aminophopyltriethoxysilane. The corrosion inhibitor is suitable for use on an industrial scale.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えば冷却装置用の循環水に用いられる腐食
抑制剤に関し、詳しくは鉄鋼材料等の一般構造用鉄系金
属特には圧延鋼材を用いて構成されている装置の腐食を
防止するために使用される腐食抑制剤に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a corrosion inhibitor used for example in circulating water for a cooling system, and more particularly to a corrosion inhibitor for general structural ferrous metals such as steel materials, particularly rolled steel materials. The present invention relates to corrosion inhibitors used to prevent corrosion of equipment constructed using the present invention.

(従来の技術) 種々プラント等の工業的設備・装置においては、例えば
反応を円滑に行なわせる目的で温度制御を適宜行なう場
合が多く、このために反応系の温度調整用として冷却用
循環装置を付設することも多くなされている。
(Prior Art) In industrial facilities and equipment such as various plants, temperature control is often performed as needed to ensure smooth reaction, and for this purpose, a cooling circulation device is used to adjust the temperature of the reaction system. It is also often attached.

上記のような冷却水系においては、冷却水のffI類に
より、あるいは循環水中に存在する不純物等が次第に蓄
積して、構成材料が腐食され易い環境となる場合があり
、このために循環水には適切な腐食抑制剤を添加するこ
とが多く行なわれている0例えば鉄系材料を構成材料と
しているときには、クロム酸塩が過去には腐食抑制剤と
して多く使用され効果を挙げていた。しかしこのクロム
酸塩系の腐食抑制剤は、優れた効果を有するものの非常
に強い酸化力に起因する毒性があるため取扱い使用に関
して注意を要するという問題のあることが知られている
In the above-mentioned cooling water system, the ffI of the cooling water or impurities present in the circulating water may gradually accumulate, creating an environment where the constituent materials are likely to corrode. Appropriate corrosion inhibitors are often added. For example, when iron-based materials are used as constituent materials, chromate has been used frequently and effectively as a corrosion inhibitor in the past. However, although this chromate-based corrosion inhibitor has excellent effects, it is known that there is a problem in that care must be taken when handling and using it because it is toxic due to its extremely strong oxidizing power.

また上記の他に、リン酸と亜鉛塩を使用して、リン酸亜
鉛皮膜により腐食を防止する方法、ホスホン酸類あるい
はカルボン酸系等の有機腐食防止剤を用いる方法も知ら
れているが、前者ではCODの問題からその使用は制限
されるし、後者では必要な添加量が多いあるいはスライ
ム発生など対策を必要とする問題が多く存在する。
In addition to the above methods, there are also known methods that use phosphoric acid and zinc salts to prevent corrosion with a zinc phosphate film, and methods that use organic corrosion inhibitors such as phosphonic acids or carboxylic acids. In the latter case, its use is restricted due to the problem of COD, and in the latter case, there are many problems that require countermeasures, such as the required amount of addition and the generation of slime.

また、珪酸ソーダ(Na、0 ・n5io2)を冷却水
に添加して軟鋼を防食することも従来知られており、こ
れを濃厚に用いれば単独でも腐食防止は良好であるがこ
の珪酸ソーダはあまり高濃度に用いることには限度があ
る。しかし例えば冷却水にこれを添加したときの濃度を
5tChtX算で15pp11程度の低い値とした場合
下記第3表に示す如く腐食は低下する傾向を発揮するも
のの防食率はせいぜい50%程度にしかすぎず、濃度を
38ppm程度まで増しても防食率は80%を下廻って
おり、実際にはこの珪酸ソーダ単独の使用で防食を図る
のは適当でない。
It has also been known to prevent corrosion of mild steel by adding sodium silicate (Na, 0 . There are limits to its use at high concentrations. However, for example, if the concentration when added to cooling water is set to a low value of about 15pp11 calculated by 5tChtX, corrosion tends to decrease as shown in Table 3 below, but the corrosion protection rate is only about 50% at most. Even if the concentration is increased to about 38 ppm, the corrosion protection rate remains below 80%, and it is actually not appropriate to use this sodium silicate alone for corrosion protection.

(発明が解決しようとする課題) 本発明は以上のような従来の腐食抑制剤を用いる場合の
難点を解消し、鉄系構成材料である工業装置が冷却水等
に対して腐食防止に優れ、安価で、且つ排水による公害
問題を生ずることがない腐食抑制剤を提供することを目
的とする。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned difficulties in using conventional corrosion inhibitors, and provides excellent corrosion protection for industrial equipment made of iron-based constituent materials against cooling water, etc. The purpose of the present invention is to provide a corrosion inhibitor that is inexpensive and does not cause pollution problems due to drainage.

〔課題を解決するための手段〕[Means to solve the problem]

かかる目的を実現するためになされた本発明よりなる代
表的には冷却用装置用の循環水、特には軟鋼を構成材料
とした装置用の冷却水に用いられる腐食抑制剤の特徴は
、亜硝酸塩、珪酸ソーダ、モリブデン酸ソーダを有効成
分とし、更に必要に応じてアミノシラン類を添加して用
いられるところにある。
The corrosion inhibitor according to the present invention, which has been made to achieve the above object, is typically used for circulating water for cooling equipment, and in particular for cooling water for equipment made of mild steel. , sodium silicate, and sodium molybdate are used as active ingredients, and aminosilanes are added as needed.

本発明において上記成分を必要とするのは次の理由によ
る。すなわち亜硝酸ソーダで代表される亜硝酸塩(以下
亜硝酸ソーダでこれを代表させる)を添加すると軟鋼は
活性域が見られなくなり、陽極にすると直ちに不働態化
する。そして単独でも5ppm程度以上の濃度に亜硝酸
塩を添加することで軟鋼の防食率を90%以上に維持で
きることは下記′s4表および第5図から知見される。
The reason why the above components are necessary in the present invention is as follows. That is, when a nitrite salt represented by sodium nitrite (hereinafter referred to as sodium nitrite) is added, an active region is no longer observed in mild steel, and when it is used as an anode, it immediately becomes passivated. It is found from Table 4 and FIG. 5 below that the corrosion protection rate of mild steel can be maintained at 90% or more by adding nitrite alone at a concentration of about 5 ppm or more.

しかしながら、この亜硝酸ソーダの添加は工業的実施に
おいて軟鋼の不!ill!!!化に適する濃度に加えそ
れを維持することは必ずしも容易でないことを本発明者
は知見した。すなわち腐食試験結果の第4表からしても
安全率を考慮すれば亜硝酸ソーダの添加濃度は少くとも
10ppm以上のレベルに維持されることが軟鋼の防食
のkめに好ましいが、冷却水の使用状況からすると、熱
交換の過程その他を経て蒸発した一部が交換補充される
ために、加えた腐食抑制剤の濃度を常に一定に維持する
のは、その消耗を考え併せると容易ではなく、実際の工
業的規模においては低濃度の添加レベルでは軟鋼の不働
態化は不完全となることが避けられず、局部腐食あるい
は点食が急速に進行する懸念がある。
However, this addition of sodium nitrite is a problem for mild steel in industrial practice. ill! ! ! The present inventors have found that it is not always easy to obtain and maintain a concentration suitable for production. In other words, from Table 4 of the corrosion test results, considering the safety factor, it is preferable to maintain the added concentration of sodium nitrite at a level of at least 10 ppm or more for corrosion protection of mild steel. Considering the usage conditions, it is not easy to maintain the concentration of the added corrosion inhibitor at a constant level, considering its consumption, as some of it evaporates through the heat exchange process and other processes is replaced and replenished. On an actual industrial scale, it is inevitable that the passivation of mild steel will be incomplete at low additive levels, and there is a concern that localized corrosion or pitting will progress rapidly.

更にこの亜硝酸ソーダを上記腐食抑制剤として使用する
場合の他の問題としては、亜硝酸ソーダの添加濃度が変
動低下した場合には、第4表および第5図からも分る通
り防食率の低下の著しいことが挙げられる。かように添
加剤の濃度変化による防食効果の変動が大きい場合には
、工業的な装置での使用には注意を要することになり、
これは適当とは言えない。
Furthermore, another problem when using this sodium nitrite as the above-mentioned corrosion inhibitor is that when the added concentration of sodium nitrite fluctuates and decreases, as can be seen from Table 4 and Figure 5, the corrosion protection rate decreases. The decline is significant. If the anticorrosive effect varies greatly due to changes in additive concentration, care must be taken when using it in industrial equipment.
This cannot be said to be appropriate.

そこで亜硝酸ソーダによる軟鋼表面の不働態化作用を、
他の成分の添加によって好適に発揮させることを目的と
して本発明者が鋭意研究したところによると、この亜硝
酸ソーダと共に、分極により腐食を低下させる作、用を
もつ珪酸ソーダを同時に冷却水に加えること、及び軟鋼
を不働態化するモリブデン酸ソーダを添加して不働態を
より安定にすること、好ましくは、更に吸着作用により
亜硝酸ソーダの軟鋼表面に対する作用を向上させる成分
として、アミノシラン類を添加すると上記のような各種
問題が解決されることを認め、本発明をなすに至ったの
である。
Therefore, using sodium nitrite to passivate the surface of mild steel,
According to the inventor's intensive research with the aim of achieving the desired effect by adding other components, it was found that along with this sodium nitrite, sodium silicate, which has the effect of reducing corrosion through polarization, was added to the cooling water at the same time. Also, sodium molybdate, which passivates mild steel, is added to make the passivity more stable. Preferably, aminosilanes are further added as a component that improves the action of sodium nitrite on the surface of mild steel through adsorption. They recognized that the various problems mentioned above could be solved, and came up with the present invention.

以上のことから、本発明において冷却水等の温度調節用
循環水に添加する亜硝酸ソーダの濃度は5ppm以上、
好ましくは5ppm〜1100pp、最適には15pp
m〜30ppmとすることがよい、亜硝酸ソーダは5p
pm以下の濃度であると局部腐食の可能性を招く恐れが
あるので適当でない、亜硝酸塩はカリウム塩、リチウム
塩等であってもよい。
From the above, in the present invention, the concentration of sodium nitrite added to circulating water for temperature adjustment such as cooling water is 5 ppm or more,
Preferably 5ppm to 1100pp, optimally 15pp
It is preferable to set the concentration to m~30ppm, and sodium nitrite is 5p.
Nitrite salts may be potassium salts, lithium salts, etc., which are not suitable at concentrations below pm as they may cause local corrosion.

珪酸ソーダ濃度としては5102換算で5ppm〜10
0pp111.好ましくは10ppn+〜75ppm 
、最適には30ppm 〜40ppI11とするのが好
ましい。1100pp以上になるとPHの上昇があって
好ましくなく、また5ppm以下ではその添加の効果が
小さいという問題がある。
Sodium silicate concentration is 5 ppm to 10 based on 5102
0pp111. Preferably 10ppn+ to 75ppm
, most preferably 30 ppm to 40 ppm I11. If it is more than 1100 ppm, the pH will increase, which is not preferable, and if it is less than 5 ppm, there is a problem that the effect of its addition is small.

更に上記亜硝酸ソーダ及び珪酸ソーダと共に不働態化作
用を有するモリブデン酸ソーダ(Na、MoO4・2H
20)の添加が好ましく、これによって亜硝酸ソーダと
の共同効果から軟鋼の不働態化は゛容易となり、且つ高
電位まで安定となる(第1図〜第4図)、その添加濃度
は5 ppm以上、好ましくは5ppm〜1100pp
、最適には15ppm〜30ppmとするのがよい、、
5ppm以下では不働態化が不十分であり、1100p
p以上では不必要であり経済的に不利となる。
Furthermore, sodium molybdate (Na, MoO4.2H), which has a passivating effect together with the above sodium nitrite and sodium silicate,
It is preferable to add 20), which facilitates the passivation of mild steel due to the joint effect with sodium nitrite and makes it stable up to high potentials (Figures 1 to 4).The addition concentration is 5 ppm or more. , preferably 5 ppm to 1100 ppm
, it is best to set it at 15 ppm to 30 ppm.
Passivation is insufficient at 5 ppm or less, and 1100 p
If it is more than p, it is unnecessary and economically disadvantageous.

次に腐食抑制剤は、アミノシラン類の添加によって吸着
に起因する防食効果が期待される。
Next, the corrosion inhibitor is expected to have an anticorrosive effect due to adsorption by adding aminosilanes.

かようなアミノシラン類としては、N−フェニルーγア
ミノプロピルトリメトキシシラン。
Such aminosilanes include N-phenyl-γaminopropyltrimethoxysilane.

N−βアミノエチル(γアミノプロピルトリエトキシシ
ラン)(以後^PESと略称する)を挙げることができ
るが、コスト面からは特にAPESが好ましい。その添
加濃度はlppmxloppm 、好ましくは2ppm
〜5ppm程度とするのがよい。一般にこの添加剤は高
価であり、またIQppm以上にしてもあまり効果の向
上が期待されないので上記の範囲内とされる。
N-β-aminoethyl (γ-aminopropyltriethoxysilane) (hereinafter abbreviated as ^PES) can be mentioned, but APES is particularly preferred from the cost standpoint. Its concentration is lppmxloppm, preferably 2ppm
The content is preferably about 5 ppm. Generally, this additive is expensive, and even if it exceeds IQppm, it is not expected to improve the effect much, so it is set within the above range.

本発明の腐食抑制剤が適用される代表的な冷却用循環水
系のための装置材料は、鉄系金属材料詳しくは鉄鋼を構
成材料とするものが対象となる。またこの腐食抑制剤が
添加される冷却水は、淡水であれば格別に制限されるも
のではないが、一般には天然水、特ess除去処理が行
なわれていない天然氷が工業用冷却水として使用される
場合が多く、本発明はかかる冷却水に好適である。
A typical device material for a cooling circulating water system to which the corrosion inhibitor of the present invention is applied is a ferrous metal material, specifically, a material made of steel. The cooling water to which this corrosion inhibitor is added is not particularly limited as long as it is fresh water, but generally natural water or natural ice that has not undergone special ess removal treatment is used as industrial cooling water. The present invention is suitable for such cooling water.

〔発明の効果〕〔Effect of the invention〕

本発明の腐食抑制剤は、冷却水に添加すると不S態化を
効果的に発揮すると共に、他の成分である珪酸ソーダに
よる分極の効果が相刺されて、多量の冷却水を循環させ
る装置材料等における構成材料の腐食防止を良好に得る
ことができるという効果がある。
The corrosion inhibitor of the present invention effectively exhibits passivation when added to cooling water, and the polarization effect of the other component, sodium silicate, is mutually enhanced, making it a material for equipment that circulates a large amount of cooling water. This has the effect of providing good corrosion protection for the constituent materials in, etc.

またアミノシラン類の添加により吸着作用を相刺させて
、腐食抑制効果を向上させ必須成分である珪酸ソーダ、
亜硝酸ソーダ及びモリブデン酸ソーダ添加量を低減でき
るので、工業的規模での使用が好適に実現できる効果が
ある。
In addition, the addition of aminosilanes enhances the adsorption effect and improves the corrosion inhibiting effect.
Since the amounts of sodium nitrite and sodium molybdate added can be reduced, there is an effect that use on an industrial scale can be suitably realized.

〔実 施 例〕〔Example〕

以下本発明を実施例に基づいて説明するが、本発明が実
施例だけに限定されるものでないことは言うまでもない
The present invention will be described below based on Examples, but it goes without saying that the present invention is not limited only to the Examples.

なお以下の実施例に供した材料は一般構造用圧延鋼材(
JIS記号SS41)である。
The material used in the following examples is general structural rolled steel (
JIS symbol SS41).

試験に用いた冷却水は、SSの除去処理を行なっていな
い下記天然氷(山口県管野水系)を用いた。
The cooling water used in the test was the following natural ice (Yamaguchi Prefecture Kanno Water System) that had not been subjected to SS removal treatment.

使用した冷却水の成分及びこれが濃縮する場合を考え、
主として腐食に関与するC!−及び5042−イオンを
これに加えた冷却水についても試験を行なった。そして
便宜のため以後は前者をS−1液、後者をS−2液と略
称し、それらの成分を次表に示す。
Considering the components of the cooling water used and the case where it becomes concentrated,
C! Mainly involved in corrosion! - and 5042- ions added to the cooling water were also tested. For convenience, the former will be hereinafter referred to as Liquid S-1 and the latter as Liquid S-2, and their components are shown in the table below.

浸漬試験は供試片を研磨し、脱脂し秤量後試験液に3日
間潰し、試験中は液をマグネテイツクスターラーで攪拌
しながら50℃に維持した。
In the immersion test, the specimen was polished, degreased, weighed, and crushed in a test liquid for 3 days, and the liquid was maintained at 50° C. while stirring with a magnetic stirrer during the test.

(分極試験) 冷却水に腐食抑制剤を添加した試験液に1crt?の一
定表面積を有する試験片を漫潰し、ポテンショスタット
(定電位測定装置;北斗電工社製)を用いて、掃引速度
を2mV/秒として分極曲線を測定した。
(Polarization test) 1 crt in the test liquid made by adding corrosion inhibitor to cooling water? A test piece having a constant surface area was crushed, and a polarization curve was measured using a potentiostat (potential measuring device; manufactured by Hokuto Denko Co., Ltd.) at a sweep rate of 2 mV/sec.

(侵食度及び防食率) 侵食度は試験前後の重量変化から求めた。これを用い防
食率は下記の式より算出した。
(Degree of erosion and corrosion protection rate) The degree of erosion was determined from the change in weight before and after the test. Using this, the corrosion protection rate was calculated from the following formula.

−Y 防食率÷   0100% X:腐食抑制剤無添加時の侵食度 Y:腐食抑制剤添加時の侵食度 実施例1 珪酸ソーダ(3号珪酸ソーダ使用)、亜硝酸ソーダ及び
モリブデン酸ソーダを第1表に示す濃度で冷却水に添加
し、これらを試験液として上記のように試験片を浸漬し
た試験結果を第1表に示す。
-Y Corrosion protection rate ÷ 0100% Table 1 shows the test results in which the samples were added to cooling water at the concentrations shown in Table 1 and the test pieces were immersed in the test liquid as described above.

これから分るようにS−1液では記号1の僅かな抑制剤
の添加でも侵食度は低く、逆に防食率は98.2%と高
い。そして記号4以上に添加すると腐食は全く認められ
なくなり、その効果大なることが明白である。
As can be seen from the graph, in liquid S-1, even with the addition of a small amount of the inhibitor shown in symbol 1, the degree of corrosion is low, and on the contrary, the corrosion protection rate is as high as 98.2%. When it is added at a level of 4 or above, no corrosion is observed at all, and it is clear that the effect is great.

次にC2−イオンおよび504′−イオンの多いS−2
液においては、添加量が増すにつれて侵食度は次第に減
少する。C組成では84%にまで上昇する。更に添加量
が増加すると99%以上の防食率となった。
Next is S-2, which has many C2- ions and 504'- ions.
In liquids, the degree of erosion gradually decreases as the amount added increases. In the case of C composition, it increases to 84%. When the amount added was further increased, the corrosion protection rate reached 99% or more.

以上のように三成分を含む本例の腐食抑制剤は組成1の
ものでも98%以上の防食率であり優れている。またS
−2液のC1−イオンや5o42−イオンを多く含む腐
食性環境においても、D組成以上に添加すれば99%以
上の防食率を示す非常に優秀な性能を有することが分る
As described above, the corrosion inhibitor of this example containing the three components has a corrosion protection rate of 98% or more even with composition 1, which is excellent. Also S
It can be seen that even in a corrosive environment containing a large amount of C1- ions and 5o42- ions in the -2 solution, it has very excellent performance showing a corrosion protection rate of 99% or more when added to D composition or higher.

第1図は第1表における記号1かう6までの種々濃度の
5IOz 、 NaN0z及びNa2MoO4・2H2
0を含むS−1液中における軟鋼の分極曲線をまとめて
示したものである。添加量の少ない組成1でも分極は著
しく、組成2になると分極は一段と大きくなる。これか
ら防食率が98%を越えた第1表の結果がよく理解でき
る。これ以上の添加濃度になると、活性溶解はなく初め
から不働態であるから100%の防食率である。
Figure 1 shows various concentrations of 5IOz, NaN0z and Na2MoO4.2H2 with symbols 1 to 6 in Table 1.
The polarization curves of mild steel in S-1 liquid containing 0 are summarized. Even when composition 1 is added in a small amount, the polarization is significant, and when composition 2 is added, the polarization becomes even larger. From this, the results in Table 1, where the corrosion protection rate exceeded 98%, can be clearly understood. If the added concentration is higher than this, there is no active dissolution and the substance is in an inactive state from the beginning, so the corrosion protection rate is 100%.

そして添加量が多くなるほど不働態域は広くなり、より
安定となる。
The larger the amount added, the wider the passive region becomes, and the more stable it becomes.

次に第2図はS−2液中における軟鋼の分極曲線である
Next, FIG. 2 shows a polarization curve of mild steel in liquid S-2.

組成AからCまで分極はするが、その程度は小さく唾−
イオン及びS04′−イオンの存在量が多い影響が明白
である。D組成でも不働態電流がS−1液の4組成に比
べると非常に大きい。
There is polarization from composition A to C, but the degree of polarization is small.
The effect of high abundance of ions and S04'-ions is evident. Even in the D composition, the passive current is very large compared to the S-1 liquid of the 4 compositions.

また組成E、Fでも不働態電流は大きく、不働態域は狭
くなる。しかじ組成り以上では不!lI悪化するので、
防食率は99%以上の高い値である。
Furthermore, even with compositions E and F, the passive state current is large and the passive state region is narrow. It is not good if the composition is more than that! lI worsens, so
The corrosion protection rate is a high value of 99% or more.

実施例2 上記実施例1の珪酸ソーダ、亜硝酸ソーダ及びモリブデ
ン酸ソーダに、吸着作用を有する八PESを加えた四成
分系についての結果を第2表に示す。これから明らかな
とおり、S−1液では僅かの八PESが加わることによ
り記号l゛組成液は防食率が99%となる。モして3゛
液では殆んど腐食されなくなる。またS−2液でもAP
ESの添加によってC°組組成液は98%以上の防食率
となる。
Example 2 Table 2 shows the results for a four-component system in which 8PES having an adsorption effect was added to the sodium silicate, sodium nitrite, and sodium molybdate of Example 1 above. As is clear from this, when a small amount of 8 PES is added to the S-1 solution, the corrosion protection rate of the solution with the symbol 1 becomes 99%. However, with the 3rd solution, there is almost no corrosion. Also, S-2 liquid can also be used for AP.
By adding ES, the C° composition solution has a corrosion protection rate of 98% or more.

以上のように実施例工に比べることにより、APESの
添加が腐食防止を、より有効にすることが分る。
As mentioned above, by comparing with the example work, it can be seen that the addition of APES makes corrosion prevention more effective.

第3図は第2表における種々濃度の5in2゜NaNO
2,NaJOO4’2H20及びAPESを含むS−1
液中における記号1°〜6゛の組成液中における軟鋼の
分極曲線である。第1図と比較すると低濃度における分
極性は益々増大する。そして更に濃度が増した場合、陽
極にすると直ちに不働態化し、不働態域は広くなる。例
えば6゛組成液では+〇、8vまで不働態を維持するが
、これは実施例1の記号6の組成の+〇、65Vに比較
すると、−段と、これが安定になったことが認められる
Figure 3 shows 5in2°NaNO of various concentrations in Table 2.
2, S-1 containing NaJOO4'2H20 and APES
It is a polarization curve of mild steel in a composition liquid with a symbol of 1° to 6° in the liquid. Compared to FIG. 1, the polarizability at low concentrations increases increasingly. If the concentration increases further, it becomes passivated immediately when used as an anode, and the passivation region becomes wider. For example, the 6゛ composition liquid maintains a passive state up to +〇, 8V, but this is - level compared to +〇, 65V for the composition of symbol 6 in Example 1, which indicates that it has become more stable. .

第4図は同じくS−2液での結果である0分極性、不働
態の安定性はAPESの添加により増すことは第2図と
比較すれば明白である。
FIG. 4 shows the same results for S-2 liquid, 0 polarizability, and it is clear when compared with FIG. 2 that the stability of the passive state increases with the addition of APES.

比較例l 5−1液に珪酸ソーダを単独に添加した他は、実施例1
と同じく腐食試験を行ない、その結果を第3表に示す。
Comparative Example 1 Same as Example 1 except that sodium silicate was added alone to the 5-1 solution.
Corrosion tests were conducted in the same manner as above, and the results are shown in Table 3.

表から見られるように、珪酸ソーダ単独の添加では38
ppm添加しても0.48mm/yの侵食度であり、そ
の防食率は72.8%に過ぎず、抑制効果としては不十
分であった。
As seen from the table, when adding sodium silicate alone, 38
Even when ppm was added, the degree of corrosion was 0.48 mm/y, and the corrosion prevention rate was only 72.8%, which was insufficient as a suppressive effect.

比較例2 亜硝酸ソーダを、S−1液に単独添加の他は実施例1と
同様に腐食試験した結果を第4表に示す。そして分極曲
線を第5図に示す。
Comparative Example 2 Table 4 shows the results of a corrosion test carried out in the same manner as in Example 1, except that sodium nitrite was added alone to liquid S-1. The polarization curve is shown in FIG.

亜硝酸ソーダ単独添加では、3ppmの場合0.9mm
/y程度の侵食度で防食率は50%位である。
When adding sodium nitrite alone, 0.9 mm at 3 ppm
The corrosion protection rate is about 50% at an erosion degree of about /y.

しかし5ppm以上添加すると防食率は90%以上に増
加する。しかしながら、試験後の軟鋼表面には点食の発
生が見られるのでこの単独使用は好ましくない。
However, when 5 ppm or more is added, the corrosion protection rate increases to 90% or more. However, since pitting occurs on the mild steel surface after the test, its use alone is not preferred.

比較例3 第5表にはモリブデン酸ソーダ単独添加の試験結果を示
す。
Comparative Example 3 Table 5 shows the test results when sodium molybdate was added alone.

2.5ppmの添加では0.45a+n/yの侵食度で
あり、防食率としては74%位で十分とは言えない。
When adding 2.5 ppm, the degree of corrosion is 0.45a+n/y, and the corrosion protection rate is about 74%, which is not sufficient.

しかし5ppm以上になると90%を越える防食率を示
すようになる。しかし50ppmと多量に加えても99
.5%程度の防食率であり、また局部腐食も認められる
ところからこの単独使用は好ましくない。
However, when the content exceeds 5 ppm, the corrosion protection rate exceeds 90%. However, even if a large amount of 50 ppm is added, the
.. The corrosion protection rate is about 5%, and local corrosion is also observed, so its use alone is not preferable.

第 表 比較例4 種々濃度の亜硝酸ソーダ及び珪酸ソーダをS−1液に添
加し、こ、れを試験液として同様の試験を行なった結果
を第6表に示す。
Table 6 Comparative Example 4 Table 6 shows the results of a similar test in which various concentrations of sodium nitrite and sodium silicate were added to liquid S-1 and used as the test liquid.

表から分るとおりNaN0zが5ppm以上であると、
珪酸ソーダの濃度がSin、で7.2ppm位でも侵食
度は0.1mm/y以下で、そのときの防食率は95%
以上であった。しかしNaNo2が 1〜2ppmであ
れば腐食は非常にはげしく、特にippm以下では点食
の発生が見られ使用には耐えられない。
As can be seen from the table, when NaN0z is 5 ppm or more,
Even if the concentration of sodium silicate is around 7.2 ppm, the degree of corrosion is less than 0.1 mm/y, and the corrosion protection rate is 95%.
That was it. However, if the NaNo2 content is 1 to 2 ppm, corrosion will be extremely severe, and especially if the content is less than ippm, pitting will occur, making it unusable.

比較例5 珪酸ソーダ及びモリブデン酸ソーダを含むS−を液中に
おける腐食試験結果を第7表に示す。
Comparative Example 5 Table 7 shows the results of a corrosion test of S- containing sodium silicate and sodium molybdate in a liquid.

SiO□として14.4ppm 、モして Na2M0
04・2H20が10ppmが存在すると99%以上の
防食率である。そしてそれ以上含まれた場合、殆んど腐
食されなくなり防食効果は非常に大きい。しかし第2表
に見られるように更にNaNO2とAPESを添加する
と少ない添加量でも99%を越える防食率となる。
14.4ppm as SiO□, as Na2M0
When 10 ppm of 04.2H20 is present, the corrosion protection rate is 99% or more. If more than that amount is contained, corrosion will hardly occur and the anticorrosive effect will be very large. However, as shown in Table 2, when NaNO2 and APES are further added, the corrosion protection rate exceeds 99% even in small amounts.

【図面の簡単な説明】[Brief explanation of drawings]

図面第1図は本発明の実施例1の腐食抑制剤を添加した
S−1液の場合の分極曲線を示した図、第2図は同じ〈
実施例1の腐食抑制剤を添加したS−2液における分極
曲線である。 第3図は実施例2の腐食抑制剤を添加したS−1液中に
おける分極曲線を示した図、第4図は実施例2の腐食抑
制剤を加えたS−2液での分極曲線を示したものである
。 第5図は比較例2のNaNO2単独添加のS−1液中に
おける分極曲線である。 他4名 電流密度。 μA /afl 電流密度 μA / cボ 電流密度 μA/cTj 電流密度。 μA / C1バ 電流密度。 μA/d 2゜ 平r!t/年特許願第3ノダ??3号 月も1L才(p垢tx−Tht 3゜ 補正をする者 事件との関係 出 願 人 →1→帝−時−〇− 氏 名(名称) 日本シリカニ′策木束3(会ふ辷 代 理 人 補正命令の日付 電絶 電流密度。 μA / c4 電流密度。 μA/c這
Figure 1 is a diagram showing the polarization curve in the case of liquid S-1 containing the corrosion inhibitor of Example 1 of the present invention, and Figure 2 is the same.
2 is a polarization curve in liquid S-2 to which the corrosion inhibitor of Example 1 was added. Figure 3 shows the polarization curve in liquid S-1 containing the corrosion inhibitor of Example 2, and Figure 4 shows the polarization curve in liquid S-2 containing the corrosion inhibitor of Example 2. This is what is shown. FIG. 5 is a polarization curve in Comparative Example 2 in S-1 solution to which NaNO2 was added alone. Other 4 current density. μA/afl Current density μA/c Current density μA/cTj Current density. μA/C1 current density. μA/d 2゜flat r! 3rd patent application in t/year? ? 3rd month is also 1L years old (p. Date of current correction instruction: μA/c4 Current density: μA/c

Claims (1)

【特許請求の範囲】 1 珪酸ソーダ,亜硝酸塩,モリブデン酸ソーダを有効
成分とし、更に必要に応じてアミノシラン類を含み、鉄
系金属を構成材料とした装置類に接触する水に添加され
る腐食抑制剤。 2 請求項1において、亜硝酸塩の濃度が5ppm以上
であることを特徴とする腐食抑制剤。 3 請求項1又は2において、珪酸ソーダの濃度がSi
O_2換算で5ppm〜100ppmであることを特徴
とする腐食抑制剤。 4 請求項1ないし3のいずれかにおいて、モリブデン
酸ソーダ濃度が5ppm以上であることを特徴とする腐
食抑制剤。 5 請求項1ないし4のいずれかにおいて、上記アミノ
シラン類がN−フェニルーγアミノプロピルトリメトキ
シシラン,N−βアミノエチル(γ−アミノプロピルト
リエトキシシラン)のいずれかであることを特徴とする
腐食抑制剤。 6 請求項1ないし5のいずれかにおいて、添加する水
が、装置類の冷却用循環水系の循環水であることを特徴
とする腐食抑制剤。 7 珪酸ソーダ,亜硝酸塩,モリブデン酸ソーダと、更
に必要に応じてアミノシラン類を添加した水を、鉄系金
属を構成材料とした装置類の冷却水として用いること特
徴とする腐食抑制方法。
[Scope of Claims] 1. Corrosion treatment that contains sodium silicate, nitrite, and sodium molybdate as active ingredients, further contains aminosilanes as necessary, and is added to water that comes into contact with equipment made of iron-based metals. Suppressant. 2. The corrosion inhibitor according to claim 1, wherein the concentration of nitrite is 5 ppm or more. 3. In claim 1 or 2, the concentration of sodium silicate is Si
A corrosion inhibitor characterized by having a concentration of 5 ppm to 100 ppm in terms of O_2. 4. The corrosion inhibitor according to claim 1, wherein the sodium molybdate concentration is 5 ppm or more. 5. Corrosion according to any one of claims 1 to 4, characterized in that the aminosilane is either N-phenyl-γ-aminopropyltrimethoxysilane or N-β-aminoethyl (γ-aminopropyltriethoxysilane). Suppressant. 6. The corrosion inhibitor according to claim 1, wherein the water added is circulating water of a circulating water system for cooling equipment. 7. A corrosion suppression method characterized by using water to which sodium silicate, nitrite, sodium molybdate, and further aminosilanes are added as necessary, as cooling water for equipment made of iron-based metals.
JP31599389A 1989-12-05 1989-12-05 Corrosion inhibitor Pending JPH03177589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31599389A JPH03177589A (en) 1989-12-05 1989-12-05 Corrosion inhibitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31599389A JPH03177589A (en) 1989-12-05 1989-12-05 Corrosion inhibitor

Publications (1)

Publication Number Publication Date
JPH03177589A true JPH03177589A (en) 1991-08-01

Family

ID=18072045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31599389A Pending JPH03177589A (en) 1989-12-05 1989-12-05 Corrosion inhibitor

Country Status (1)

Country Link
JP (1) JPH03177589A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100376500B1 (en) * 2000-12-22 2003-03-17 주식회사 유니코정밀화학 White corrosion and color change inhibiting solutions for product coated with zinc
JP2017501297A (en) * 2013-09-27 2017-01-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Corrosion inhibitors for Fe2P structure magnetocaloric materials in water
CN111908627A (en) * 2020-08-10 2020-11-10 华能山东石岛湾核电有限公司 Corrosion inhibitor applied to cooling water system of nuclear island equipment and chemical adding method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100376500B1 (en) * 2000-12-22 2003-03-17 주식회사 유니코정밀화학 White corrosion and color change inhibiting solutions for product coated with zinc
JP2017501297A (en) * 2013-09-27 2017-01-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Corrosion inhibitors for Fe2P structure magnetocaloric materials in water
CN111908627A (en) * 2020-08-10 2020-11-10 华能山东石岛湾核电有限公司 Corrosion inhibitor applied to cooling water system of nuclear island equipment and chemical adding method thereof

Similar Documents

Publication Publication Date Title
US3589859A (en) Gluconate salt inhibitors
US4176059A (en) Anti-corrosion composition for use in aqueous systems
JPH04231484A (en) Phenyl mercaptotetrazole/tolyl triazole corrosion inhibitory composition
Mohana et al. Effect of sodium nitrite–borax blend on the corrosion rate of low carbon steel in industrial water medium
US2135160A (en) Prevention of corrosion
US6858097B2 (en) Brightening/passivating metal surfaces without hazard from emissions of oxides of nitrogen
JPH03177589A (en) Corrosion inhibitor
JPS6156288A (en) Copper corrosion inhibitor and use thereof in aqueous treatment system
JP3160051B2 (en) Pickling accelerator, pickling liquid composition containing pickling accelerator, and method for promoting pickling of metal using the same
JP2730740B2 (en) Corrosion inhibitor for circulating water piping system for cooling
EP0397454A1 (en) Higher alkylbenzotriazoles as copper and copper alloy corrosion inhibitors
JP3398724B2 (en) Corrosion inhibitor for metallic materials such as steel
EP1361290B1 (en) Use of a steel for chemical tank, excellent in sulfuric acid corrosion resistance and pitting corrosion resistance
Hornus et al. Effect of Temperature and Chloride Concentration on the Crevice Corrosion Resistance of Austenitic Stainless Steels
Kolman et al. Sodium molybdate as a corrosion inhibitor of mild steel in natural waters part 2: molybdate concentration effects
Narvaez et al. Hydrogen peroxide decomposition in an environmentally friendly pickling solution for AISI 316L stainless steel
JPS589157B2 (en) Kinzokuno Fushiyokuboushisoseibutsu
JP2994428B2 (en) Composition for treating phosphate film and treatment method
WO2001049899A2 (en) Brightening/passivating metal surfaces without hazard from emissions of oxides of nitrogen
STREICHER Synergistic inhibition of ferric ion corrosion during chemical cleaning of metal surfaces
US3282850A (en) Corrosion inhibition with dipropargyl butylamine
Keera et al. Corrosion of copper metal in distillation process
JPH1128461A (en) Method for suppressing corrosion of metal in water system
Yin et al. Aluminum Mold Corrosion and Protection
JPS59222589A (en) Corrosion inhibitor of metals