JPH03177582A - Production of member having amorphous layer - Google Patents

Production of member having amorphous layer

Info

Publication number
JPH03177582A
JPH03177582A JP1314163A JP31416389A JPH03177582A JP H03177582 A JPH03177582 A JP H03177582A JP 1314163 A JP1314163 A JP 1314163A JP 31416389 A JP31416389 A JP 31416389A JP H03177582 A JPH03177582 A JP H03177582A
Authority
JP
Japan
Prior art keywords
layer
alloy
amorphous
build
overlay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1314163A
Other languages
Japanese (ja)
Inventor
Akio Sato
彰生 佐藤
Shinji Kato
真司 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1314163A priority Critical patent/JPH03177582A/en
Publication of JPH03177582A publication Critical patent/JPH03177582A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Laser Beam Processing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To prevent a crack from being caused in a surface build up welding layer by forming nonmagnetic alloy as a first build up welding layer and forming alloy which is made amorphous by rapid cooling coagulation thereon as a second build up welding layer and impressing high-intensity energy on this layer to perform rapid redissolution and rapid coagulation and forming an amorphous pattern. CONSTITUTION:Nonmagnetic alloy free from martensitic transformation is formed as a first build up welding layer 5 on an iron-based alloy base body 1 which causes martensitic transformation. An alloy layer 6 is formed between both. Alloy which is made amorphous by rapid cooling coagulation is formed as a second build up layer 10 thereon. An alloy layer 11 is formed between both. High-intensity energy (laser) 13 is impressed on the second build up layer 10 to perform rapid dissolution and rapid recoagulation and an amorphous pattern 14 is formed. Thereby the strength difference of an output signal is made large in detection of the magnetic characteristics in the amorphous part or the crystalline part on the surface build up welding layers.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、位置や速度を検出する非接触型センサ等に使
用される、表面に非晶質層パターンを有する部材を製造
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of manufacturing a member having an amorphous layer pattern on its surface, which is used for a non-contact type sensor for detecting position or velocity.

〔従来の技術〕[Conventional technology]

金属基体の回転軸に、誘導磁気異方性を有する逆磁歪効
果の大きい非晶質磁性合金薄膜を固定して、回転軸のト
ルクを測定するトルクセンサが知られている(例えば、
特公昭63−20031号公報、「日経ニューマテリア
ル41987年2月16日号第10〜11頁参照)。ま
た、CuもしくはNiの金属基体の表面に非晶質合金層
を有する部材を得る方法として、「日経メカニカルJ 
1987年1月26日号第28頁〜第29頁には、非晶
質化し易い合金薄膜をHIP法(800℃)により基体
表面に接合した後、パルスレーザを合金薄膜表面に照射
して急速溶融急冷凝固処理することにより該合金薄膜の
表面層を非晶質化する方法が示されている。
Torque sensors are known that measure the torque of the rotating shaft by fixing an amorphous magnetic alloy thin film with induced magnetic anisotropy and a large inverse magnetostrictive effect to the rotating shaft of a metal base (for example,
Japanese Patent Publication No. 63-20031, "Nikkei New Materials 4, February 16, 1987 issue, pages 10 to 11). Also, as a method for obtaining a member having an amorphous alloy layer on the surface of a Cu or Ni metal substrate. , “Nikkei Mechanical J
In the January 26, 1987 issue, pages 28 to 29, an alloy thin film that easily becomes amorphous is bonded to the substrate surface by the HIP method (800°C), and then a pulsed laser is irradiated onto the alloy thin film surface to rapidly bond it. A method is disclosed in which the surface layer of the alloy thin film is made amorphous by melting and rapidly solidifying it.

そして、本発明者らは、特願昭63−297344号(
昭和63年11月25日出願日)にて、金属基体上に非
晶質化し易い合金の肉盛溶接層を結晶状態で形成し、こ
の肉盛溶接層にレーザなどの高密度エネルギを用いて非
晶質表面層を形成する方法を提案した。この提案した特
許出願での製造方法は特許請求の範囲に記載したように
、「急冷凝固により非晶質化する合金を母材上に配置し
て、高密度エネルギを用いてその合金を母材上に肉盛溶
接した後、肉盛層の表面を機械加工により仕上げ、次い
で肉盛層の表面に高密度エネルギを印加して肉盛層の表
面層を急速溶融・急速再凝固させてその表面層を非晶質
化させることを特徴とする非晶質層を有する部材の製造
方法」である。この製造方法は、実施例的ニハ、(1)
I材(345C) 基体上に非晶質化容易な合金粉体を
配置し、レーザ(高密度エネルギ)照射によって溶解し
て鋼基体に肉盛溶接し、(2)結晶状態の肉盛溶接層に
表面機械加工(研削)を施こし、モして(3)肉盛溶接
層にレーザ(高密度エネルギ)を走査照射して照射部分
を急速再溶融・急速再凝固させて非晶質表面層を形成す
るわけである。この非晶質表面層を所定パターンに形成
して肉盛溶接層を非晶質部分と結晶質部分とからなるパ
ターンにし、この磁気特性の変化パターンを励磁コイル
および検出コイルを有する検出器(磁気センサ)にて読
み取ることによって位置や速度などを検出できる。
The inventors of the present invention have also published Japanese Patent Application No. 63-297344 (
(filing date: November 25, 1988), an overlay weld layer of an alloy that easily becomes amorphous is formed in a crystalline state on a metal substrate, and high-density energy such as a laser is applied to this overlay weld layer. A method to form an amorphous surface layer was proposed. As described in the claims, the manufacturing method in this proposed patent application is to "place an alloy that becomes amorphous by rapid solidification on a base material, and use high-density energy to transform the alloy into a matrix. After overlay welding, the surface of the overlay is finished by mechanical processing, and then high-density energy is applied to the surface of the overlay to rapidly melt and rapidly resolidify the surface of the overlay. A method for manufacturing a member having an amorphous layer, which method comprises making the layer amorphous. This manufacturing method is as follows: (1)
I material (345C) An alloy powder that is easily amorphous is placed on a base, melted by laser (high-density energy) irradiation, and overlay welded to the steel base, (2) forming a crystalline overlay weld layer. (3) scan and irradiate the overlay welding layer with a laser (high density energy) to rapidly remelt and resolidify the irradiated area to form an amorphous surface layer. In other words, it forms. This amorphous surface layer is formed into a predetermined pattern to make the overlay welding layer into a pattern consisting of an amorphous part and a crystalline part, and this change pattern of magnetic properties is detected by a detector (magnetic) having an excitation coil and a detection coil. position, speed, etc. can be detected by reading it with a sensor).

〔発明、が解決しようとする課題〕[Problem that the invention attempts to solve]

しかしながら、提案した製造方法には次のような問題が
ある。すなわち、非晶質化容易な合金を肉盛溶接する際
に、基体が炭素鋼など焼き入れでマルテンサイト変態を
生じて体積膨張を起こす金属であると、肉盛溶接による
熱影響部分が体積膨張を起こして肉盛溶接層に引張り内
部応力が生じ、そのために肉盛層に割れ(クラック)が
発生することがある。また、炭素鋼などの加熱・冷却に
よってマルテンサイト変態を起こす材料は強磁性体であ
り、これを基体としてその上に形成した肉盛溶接層での
非晶質部分と結晶質部分との磁気特性変化パターンを検
出する際に強磁性基体の影響で検出信号強度差が小さく
なってしまう。
However, the proposed manufacturing method has the following problems. In other words, when overlaying an alloy that easily becomes amorphous, if the base material is a metal such as carbon steel that undergoes martensitic transformation and volumetric expansion during quenching, the heat-affected area due to overlaying welding will expand in volume. This causes tensile internal stress to occur in the overlay weld layer, which may cause cracks to occur in the overlay layer. In addition, materials that undergo martensitic transformation when heated and cooled, such as carbon steel, are ferromagnetic, and the magnetic properties of the amorphous and crystalline parts in the overlay weld layer formed on this base material When detecting a change pattern, the difference in detection signal strength becomes small due to the influence of the ferromagnetic substrate.

本発明は、本発明者らが先に提案した製造方法の改善で
あり、肉盛溶接層に割れの発生するのを防止し、かつ検
出信号強度差が小さくならないようにした非晶質層を有
する部材の製造方法を提供することを目的とする。
The present invention is an improvement of the manufacturing method previously proposed by the inventors, and includes an amorphous layer that prevents cracks from occurring in the overlay weld layer and prevents the difference in detection signal intensity from becoming small. An object of the present invention is to provide a method for manufacturing a member having the following.

〔課題を解決するための手段〕[Means to solve the problem]

上述した目的が、マルテンサイト変態を起こす鉄基合金
基体上に、マルテンサイト変態を起こさずかつ非磁性の
合金を第1肉盛溶接層として形成し、その上に急冷凝固
により非晶質する合金を第2肉盛溶接層として形成し、
該第2肉盛溶接層に高密度エネルギを印加して急速再溶
解・急速再凝固させて非晶質層パターンを形成すること
を特徴とする非晶質層を有する部材の製造方法によって
達成される。
The above-mentioned purpose is to form a non-magnetic alloy that does not undergo martensitic transformation as a first overlay welding layer on an iron-based alloy substrate that causes martensitic transformation, and then to form an amorphous alloy by rapid solidification on top of the first overlay welding layer. is formed as a second overlay welding layer,
Achieved by a method for manufacturing a member having an amorphous layer, characterized in that high-density energy is applied to the second overlay welding layer to cause rapid remelting and rapid resolidification to form an amorphous layer pattern. Ru.

〔作 用〕[For production]

マルテンサイト変態を起こさずかつ非磁性の合金とは、
例えば、オーステナイト系ステンレス、銅合金、アルミ
ニウム合金、マグネシウム合金、チタン合金などあり、
これをレーザ、TIGアーク、ブラズアーク、電子ビー
ムなどの高密度エネルギを用いて溶融して基体上に肉盛
溶接するのが好ましい。なお、この場合にはプラズマ溶
射も含む。そして、この合金は粉末ないしワイヤとして
用意され、肉盛溶接方法に応じ適切なものが使用される
What is an alloy that does not undergo martensitic transformation and is non-magnetic?
For example, there are austenitic stainless steels, copper alloys, aluminum alloys, magnesium alloys, titanium alloys, etc.
It is preferable to melt this using high-density energy such as a laser, TIG arc, brass arc, or electron beam and overlay weld it onto the base. Note that in this case, plasma spraying is also included. This alloy is prepared as a powder or a wire, and an appropriate one is used depending on the overlay welding method.

この非磁性合金の第1肉盛溶接層の付加が先に提案した
製造方法との主要相違点であり、この肉盛溶接層が介在
することによって、その上に非晶質化容易な合金を肉盛
溶接する際に、炭素鋼などの鉄基合金基体がマルテンサ
イト変態膨張したとしても、第1肉盛溶接層は変態膨張
しないしかつそれ白身にも割れを発生させることなく基
体の膨張を緩和するので、非晶質化容易な合金の第2肉
盛溶接層には割れは発生しない。さらに、第1肉盛溶接
層は非磁性であるので、非晶質部分と結晶質部分との磁
気特性の変化パターンを検出するために磁界を印加する
際に検出信号に影響しないしかつその下の強磁性合金で
ある基体の影響を防ぐ。
The addition of this first build-up weld layer of non-magnetic alloy is the main difference from the previously proposed manufacturing method, and the presence of this build-up weld layer allows the formation of an alloy that easily becomes amorphous on top of it. Even if an iron-based alloy substrate such as carbon steel undergoes martensitic transformation and expansion during overlay welding, the first overlay weld layer will not undergo transformation expansion and will allow the base to expand without causing any cracks in its white. Because of the relaxation, cracks do not occur in the second overlay weld layer of the alloy that is easily made amorphous. Furthermore, since the first overlay weld layer is non-magnetic, it does not affect the detection signal when a magnetic field is applied to detect the pattern of change in magnetic properties between the amorphous part and the crystalline part. This prevents the influence of the base material, which is a ferromagnetic alloy.

したがって、磁気特性の相違に基づく検出信号強度差が
明瞭に(従来よりも大きく)なる。
Therefore, the difference in detection signal strength based on the difference in magnetic properties becomes clear (larger than before).

〔実施例〕〔Example〕

以下、添付図面を参照して本発明の実施態様例によって
、本発明の詳細な説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail by way of embodiments with reference to the accompanying drawings.

第1A図〜第1G図は本発明に係る製造方法にしたがっ
た製造工程を説明する非晶質層を有する部材の概略断面
図であり、第2図は長手方向断面での製造された部材と
検出センサとの関係を示す図面である。
1A to 1G are schematic cross-sectional views of a member having an amorphous layer for explaining the manufacturing process according to the manufacturing method according to the present invention, and FIG. 2 is a longitudinal cross-sectional view of the manufactured member. It is a drawing showing the relationship with a detection sensor.

非晶質層を有する部材が本発明にしたがって次のように
製造される。
A component with an amorphous layer is manufactured according to the invention as follows.

第1A図に示すように、炭素鋼などのマルテンサイト変
態しかつ強磁性の鉄基合金基体1を用意し、その上にオ
ーステナイト系ステンレス鋼などのマルテンサイト変態
を起こさずかつ非磁性の合金材料(粉末)2を配置する
。他の材料とし銅合金、アルミニウム合金、マグネシウ
ム合金、チタン合金などの合金粉末を用いてもよい。
As shown in FIG. 1A, an iron-based alloy substrate 1 that undergoes martensitic transformation and is ferromagnetic, such as carbon steel, is prepared, and an alloy material that does not undergo martensitic transformation and is non-magnetic, such as austenitic stainless steel, is placed thereon. (Powder) 2 is placed. As other materials, alloy powders such as copper alloy, aluminum alloy, magnesium alloy, titanium alloy, etc. may be used.

次に、高密度エネルギであるレーザ3を照射し、走査す
ることによって配置した粉末を順次連続的に溶解して溶
融金属ブール4を形成し、冷却凝固させて第1肉盛溶接
層5を形成する。このときに、基体1と肉盛溶接層4と
の界面に合金層6が形成される。
Next, by irradiating and scanning a laser 3 with high-density energy, the arranged powder is sequentially and continuously melted to form a molten metal boule 4, and the molten metal boule 4 is cooled and solidified to form a first overlay weld layer 5. do. At this time, an alloy layer 6 is formed at the interface between the base body 1 and the overlay weld layer 4.

第1A図および第1B図の場合には、合金粉末の肉盛材
料およびレーザを利用しているが、公知のTIGアーク
溶接法を用いワイヤ状合金の肉盛材料でもって第1肉盛
溶接層5を形成することができる。さらに、公知のプラ
ズマ溶射法でもって第1肉盛層を形成することもできる
In the case of FIGS. 1A and 1B, an alloy powder overlay material and a laser are used, but the first overlay weld layer is formed using a wire-like alloy overlay material using a known TIG arc welding method. 5 can be formed. Furthermore, the first build-up layer can also be formed by a known plasma spraying method.

第1肉盛溶接層はマルテンサイト変態しない金属材料で
あり、基体の熱影響部がマルテンサイト変態膨張しても
第1肉盛溶接層はその変形による内部応力が許容範囲内
であり割れは発生しない。
The first overlay weld layer is a metal material that does not undergo martensitic transformation, and even if the heat-affected zone of the base undergoes martensitic transformation and expands, the internal stress of the first overlay weld layer due to its deformation is within the allowable range and cracking will occur. do not.

第1C図に示すように、第1肉盛溶接層5の表面を滑ら
かにかつ所定厚さにするために機械加工(切削加工ない
し研削加工)する。なお、この機械加工が必要でない場
合には省略することができる。
As shown in FIG. 1C, the surface of the first overlay weld layer 5 is machined (cutting or grinding) to make it smooth and have a predetermined thickness. Note that this machining can be omitted if it is not necessary.

次に、第1D図に示すように、第1肉盛溶接層5の上に
非晶質化容易な合金を肉盛用材料(粉末)7として配置
する。非晶質化容易な合金としては、例えば、Fe−B
系、Fe−P系、Fe−P−C系、Pd−3i系、Fe
 −3i−B系、Co −3i−B系などの合金がある
が、要は部材の用途に応じて最適なものを選択すれば良
く、特に合金組成を限定するものではない。
Next, as shown in FIG. 1D, an alloy that easily becomes amorphous is placed on the first overlay welding layer 5 as an overlay material (powder) 7. Examples of alloys that can be easily made amorphous include Fe-B
system, Fe-P system, Fe-P-C system, Pd-3i system, Fe
There are alloys such as -3i-B series and Co-3i-B series, but the important thing is to select the optimum one according to the use of the member, and the alloy composition is not particularly limited.

その後に、第1E図に示すように、レーザ8を照射し、
走査することによって配置した粉末を順次連続的に溶解
して溶融金属プール9を形成し、冷却凝固させて第2肉
盛溶接層10を形成する。このときに、第1肉盛溶接層
5と第2肉盛溶接層10との界面に合金層1■が形成さ
れる。
After that, as shown in FIG. 1E, the laser 8 is irradiated,
The powder placed by scanning is sequentially and continuously melted to form a molten metal pool 9, which is cooled and solidified to form a second overlay welding layer 10. At this time, an alloy layer 1 is formed at the interface between the first overlay weld layer 5 and the second overlay weld layer 10.

上述した第1D図および第1E図の場合とは違って、公
知のTIGアーク溶接法を用いて粉末に代るワイヤ状の
肉盛材料でもって第2肉盛溶接層10を形成することが
できる。さらに、公知のプラズマ溶射法でもって第1肉
盛層を形成することもできる。
Unlike the case of FIGS. 1D and 1E described above, the second overlay weld layer 10 can be formed using a wire-like overlay material instead of powder using the known TIG arc welding method. . Furthermore, the first build-up layer can also be formed by a known plasma spraying method.

いずれの場合にも、肉盛材料の溶融後の冷却は主として
第1肉盛溶接層5を介しての基体lへの熱伝導による自
己冷却によって比較的急速に凝固するが、第2肉盛溶接
層全体の厚みが比較的厚いこともあって超急冷ではない
ので、微細組織の結晶層となっている。
In either case, the cooling after melting of the overlay material is mainly due to self-cooling due to heat conduction to the base l through the first overlay welding layer 5, and the overlay material solidifies relatively quickly, but the second overlay welding Because the overall thickness of the layer is relatively thick, it is not ultra-quenched, resulting in a crystalline layer with a fine structure.

その後に、第1F図に示すように、第2肉盛溶接層IO
を所定厚さ(例えば、0.01 mm以上)に機械加工
する。第2肉盛溶接層厚さが薄いので研削加工が望まし
い。
After that, as shown in FIG. 1F, the second overlay weld layer IO
is machined to a predetermined thickness (for example, 0.01 mm or more). Since the thickness of the second overlay weld layer is thin, grinding is desirable.

次いで、第1G図および第2図に示すように、結晶状態
の第2肉盛溶接層lOに高密度エネルギ(レーザ、電子
ビーム、T工Gアーク、プラズマアーク等)13を印加
して急速再溶融し、自己冷却の急速再凝固によって非晶
質層14を形成する。ここでは、結晶層を非晶質化する
ように高密度エネルギの印加条件(例えば、レーザ出力
、レーザ走査速度、レーザ照射ビーム径など)を適切に
設定する必要がある。非晶質層14は製品長手方向に直
角な方向に延在する線状(ストライブ状)に所定間隙D
(第2図)で形成される。このように、製品長手方向に
非晶質部分ストライブ14と結晶質部分ストライブとが
交互に現われるパターンになっている。この急速再溶融
・再凝固時の加熱冷却があっても第1肉盛層5はマルテ
ンサイト変態しないので従来生じていた変態膨張に基因
した割れは第2肉盛層lOには生じない。最後に、第2
肉盛溶接層10の表面を研削又は研磨の仕上げ加工して
使用に供することになる。
Next, as shown in FIGS. 1G and 2, high-density energy (laser, electron beam, T-G arc, plasma arc, etc.) 13 is applied to the second overlay weld layer lO in a crystalline state to cause rapid regeneration. The amorphous layer 14 is formed by melting and rapid resolidification by self-cooling. Here, it is necessary to appropriately set conditions for applying high-density energy (eg, laser output, laser scanning speed, laser irradiation beam diameter, etc.) so as to make the crystal layer amorphous. The amorphous layer 14 has a predetermined gap D in a linear shape (stripe shape) extending in a direction perpendicular to the longitudinal direction of the product.
(Fig. 2). In this way, the pattern is such that amorphous partial stripes 14 and crystalline partial stripes appear alternately in the longitudinal direction of the product. Even with this heating and cooling during rapid remelting and resolidification, the first build-up layer 5 does not undergo martensitic transformation, so the cracks caused by transformation expansion that conventionally occur do not occur in the second build-up layer IO. Finally, the second
The surface of the overlay weld layer 10 is finished by grinding or polishing before use.

このようにして製造された非晶質層を有する部材15(
第2図)はその第2肉盛層10が非晶質部分14と結晶
質部分との交互パターン表面となっており、第2図に示
すように、磁気センサー6にて非晶質と結晶質との磁気
特性の差による検出信号強度差を検出することができる
。このことが位置および速度を測定するのに利用できる
。なお、磁気センサー6は励磁コイルおよび検出コイル
からなり、励磁コイルに発振・増幅回路17から高周波
の励磁電流が供給されており、検出コイルから得られる
検出信号は非晶質部分と結晶質部分との磁気特性に応じ
た出力電位である。
A member 15 having an amorphous layer manufactured in this way (
In FIG. 2), the second build-up layer 10 has an alternating pattern surface of amorphous portions 14 and crystalline portions, and as shown in FIG. It is possible to detect the difference in detection signal strength due to the difference in magnetic properties between the magnetic field and the magnetic field. This can be used to measure position and velocity. The magnetic sensor 6 consists of an excitation coil and a detection coil, and a high-frequency excitation current is supplied to the excitation coil from an oscillation/amplification circuit 17, and the detection signal obtained from the detection coil is divided into an amorphous portion and a crystalline portion. The output potential corresponds to the magnetic properties of the

例 鋼材(S45C)からなる厚さ10 mmの平板状基体
1の表面に、第1A図に示すように、非晶質化容易な肉
盛用材料2として、Si4,6wt%−B2.2wt%
−残部Feよりなる合金の粉末を幅10mm、厚さ2m
□で直線状に配置した。その粉末上に第1B図に示すよ
うにCO□レーザ3を照射し、かつそのレーザを配置し
た粉末2の長手方向に直角にオシレートさせつつ長手方
向に走査して、粉体を基体1上に溶着させ、第1肉盛層
5を形成した。このときのレーザ照射条件は次の通りで
ある。
Example As shown in FIG. 1A, Si4.6wt%-B2.2wt% was used as a material for overlaying 2 that is easily amorphous, as shown in FIG.
- Alloy powder with the remainder being Fe in a width of 10 mm and a thickness of 2 m.
Placed in a straight line with □. The powder is irradiated with a CO□ laser 3 as shown in FIG. 1B, and the laser is scanned in the longitudinal direction while oscillating at right angles to the longitudinal direction of the disposed powder 2, thereby depositing the powder onto the base 1. The first overlay layer 5 was formed by welding. The laser irradiation conditions at this time are as follows.

レーザビーム:集光レンズにてφ2mrnの大きさに集
光したビームを振幅幅8IIIIIlでオシレートする
Laser beam: A beam condensed to a size of φ2 mrn by a condenser lens is oscillated with an amplitude width of 8III1.

オシレート数: 180Hz レーザ出カニ 2.5 kill レーザ走査速度:200mm/m1n(基体1の移動速
度)次いで、第1C図に示すように第1肉盛層5の表面
に研削加工を施して、肉盛層5の厚みが1.0mmとな
るように加工した。
Oscillation rate: 180Hz Laser output 2.5 kills Laser scanning speed: 200mm/m1n (moving speed of the base 1) Next, as shown in FIG. 1C, the surface of the first overlay layer 5 is ground to Processing was performed so that the thickness of the layer 5 was 1.0 mm.

第1D図に示すように、超急冷凝固により非晶質化する
合金粉末7を第1肉盛層5上に幅510[11゜厚さ2
uで直線状に配置した。この合金粉末の組成はSi4.
9%−B4゜0%−残部Fe(A合金)又はSi4.7
%−B3.8%−残部Co(B合金)である。その粉末
7上に第1E図に示すようにC02レーザ8を照射し、
かつ配置した粉末7の長手方向に直角にオ・シレートさ
せつつ長手方向に走査して、この合金を溶着させ、結晶
状の第2肉盛層10を形成した。このときのレーザ照射
条件は次の通りである。
As shown in FIG. 1D, the alloy powder 7, which becomes amorphous through ultra-rapid solidification, is spread over the first build-up layer 5 to a width of 510 [11° and a thickness of 2.
They were arranged in a straight line at u. The composition of this alloy powder is Si4.
9%-B4゜0%-balance Fe (A alloy) or Si4.7
%-B3.8%-balance Co (B alloy). The powder 7 is irradiated with a C02 laser 8 as shown in FIG. 1E,
The powder 7 was oscillated perpendicularly to the longitudinal direction of the powder 7 and scanned in the longitudinal direction to weld the alloy to form a crystalline second build-up layer 10. The laser irradiation conditions at this time are as follows.

レーザビーム:集光レンズにてφ2 mmの大きさに集
光したビームを振幅幅4mm でオシレートする。
Laser beam: A beam focused to a diameter of 2 mm by a condenser lens is oscillated with an amplitude width of 4 mm.

オシレート数=180池 レーザ出カニ2.5kW レーザ走査速度:  100mm/min又は200m
m/m1n(基体の移動速度) 第2肉盛層10の形成後に、浸透探傷法にてこの第2肉
盛層の表面に割れが発生しているかどうかを調べ、その
結果を第1表に示す。いずれの場合にも割れの発生はな
かった。
Oscillation number = 180 laser output 2.5kW Laser scanning speed: 100mm/min or 200m
m/m1n (moving speed of the substrate) After the formation of the second build-up layer 10, it was investigated whether or not cracks had occurred on the surface of the second build-up layer by penetrant testing, and the results are shown in Table 1. show. No cracking occurred in any case.

なお、比較例として、第1肉盛層5を省略して、鋼基体
1の上に直接に第2肉盛層を上述した条件と同じ条件に
て形成し、その表面に割れが発生しているかどうかを浸
透探傷法にて調べ、その結果を第1表に示す。いずれの
場合にも割れが発生していた。
As a comparative example, the first build-up layer 5 was omitted and the second build-up layer was formed directly on the steel base 1 under the same conditions as described above, and no cracks were generated on the surface. The presence or absence of the cracks was investigated using penetrant testing, and the results are shown in Table 1. Cracks occurred in both cases.

第1表 肉盛層表面の割れの有無 次に、第1F図に示すように、第2肉盛層10に研削加
工を施して、厚さ0.2 mmに仕上げ加工した。
Table 1 Presence of cracks on the surface of the build-up layer Next, as shown in Fig. 1F, the second build-up layer 10 was ground to a thickness of 0.2 mm.

最後に、第1G図に示すように、第2肉盛層IOにYA
Gレーザ13を長手方向に対して直角にストライプ(線
)状に照射し、急速再溶解・急速再凝固させて非晶質層
14を形成した。このレーザ照射を所定間隙D(0,3
mm)にて行なって第2図に示すように非晶質層14の
ストライプを繰返すパターンとした。非晶質層14を含
む第2肉盛層には割れの発生はなかった。このときのレ
ーザ照射条件は次の通りである。
Finally, as shown in Fig. 1G, YA is applied to the second overlay layer IO.
The amorphous layer 14 was formed by irradiating the G laser 13 in a stripe (line) shape perpendicular to the longitudinal direction to cause rapid remelting and rapid resolidification. This laser irradiation is performed at a predetermined gap D (0,3
mm) to form a pattern in which stripes of the amorphous layer 14 are repeated as shown in FIG. No cracks were observed in the second overlay layer including the amorphous layer 14. The laser irradiation conditions at this time are as follows.

レーザビーム:集光レンズにてφ0.2 +nmの大き
さに集光。
Laser beam: Condensed into a size of φ0.2 + nm using a condensing lens.

パルスのエネルギー: 48mJ パルス幅: 0.5 m秒 パルスの繰り返し周波数: 50Hz このようにし製作した非晶質層を有する部材15は、第
2図に示すように、形成した非晶質部分(層14)と結
晶質部分(第2肉盛層10そのままの部分)とが交互ス
トライブとなっているパターンであり、磁気センサ16
を部材15上でスライドさせる(又は部材15を移動さ
せる)ことによって非晶質層14の検出を行ない、その
数をカウントして相対位置ないし相対速度を算出するこ
とができる。
Pulse energy: 48 mJ Pulse width: 0.5 msec Pulse repetition frequency: 50 Hz The member 15 having an amorphous layer manufactured in this manner has a structure in which the formed amorphous portion (layer 14) and the crystalline portion (the portion where the second build-up layer 10 remains) are arranged in alternating stripes, and the magnetic sensor 16
By sliding the amorphous layer 14 on the member 15 (or moving the member 15), the amorphous layer 14 can be detected, and the relative position or relative velocity can be calculated by counting the number of amorphous layers 14.

発振・増幅回路17から2MHzの励磁電流を磁気セン
サ16の励磁コイルに供給し、該センサの検出コイルか
ら非晶質又は結晶質の磁気特性に応じた出力信号(電位
)が得られる。得られた出力信号は物質の磁気特性を反
映しているのでその出力信号強度差が大きいほど測定に
とっては好ましいわけであり、本発明に係る部材15の
出力信号強度差は、第3図に示すように、2.4Vであ
り、一方、従来の場合には1.8 Vであり、明らかに
本発明のほうが優れている。なお、この従来の場合とは
、第■肉盛層を省略し、直接基体上に第2肉盛層を形成
した部材である。
An excitation current of 2 MHz is supplied from the oscillation/amplification circuit 17 to the excitation coil of the magnetic sensor 16, and an output signal (potential) corresponding to the magnetic characteristics of the amorphous or crystalline material is obtained from the detection coil of the sensor. Since the obtained output signal reflects the magnetic properties of the material, the larger the difference in output signal intensity, the better for measurement.The difference in output signal intensity of the member 15 according to the present invention is shown in FIG. In contrast, in the conventional case, the voltage was 1.8 V, and the present invention is clearly superior. Note that this conventional case is a member in which the second build-up layer is omitted and the second build-up layer is directly formed on the base.

〔発明の効果〕〔Effect of the invention〕

上述したように、本発明によれば、炭素鋼などのマルテ
ンサイト変態膨張を起こす鉄基合金基体上に非晶質比容
易な合金の肉盛溶接する際に、本発明にしたがって、マ
ルテンサイト変態しないしかつ非磁性の(中間)肉盛溶
接層を基体と非晶質化容易な合金の(表面)肉盛溶接層
との間に形成することによって、表面肉盛溶接層の割れ
発生が防止でき、しかも表面肉盛溶接層に形成される非
晶質部分ないし結晶質部分の磁気特性検出において出力
信号強度差を大きくできる。実施例では板状部材であっ
たが、円柱状(丸棒)部材にも本発明を適用することが
でき、回転角度、回転速度の測定に利用できる。
As described above, according to the present invention, when overlaying an alloy that is easily amorphous on an iron-based alloy substrate such as carbon steel that undergoes martensitic transformation expansion, martensitic transformation expansion can be performed according to the present invention. By forming a non-magnetic (intermediate) overlay weld layer between the base and the (surface) overlay weld layer of an alloy that easily becomes amorphous, cracks in the surface weld overlay are prevented. Moreover, it is possible to increase the difference in output signal intensity in detecting the magnetic characteristics of an amorphous portion or a crystalline portion formed in the surface welding layer. In the embodiment, a plate-like member was used, but the present invention can also be applied to a cylindrical (round bar) member, and can be used to measure the rotation angle and rotation speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1A図〜第1G図は、本発明に係る製造方法での製造
工程を説明する非晶質層を有する部材の長平方向に直角
な方向での概略断面図であり、第2図は、本発明の製造
方法で製造された部材(長手方向断面)と検出センサと
の関係を示す図であり、 第3図は、本発明実施例による部材および従来法による
部材での検出信号強度差を示すグラフである。 1・・・基体、      5・・・第1肉盛溶接層、
3.8.13・・・レーザ、 ■0・・・第2肉盛溶接
層、14・・・非晶質層、    16・・・検出セン
サ。 第1A図 第1B図 第1C図 第 1D 図 第1E図 第1F図 第 面
1A to 1G are schematic cross-sectional views taken in a direction perpendicular to the longitudinal direction of a member having an amorphous layer, illustrating the manufacturing process in the manufacturing method according to the present invention, and FIG. FIG. 3 is a diagram showing the relationship between a member (longitudinal cross section) manufactured by the manufacturing method of the invention and a detection sensor; FIG. It is a graph. 1... Base body, 5... First overlay welding layer,
3.8.13...Laser, ■0...Second overlay welding layer, 14...Amorphous layer, 16...Detection sensor. Figure 1A Figure 1B Figure 1C Figure 1D Figure 1E Figure 1F Side

Claims (1)

【特許請求の範囲】[Claims] 1.マルテンサイト変態を起こす鉄基合金基体上に、マ
ルテンサイト変態を起こさずかつ非磁性の合金を第1肉
盛溶接層として形成し、その上に急冷凝固により非晶質
する合金を第2肉盛溶接層として形成し、該第2肉盛溶
接層に高密度エネルギを印加して急速再溶解・急速再凝
固させて非晶質層パターンを形成することを特徴とする
非晶質層を有する部材の製造方法。
1. A non-magnetic alloy that does not undergo martensitic transformation is formed as a first overlay welding layer on an iron-based alloy substrate that undergoes martensitic transformation, and a second overlay welding layer is made of an alloy that becomes amorphous by rapid solidification. A member having an amorphous layer, which is formed as a weld layer, and is formed by applying high-density energy to the second overlay weld layer to cause rapid remelting and rapid resolidification to form an amorphous layer pattern. manufacturing method.
JP1314163A 1989-12-05 1989-12-05 Production of member having amorphous layer Pending JPH03177582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1314163A JPH03177582A (en) 1989-12-05 1989-12-05 Production of member having amorphous layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1314163A JPH03177582A (en) 1989-12-05 1989-12-05 Production of member having amorphous layer

Publications (1)

Publication Number Publication Date
JPH03177582A true JPH03177582A (en) 1991-08-01

Family

ID=18050002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1314163A Pending JPH03177582A (en) 1989-12-05 1989-12-05 Production of member having amorphous layer

Country Status (1)

Country Link
JP (1) JPH03177582A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235113A (en) * 2009-03-30 2010-10-21 General Electric Co <Ge> Device and method for braking and driving force control for advanced type slip prevention mechanism
JP2015120172A (en) * 2013-12-20 2015-07-02 神鋼溶接サービス株式会社 Weld cracking introduction test body, and weld cracking introduction method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235113A (en) * 2009-03-30 2010-10-21 General Electric Co <Ge> Device and method for braking and driving force control for advanced type slip prevention mechanism
JP2015120172A (en) * 2013-12-20 2015-07-02 神鋼溶接サービス株式会社 Weld cracking introduction test body, and weld cracking introduction method

Similar Documents

Publication Publication Date Title
Chern et al. Study of the characteristics of duplex stainless steel activated tungsten inert gas welds
NaBadalung et al. Laser welding of a cobalt-chromium removable partial denture alloy
JPH06216426A (en) Magnetostrictive layer-forming method and strain sensor using the method
CN107206553B (en) The welding of steel billet
Seretsky et al. Laser welding of dissimilar metals: titanium to nickel
KR19980702216A (en) Electrical resistance determination and control method
Mostaan et al. Nd: YAG laser micro-welding of ultra-thin FeCo–V magnetic alloy: optimization of weld strength
Watanabe et al. Interfacial microstructure and hardness of magnetic pulse welded copper/nickel lap joint
JPH03177582A (en) Production of member having amorphous layer
Van Bohemen et al. Monitoring of martensite formation during welding by means of acoustic emission
JPH03294486A (en) Production of member having amorphous layer
JP2616504B2 (en) Method of forming signal pattern using change in magnetic characteristics
Mostaan et al. Analysis and characterization of microstructural evolutions, mechanical response and fracture mechanism of laser welded Fe–Co–V ultra-thin foils
JPH03294487A (en) Member having amorphous layer
Guo et al. Effects of axial magnetic field on Fe-Ni interface macrosegregation of 9% Ni steel welds filled with Ni-based alloy
JP2002256335A (en) Method and device for micro-crystallizing metal structure by laser beam irradiation
Rajesh Kannan et al. Some studies on mechanical properties of AISI 316L austenitic stainless steel weldments by cold metal transfer process
Schwarz et al. New welding joint geometries manufactured by powder bed fusion from 316L
Ramesh Kumar et al. Assessment of magnetically impelled arc butt welded dissimilar boiler graded steel tubes: Sae213 t11 and sae213 t91
JPH07116565B2 (en) Magnetostrictive layer forming method and torque sensor using the magnetostrictive layer
JP2588916B2 (en) Manufacturing method of heat resistant and corrosion resistant magnetic scale
JP2508940B2 (en) Method of forming signal pattern using high density energy source
JPS62118994A (en) Quality inspecting instrument for laser butt welding
Phillips Magnetically Impelled Arc Butt (MIAB) welding of chromium-plated steel tubular components utilizing arc voltage monitoring techniques
US4935070A (en) Method of manufacturing heat resisting magnetic scale