JPH03177431A - Molded article of moisture-shrinkable resin - Google Patents

Molded article of moisture-shrinkable resin

Info

Publication number
JPH03177431A
JPH03177431A JP31691189A JP31691189A JPH03177431A JP H03177431 A JPH03177431 A JP H03177431A JP 31691189 A JP31691189 A JP 31691189A JP 31691189 A JP31691189 A JP 31691189A JP H03177431 A JPH03177431 A JP H03177431A
Authority
JP
Japan
Prior art keywords
polysaccharides
film
moisture
shrinkable
graft copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31691189A
Other languages
Japanese (ja)
Inventor
Toku Sakakibara
徳 榊原
Yoji Fujiura
洋二 藤浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP31691189A priority Critical patent/JPH03177431A/en
Priority to US07/546,889 priority patent/US5112903A/en
Priority to EP90307267A priority patent/EP0407147B1/en
Priority to DE69030844T priority patent/DE69030844T2/en
Publication of JPH03177431A publication Critical patent/JPH03177431A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To provide the subject composition for packaging material, etc., composed of graft copolymer of a thermoplastic resin and a polysaccharide originated from cellulose, vegetable gum, algae, etc., stable over a long period without lowering the film-strength such as tensile strength even after shrinkage with moisture and applicable even to a hot object. CONSTITUTION:The objective composition shrinkable by moisture absorption from air in a hot atmosphere at <=50 deg.C and a relative humidity of >=75% can be produced by the graft-copolymerization of (A) a polysaccharide (e.g. sodium alginate) comprising animal polysaccharide, microbial polysaccharide or vegetable mucin of cellulose, vegetable gum, algae or heteroglycan origin and (B) a thermoplastic resin (e.g. acrylic ester elastomer) at a weight ratio of preferably (85:15) to (15:85).

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、水分収縮性樹脂成形物に関する。[Detailed description of the invention] [Industrial application fields] The present invention relates to moisture-shrinkable resin molded articles.

[従来の技術] 従来、収縮性樹脂成形物として、熱収縮性フィルムなど
が知られている。熱収縮性フィルムとしては、ポリ塩化
ビニルフィルム、ポリ塩化ビニリデンフィルム、ポリエ
チレンフィルム、ポリプロピレンフィルム、ポリアミド
系フィルムなどがあり、青果物、生肉、加工食品などの
食品類の包装や雑貨、精密部品などの集積包装、あるい
はエアゾール製品やレコードジャケットなどのバージン
包装など広範囲にわたって使用されている。
[Prior Art] Conventionally, heat-shrinkable films and the like have been known as shrinkable resin molded products. Heat-shrinkable films include polyvinyl chloride film, polyvinylidene chloride film, polyethylene film, polypropylene film, polyamide film, etc., and are used for packaging foods such as fruits and vegetables, raw meat, and processed foods, as well as miscellaneous goods and precision parts. It is used in a wide range of applications, including packaging and virgin packaging for aerosol products and record jackets.

しかしながら、熱収縮性フィルムは低温で収縮させるこ
とができないため、加熱により変質する食品、雑貨、精
密部品などの包装には使用できないという問題点がある
。この問題点を解消すべく、最近、高湿度雰囲気下に曝
すと室温付近で収縮するフィルム(米国特許第4839
450号明細書)が提案されている。
However, because heat-shrinkable films cannot be shrunk at low temperatures, they cannot be used for packaging foods, miscellaneous goods, precision parts, etc. that change in quality when heated. In order to solve this problem, we have recently developed a film that shrinks around room temperature when exposed to a high humidity atmosphere (US Pat. No. 4839).
No. 450) has been proposed.

[発明が解決しようとする課題] しかしながら、この高湿度雰囲気下に曝すと室温付近で
収縮するフィルムは、熱可塑性樹脂とデンプン類とのグ
ラフト共重合体を延伸したフィルム(以下、デンプン系
フィルムと略記)であり、水分を吸収し収縮した後では
引張り強度が著しく低下する、老化が激しいなどの問題
点を有している。
[Problems to be Solved by the Invention] However, this film, which shrinks around room temperature when exposed to a high humidity atmosphere, is a film made of a stretched graft copolymer of a thermoplastic resin and starch (hereinafter referred to as a starch-based film). (abbreviated), and has problems such as a significant decrease in tensile strength after absorbing moisture and shrinking, and severe aging.

[課題を解決するための手段] 本発明者らは、室温付近で水分を吸収し収縮した後でも
引張り強度の低下が少なく、長期間安定な収縮性樹脂成
形物について鋭意検討した結果、本発明に到達した。す
なわち本発明は、セルロース系多糖類、植物ゴム質系多
糖類、海藻系多糖類、ヘテログリカンの植物粘質物系多
糖類、動物系多糖類および微生物系多糖類からなる群よ
り選ばれる多糖類と熱可塑性樹脂のグラフト共重合体か
らなり、且つ延伸されており、水分により収縮すること
を特徴とする水分収縮性樹脂成形物である。
[Means for Solving the Problems] The present inventors have conducted intensive studies on shrinkable resin molded products that are stable for a long period of time and have little decrease in tensile strength even after absorbing moisture and shrinking at around room temperature. As a result, the present invention has been developed. reached. That is, the present invention provides polysaccharides selected from the group consisting of cellulose polysaccharides, plant rubber polysaccharides, seaweed polysaccharides, heteroglycan plant mucilage polysaccharides, animal polysaccharides, and microbial polysaccharides. This is a moisture-shrinkable resin molded product made of a graft copolymer of a thermoplastic resin, which is stretched, and is characterized by shrinking due to moisture.

本発明において、セルロース系多糖類、植物ゴム質系多
糖類、海藻系多糖類、ヘテログリカンの植物粘質物系多
糖類、動物系多糖類および微生物系多糖類からなる群よ
り選ばれる多糖類としては、天然多糖類に限られたもの
ではなくその変性体も含み、例えばセルロース系多糖類
としてはメチルセルロース、エチルセルロース、カルボ
キンメチルセルロース、ヒドロキシエチルセルロース、
ヒドロキシプロピルセルロース、ヒドロキシプロピルメ
チルセルロース、セルロースアセテート、セルロースニ
トレートなど:植物ゴム質系多糖類としてはアラビアガ
ム、ガラティガム、カラヤガム、トラガントガムなど:
海藻系多糖類としては寒天、カラギーナン、アルギン酸
、アルギン酸ソーダ、ラミナランなど:ヘテログリカン
の植物粘質物系多糖類としてはペクチン、ローカストビ
ーンガム、グアーガム、タマリンド、ガラクトマンナン
、グルコマンナンなど;動物系多糖類としてはキチン、
キトサン、ヒアルロン酸、コンドロイチン、フンドロイ
チン硫酸など:微生物系多糖類(デンプン様多糖類を除
く)としてはザンタンガム、プルラン、カードランなど
;又はこれら多糖類の加水分解物、酸化物、アルキルエ
ーテル化物、アリールエーテル化物、オキシアルキル化
物、カルボキシメチル化物、アミノエチルエーテル化物
、有機酸エステル化物などが挙げられる。
In the present invention, the polysaccharides selected from the group consisting of cellulose polysaccharides, plant rubber polysaccharides, seaweed polysaccharides, heteroglycan plant mucilage polysaccharides, animal polysaccharides, and microbial polysaccharides include is not limited to natural polysaccharides, but also includes modified versions thereof; examples of cellulosic polysaccharides include methylcellulose, ethylcellulose, carboquine methylcellulose, hydroxyethylcellulose,
Hydroxypropyl cellulose, hydroxypropyl methyl cellulose, cellulose acetate, cellulose nitrate, etc. Plant gum polysaccharides include gum arabic, gum galati, gum karaya, gum tragacanth, etc.
Seaweed-based polysaccharides include agar, carrageenan, alginic acid, sodium alginate, and laminaran; heteroglycan plant mucilage-based polysaccharides include pectin, locust bean gum, guar gum, tamarind, galactomannan, and glucomannan; animal-based polysaccharides As for chitin,
Chitosan, hyaluronic acid, chondroitin, fundroitin sulfate, etc. Microbial polysaccharides (excluding starch-like polysaccharides) include xanthan gum, pullulan, curdlan, etc.; or hydrolysates, oxides, alkyl etherified products, aryls of these polysaccharides Examples include etherified products, oxyalkylated products, carboxymethylated products, aminoethyl etherified products, and organic acid esterified products.

これらのうちで好ましいものは、セルロース系多糖類、
アルギン酸ソーダ、ザンタンガム、グアーガム、ローカ
ストビーンガムおよびカラギーナンである。
Among these, preferred are cellulose polysaccharides,
Sodium alginate, xanthan gum, guar gum, locust bean gum and carrageenan.

本発明において、熱可塑性樹脂としては、例えばエラス
トマー類[熱可塑性エラストマー(アクリル酸エステル
系エラストマー エチレン−アクリル酸エステルエラス
トマー 塩化ビニル系エラストマー ポリオレフィン系
エラストマー、ポリスチレン−ポリブタジェン共重合熱
可塑性エラストマー、エチレン−酢酸ビニルエラストマ
ー 塩素化ポリエチレンエラストマー ポリエステル系
エラストマー ポリアミド系エラストマーなと)、天然
ゴムおよびその誘導体(天然ゴム、エボナイト、塩化ゴ
ム、塩酸ゴム、環化ゴムなど)、ジエン系ゴム(ブタジ
ェン系ゴム、ニトリルゴム、インブレンゴム、クロロプ
レンゴムなど)、オレフィン系ゴム(インブチレン系ゴ
ム、イソブチレン−ジエン系ゴム、エチレン−プロピレ
ン系ゴム、クロロスルホン化ポリエチレンなど)、多硫
化物系ゴム、ウレタン系ゴム(ポリエステル−イソシア
ネート綜合物、ポリエーテル−イソシアネート縮合物な
ど)、有機けい素化合物系ゴム(シリコーンゴムなと)
、含ふう素化合物系ゴムなどコ、ポリオレフィン茶樹I
ll [ポリエチレン、ポリプロピレン、エチレン−α
−オレフィン共重合体、フロピレン−α−オレフィン共
重合体、ポリ−4−メチルペンテン、ポリブテンなど]
、スチレン系樹脂[ポリスチレン、ASSiI2ABS
Gt脂、AAS樹脂、 AES樹脂、 AC8樹脂、 
MBS樹脂、スチレン−ブタジェン樹脂、HIPSなど
コ、ポリメチルメタクリレート、塩化ビニル系樹脂[ポ
リ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、塩化
ビニル−アクリル酸エステル共重合体、塩化ビニル−メ
タクリル酸エステル共重合体などコ、ポリ塩化ビニリデ
ン、ポリ酢酸ビニル、エチレン−酢酸ビニル共重合体、
アイオノマー ボリアセタール、ポリアミド[ナイロン
6、ナイロン66、ナイロン610、ナイロンI L 
 ナイロン12などコ、ポリカーボネート、ポリフェニ
レンエーテルなどの芳香族ポリエーテル類、ポリエチレ
ンテレフタレート、ポリブチレンテレフタレート、ボリ
アリレート、ポリスルホン、ポリエーテルスルホン、 
ポリ イ ミ ド、 ポ リ ア ミ トイ ミ ド、
 ボ リ フェニレンスルフィドなどが挙げられる。
In the present invention, thermoplastic resins include, for example, elastomers [thermoplastic elastomers (acrylic ester elastomers, ethylene-acrylic ester elastomers, vinyl chloride elastomers, polyolefin elastomers, polystyrene-polybutadiene copolymer thermoplastic elastomers, ethylene-vinyl acetate Elastomer Chlorinated polyethylene elastomer Polyester elastomer Polyamide elastomer), natural rubber and its derivatives (natural rubber, ebonite, chlorinated rubber, hydrochloric acid rubber, cyclized rubber, etc.), diene rubber (butadiene rubber, nitrile rubber, inblene rubber) , chloroprene rubber, etc.), olefin rubber (inbutylene rubber, isobutylene-diene rubber, ethylene-propylene rubber, chlorosulfonated polyethylene, etc.), polysulfide rubber, urethane rubber (polyester-isocyanate composite, polyether-isocyanate condensate, etc.), organosilicon compound rubber (silicone rubber)
, fluorine-containing compound rubber, etc., polyolefin tea plant I
ll [Polyethylene, polypropylene, ethylene-α
-Olefin copolymer, fluoropylene-α-olefin copolymer, poly-4-methylpentene, polybutene, etc.]
, styrenic resin [polystyrene, ASSiI2ABS
Gt resin, AAS resin, AES resin, AC8 resin,
MBS resin, styrene-butadiene resin, HIPS, etc., polymethyl methacrylate, vinyl chloride resin [polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, vinyl chloride-acrylic acid ester copolymer, vinyl chloride-methacrylic acid ester] Copolymers, etc., polyvinylidene chloride, polyvinyl acetate, ethylene-vinyl acetate copolymer,
Ionomer Boriacetal, Polyamide [Nylon 6, Nylon 66, Nylon 610, Nylon I L
Nylon 12, etc., polycarbonate, aromatic polyethers such as polyphenylene ether, polyethylene terephthalate, polybutylene terephthalate, polyarylate, polysulfone, polyether sulfone,
polyimide, polyamide toimide,
Examples include polyphenylene sulfide.

上記の熱可塑性樹脂は単独で使用してもよく、また2種
以上併用してもよい。これらのうちで好ましいものは、
エラストマー類であり、特に好ましいものは、アクリル
酸エステル系エラストマーである。
The above thermoplastic resins may be used alone or in combination of two or more. Among these, the preferred one is
Among the elastomers, particularly preferred are acrylic ester elastomers.

本発明において、セルロース系多糖類、植物ゴム質系多
糖類、海藻系多糖類、ヘテログリカンの植物粘質物系多
糖類、動物系多糖類および微生物系多糖類からなる群よ
り選ばれる多糖類と熱可塑性樹脂のグラフト共重合体を
得るに際し、セルロース系多糖類、植物ゴム質系多糖類
、海藻系多糖類、ヘテログリカンの植物粘質物系多糖類
、動物系多糖類および微生物系多糖類からなる群より選
ばれる多糖類と熱可塑性樹脂の重量比は、要求される収
縮性能などにより種々変化しうるが、通常95:5〜5
:95であり、好ましくは85:15〜I5二85であ
る。
In the present invention, polysaccharides selected from the group consisting of cellulose polysaccharides, plant rubber polysaccharides, seaweed polysaccharides, plant mucilage polysaccharides of heteroglycans, animal polysaccharides, and microbial polysaccharides and heat When obtaining a graft copolymer of a plastic resin, a group consisting of cellulose polysaccharides, plant rubber polysaccharides, seaweed polysaccharides, plant mucilage polysaccharides of heteroglycans, animal polysaccharides, and microbial polysaccharides is used. The weight ratio of the selected polysaccharide and thermoplastic resin can vary depending on the required shrinkage performance, etc., but is usually 95:5 to 5.
:95, preferably 85:15 to I5285.

セルロース系多糖類、植物ゴム質系多糖類、海藻系多糖
類、ヘテログリカンの植物粘質物系多糖類、動物系多糖
類および微生物系多糖類からなる群より選ばれる多糖類
と熱可塑性樹脂のグラフト共重合体を得る方法は、重合
後熱可塑性樹脂となる七ツマ−を上記の多糖類にグラフ
ト共重合する方法、グラフト共重合後に高分子反応を行
うことにより、熱可塑性を付与する方法などが挙げられ
る。
A graft of a thermoplastic resin and a polysaccharide selected from the group consisting of cellulose polysaccharides, plant rubber polysaccharides, seaweed polysaccharides, heteroglycan plant mucilage polysaccharides, animal polysaccharides, and microbial polysaccharides. The copolymer can be obtained by graft copolymerizing the above-mentioned polysaccharide with 7-mer, which becomes a thermoplastic resin after polymerization, or by performing a polymer reaction after graft copolymerization to impart thermoplasticity. Can be mentioned.

重合後熱可塑性樹脂となるモノマーとしては、熱可塑性
樹脂の項で説明した構造を重合後形成するものであれば
よく、特に制限はない。
The monomer that becomes the thermoplastic resin after polymerization is not particularly limited as long as it forms the structure described in the section of the thermoplastic resin after polymerization.

グラフト共重合方法は従来から知られている方法でよく
、例えば放射線、電子線、紫外線などを照射してグラフ
ト共重合させる方法、セリウム塩、無機過酸化物[過酸
化水素、過硫酸アンモニウム、過硫酸カリウム、過硫酸
ナトリウムなど]、有機過酸化物[過酸化ベンゾイル、
ジ−t−ブチルパーオキサイド、クメンヒドロパーオキ
サイド、コハク酸パーオキサイド、ジ(2−エトキシエ
チル)パーオキシジカーボネートなどコ、レドックス触
媒[アルカリ金属の亜硫酸塩もしくは重亜硫酸塩、亜硫
酸アンモニウム、重亜硫酸アンモニウム、アスコルビン
酸などの還元剤とアルカリ金属の過硫酸塩、過硫酸アン
モニウム、過酸化物などの酸化剤の組合せよりなるもの
]、アゾ化合物[アゾビスイソブチロニトリル、アゾビ
スシアノ吉草酸、2.2′−アゾビス(2−アミジノプ
ロパン)ハイドロクロライドなど]など、およびこれら
の2種以上のラジカル重合触媒を用いてグラフト共重合
させる方法などが挙げられる。
The graft copolymerization method may be a conventionally known method, such as a method of graft copolymerization by irradiation with radiation, electron beams, ultraviolet rays, etc., cerium salt, inorganic peroxide [hydrogen peroxide, ammonium persulfate, persulfate] potassium, sodium persulfate, etc.], organic peroxides [benzoyl peroxide,
di-t-butyl peroxide, cumene hydroperoxide, succinic acid peroxide, di(2-ethoxyethyl) peroxydicarbonate, redox catalysts [alkali metal sulfites or bisulfites, ammonium sulfite, bisulfite] Azo compounds [azobisisobutyronitrile, azobiscyanovaleric acid, 2.2 '-azobis(2-amidinopropane) hydrochloride, etc.], and a method of graft copolymerization using two or more of these radical polymerization catalysts.

グラフト共重合体が酸基や塩基を含む場合、必要により
中和することができる。例えば、重合体が酸基を含む場
合、アルカリ金属化合物を添加してアルカリ金属塩とす
ることができる。この中和度は特に制限はなく、種々変
えることができる。
When the graft copolymer contains an acid group or a base, it can be neutralized if necessary. For example, when the polymer contains acid groups, an alkali metal compound can be added to form an alkali metal salt. This degree of neutralization is not particularly limited and can be varied.

本発明において、グラフト共重合体としては、例えばカ
ルボキシメチルセルロース−アクリル酸メチルグラフト
共重合体、ザンタンガム−アクリル酸メチルグラフト共
重合体、アルギン酸ソーダーアクリル酸メチルグラフト
共重合体などが挙げられる。
In the present invention, examples of the graft copolymer include carboxymethylcellulose-methyl acrylate graft copolymer, xanthan gum-methyl acrylate graft copolymer, and sodium alginate-methyl acrylate graft copolymer.

本発明において、セルロース系多糖類、植物ゴム質系多
糖類、海藻系多糖類、ヘテログリカンの植物粘質物系多
糖類、動物系多糖類および微生物系多糖類からなる群よ
り選ばれる多糖類と熱可塑性樹脂とは全部がグラフト共
重合体になっている必要はなく、これらの多糖類、樹脂
が各々ホモポリマーとして一部含まれていてもよい。こ
の場合、セルロース系多糖類、植物ゴム質系多糖類、海
藻系多糖類、ヘテログリカンの植物粘質物系多糖類、動
物系多糖類および微生物系多糖類からなる群より選ばれ
る多糖類と熱可塑性樹脂中のグラフト共重合体の含量は
通常20%以上、好ましくは35%以上である。
In the present invention, polysaccharides selected from the group consisting of cellulose polysaccharides, plant rubber polysaccharides, seaweed polysaccharides, plant mucilage polysaccharides of heteroglycans, animal polysaccharides, and microbial polysaccharides and heat The plastic resin does not need to be entirely a graft copolymer, and a portion of each of these polysaccharides and resins may be contained as a homopolymer. In this case, polysaccharides selected from the group consisting of cellulose polysaccharides, plant rubber polysaccharides, seaweed polysaccharides, heteroglycan plant mucilage polysaccharides, animal polysaccharides, and microbial polysaccharides and thermoplastic The content of the graft copolymer in the resin is usually 20% or more, preferably 35% or more.

本発明の水分収縮性樹脂成形物を得るには、例えばフィ
ルム状の成形物を得る場合、本発明におけるグラフト共
重合体を押出延伸成形法、インフレーション法、カレン
ダー法などで延伸成形する方法が挙げられる。また、キ
ャスティング法などで未延伸フィルムを得た後、延伸成
形する方法も挙げられる。
To obtain the moisture-shrinkable resin molded product of the present invention, for example, when obtaining a film-like molded product, the graft copolymer of the present invention may be stretch-molded by an extrusion stretch molding method, an inflation method, a calendar method, etc. It will be done. Another example is a method in which an unstretched film is obtained by a casting method or the like and then stretch-molded.

例えばインフレーション法で本発明のフィルム状の水分
収縮性樹脂成形物を得る場合、まず、押出機を用いて本
発明におけるグラフト共重合体を加熱し、混練し、チュ
ーブ状に押出しし、冷却固化して未延伸シートを得る。
For example, when obtaining the film-like moisture-shrinkable resin molded product of the present invention by the inflation method, first, the graft copolymer of the present invention is heated using an extruder, kneaded, extruded into a tube shape, and solidified by cooling. to obtain an unstretched sheet.

混練温度、スクリューの回転数、チューブ状シートの厚
みなどの条件はグラフト共重合体の組成、フィルムへの
要求性能などにより種々異なり、特に制限はない。混練
の際、必要に応じて、水、アルコール、尿素などの可塑
剤などをグラフト共重合体に添加することができる。そ
の添加量は特に制限はない。次いで、得られた未延伸チ
ューブ状シートをチューブラ−延伸装置に供給し、有効
な配向が起きる温度域で膨張延伸して同時2軸配向を行
なわさせる。延伸倍率は縦横同一でなくてもよい。延伸
装置から取り出したフィルムを必要に応じて再乾燥し、
フィルムの自然収縮を抑制することができる。あるいは
、チューブ状押出しダイから押出した未延伸チューブ状
シートをそのまま膨張延伸して一気にフィルム化しても
よい。
Conditions such as the kneading temperature, the number of revolutions of the screw, and the thickness of the tubular sheet vary depending on the composition of the graft copolymer, the required performance of the film, etc., and are not particularly limited. During kneading, water, alcohol, a plasticizer such as urea, etc. can be added to the graft copolymer, if necessary. There is no particular restriction on the amount added. The obtained unstretched tubular sheet is then fed to a tubular stretching device and expanded and stretched in a temperature range where effective orientation occurs to effect simultaneous biaxial orientation. The stretching ratios do not have to be the same in length and width. The film taken out from the stretching device is re-dried as necessary.
Natural shrinkage of the film can be suppressed. Alternatively, an unstretched tubular sheet extruded from a tubular extrusion die may be expanded and stretched as it is to form a film all at once.

キャスティング法などで未延伸シートを得た後、延伸成
形する方法で本発明のフィルム状の水分収縮性樹脂成形
物を得る場合、まず、本発明におけるグラフト共重合体
を溶媒に溶解し、この溶解溶液を平板状に流延し、乾燥
機などで乾燥した後Q11離して、未延伸シートを得る
。溶媒の種類、溶解溶液の濃度、シートの厚みなどはグ
ラフト共重合体の組成、フィルムへの要求性能などによ
り種々異なり、特に制限はない。グラフト共重合体を溶
媒に溶解する際、必要に応じてアルコールなどの可塑剤
などを溶媒中に添加することができる。その添加量は特
に制限はない。次いで、得られた未延伸シートを延伸可
能な温度まで加熱して、縦方向、横方向に延伸した後冷
却する。延伸の際、水、アルコールなどを可塑剤として
使用する場合は、未延伸シートを得る際に含ませておく
、未延伸シートを得た検水、アルコールなどの溶液に浸
すかあるいはその蒸気にさらすなどの方法が取られる。
When obtaining a film-like moisture-shrinkable resin molded product of the present invention by a method of obtaining an unstretched sheet by a casting method or the like and then stretching it, first, the graft copolymer of the present invention is dissolved in a solvent, and the graft copolymer of the present invention is dissolved in a solvent. The solution is cast into a flat plate, dried with a drier or the like, and then separated by Q11 to obtain an unstretched sheet. The type of solvent, the concentration of the dissolving solution, the thickness of the sheet, etc. vary depending on the composition of the graft copolymer, the required performance of the film, etc., and are not particularly limited. When dissolving the graft copolymer in a solvent, a plasticizer such as alcohol can be added to the solvent as necessary. There is no particular restriction on the amount added. Next, the obtained unstretched sheet is heated to a temperature at which stretching is possible, stretched in the longitudinal direction and in the lateral direction, and then cooled. When using water, alcohol, etc. as a plasticizer during stretching, add it to the unstretched sheet when obtaining it, or soak the unstretched sheet in sample water, soak it in an alcohol solution, or expose it to its vapor. Methods such as these are taken.

延伸したフィルムは必要に応じて再乾燥し、フィルムの
自然収縮を抑制することができる。
The stretched film can be re-dried as necessary to suppress natural shrinkage of the film.

本発明の水分収縮性樹脂成形物に増量剤、添加剤として
、可塑剤、充填剤、発泡剤、離型剤、滑剤、ブロッキン
グ防止剤、界面活性剤、易分解性添加剤、帯電防止剤、
顔料、染料、着色剤、香料、フィラー 有機物(パルプ
粉末、多糖類など)、無機物(シリカ、ゼオライト、活
性炭、遠赤外線放射セラミックスなど)、鮮度保持剤、
吸水性樹脂、乾燥剤、防曇剤、脱臭剤、芳香剤、脱酸素
剤、エチレン吸着剤、薬効成分、防菌剤、防カビ剤、熱
安定剤、酸化防止剤、紫外線吸収剤等を混合して用いる
ことができる。これらはグラフト共重合体を得る際に混
合する、グラフト共重合体から水分収縮性樹脂成形物を
得る際に混合する、水分収縮性樹脂成形物に混合するな
ど種々の方法で混合することができる。
As extenders and additives for the moisture-shrinkable resin molded product of the present invention, plasticizers, fillers, foaming agents, mold release agents, lubricants, antiblocking agents, surfactants, easily decomposable additives, antistatic agents,
Pigments, dyes, colorants, fragrances, fillers, organic substances (pulp powder, polysaccharides, etc.), inorganic substances (silica, zeolite, activated carbon, far-infrared emitting ceramics, etc.), freshness-preserving agents,
Mixed with water-absorbing resin, desiccant, anti-fogging agent, deodorizing agent, aromatic agent, oxygen scavenger, ethylene adsorbent, medicinal ingredient, antibacterial agent, anti-mold agent, heat stabilizer, antioxidant, ultraviolet absorber, etc. It can be used as These can be mixed in various ways, such as mixing when obtaining a graft copolymer, mixing when obtaining a moisture-shrinkable resin molding from a graft copolymer, and mixing with a moisture-shrinkable resin molding. .

本発明の水分収縮性樹脂成形物の形状については特に制
限はなく、フィルム状、シート状、テープ状、網状、発
泡体状、繊維状、棒状等の任意の形状に成形することが
できる。好ましくはフィルム状である。
There is no particular restriction on the shape of the moisture-shrinkable resin molded product of the present invention, and it can be molded into any shape such as film, sheet, tape, net, foam, fiber, rod, etc. Preferably it is in the form of a film.

本発明の水分収縮性樹脂成形物は、フィルム状で使用す
る場合、エクストルージBンラミネート法、 ドライラ
ミホーシロン法などの方法により、他のフィルムと積層
することができる。
When the moisture-shrinkable resin molded product of the present invention is used in the form of a film, it can be laminated with another film by a method such as an extrusion B-laminate method or a dry lamination method.

例えばエクストル−シロンラミネート法で多層フィルム
を得る場合、複数の押出し機を用いて積層ダイより積層
未延伸シートを共押出しした後、多層サーキュラ−ダイ
などを用い延伸する方法などがある。あるいはドライラ
ミネーシ日ン法で多層フィルムを得る場合、本発明のフ
ィルム状の水分収縮性樹脂成形物の上にウレタン系など
の有機溶剤系接着剤を塗布し乾燥により溶剤を除去した
後、他のフィルムを加熱・圧着により積層する方法など
がある。その他、本発明のフィルム状の水分収縮性樹脂
成形物と他のフィルムとを水分によって熱圧着する方法
、本発明のフィルム状の水分収縮性樹脂成形物の上に他
のフィルム成分を含む溶液を塗布して乾燥する方法など
があるが、これらに限定されるものではない。
For example, when obtaining a multilayer film by the Extru-Silon lamination method, there is a method in which laminated unstretched sheets are coextruded from a lamination die using a plurality of extruders and then stretched using a multilayer circular die or the like. Alternatively, when obtaining a multilayer film using the dry lamination method, an organic solvent adhesive such as urethane adhesive is applied onto the film-like moisture-shrinkable resin molding of the present invention, the solvent is removed by drying, and then other adhesives are applied. There is a method of laminating films using heat and pressure bonding. In addition, there is a method of thermocompression-bonding the film-like moisture-shrinkable resin molding of the present invention and another film using moisture, and a method of applying a solution containing other film components onto the film-like moisture-shrinkable resin molding of the present invention. There are methods such as applying and drying, but the method is not limited to these.

[実施例コ 以下、実施例により本発明をさらに説明するが、本発明
はこれに限定されるものではない。実施例中の部は重量
部である。
[Example] The present invention will be further explained below with reference to Examples, but the present invention is not limited thereto. Parts in the examples are parts by weight.

尚、実施例中の各相対湿度における収縮率、弓張り強度
は次の操作により測定した。
In addition, the shrinkage rate and bowing strength at each relative humidity in the examples were measured by the following operations.

1、各相対湿度における収縮率 各々の試験フィルムを各相対湿度下に室温で24時間放
置し、収縮前後の縦軸方向(MD)と横軸方向(TD)
の各々の長さの比から収縮率を算出した。
1. Shrinkage rate at each relative humidity Each test film was left at room temperature under each relative humidity for 24 hours, and the longitudinal direction (MD) and transverse direction (TD) before and after shrinkage were measured.
The shrinkage rate was calculated from the ratio of each length.

2、引張り強度 各々の試験フィルムについて、インストロン試験機にて
縦軸方向に50mm/分の速度で収縮前のフィルムの引
張り強度を測定した。これらのフィルムを室温中、相対
湿度90%で24時間放置した後、収縮したフィルムに
ついて、同様に引張り強度を測定した。この収縮したフ
ィルムを1ヶ月間保存した後、同様に引張り強度を測定
した。
2. Tensile Strength For each test film, the tensile strength of the film before shrinkage was measured using an Instron testing machine at a speed of 50 mm/min in the vertical axis direction. After these films were allowed to stand at room temperature and relative humidity of 90% for 24 hours, the tensile strength of the shrunk films was similarly measured. After storing this shrunken film for one month, the tensile strength was measured in the same manner.

実施例1 カルボキシメチルセルロース100部を水4000ff
iに加え、窒素雰囲気下で室温にて撹拌し完全に溶解さ
せた後、アクリル酸メチル150部、セリウム硝酸アン
モニウム8部、IN硝酸60部を添加し、35〜40℃
にて3時間攪半して重合させた。次いで得られた生成物
を過剰のメタノール中に加えて沈澱させた後、乾燥、粉
砕してグラフト共重合体を得た。このグラフト共重合体
を環状ダイ付き混練押出し機にて樹脂温度120〜14
0℃で溶融押出しした後、140°Cに保った環状グイ
より縦軸方向(MD)/横軸方向(TD) =4.1/
4.5の延伸倍率でインフレーション延伸した。得られ
た本発明のフィルム状の水分収縮性樹脂成形物の厚さ5
5μmであった。このものの性能測定結果を第1表に併
記する。
Example 1 100 parts of carboxymethylcellulose and 4000ff of water
In addition to i, stir at room temperature under nitrogen atmosphere to completely dissolve, then add 150 parts of methyl acrylate, 8 parts of cerium ammonium nitrate, and 60 parts of IN nitric acid, and mix at 35-40°C.
The mixture was stirred for 3 and a half hours to polymerize. Next, the obtained product was added to excess methanol to precipitate it, then dried and pulverized to obtain a graft copolymer. This graft copolymer was mixed in a kneading extruder with an annular die at a resin temperature of 120 to 14
After melt-extruding at 0°C, the annular goo was maintained at 140°C. The longitudinal direction (MD)/transverse direction (TD) = 4.1/
Inflation stretching was performed at a stretching ratio of 4.5. Thickness of the obtained film-like moisture-shrinkable resin molded product of the present invention: 5
It was 5 μm. The performance measurement results of this product are also listed in Table 1.

実施例2 アルギン酸ナトリウム150部を水3200部に加え、
窒素雰囲気下で室温にて攪拌し溶解させた後、アクリル
酸メチル300部、セリウム硝酸アンモニウム3部、6
N硝酸50部を添加し、40〜45℃にて5時間攪拌し
て重合させた。次いで得られた生成物を濾過した後、メ
タノールで洗浄し、乾燥、粉砕してグラフト共重合体を
得た。このグラフト共重合体に可塑剤として水を少量添
加し、かきまぜて均一にした。これをホッパーから投入
し、環状ダイ付き混練押出し機にて樹脂温度80〜10
0°Cで溶融押出しした後、100℃に保った環状ダイ
より縦軸方向(MD)/横軸方向(TD)=3.8/4
.0の延伸倍率でインフレーシロン延伸した。得られた
本発明のフィルム状の水分収縮性樹脂成形物の厚さ65
μmであった。このものの性能測定結果を第1表に併記
する。
Example 2 150 parts of sodium alginate was added to 3200 parts of water,
After stirring and dissolving at room temperature under nitrogen atmosphere, 300 parts of methyl acrylate, 3 parts of cerium ammonium nitrate, 6
50 parts of N nitric acid was added, and the mixture was stirred at 40 to 45° C. for 5 hours to polymerize. Next, the obtained product was filtered, washed with methanol, dried, and ground to obtain a graft copolymer. A small amount of water was added as a plasticizer to this graft copolymer, and the mixture was stirred to make it homogeneous. This is put into a hopper and put into a kneading extruder with an annular die at a resin temperature of 80 to 10.
After melt extrusion at 0°C, the annular die kept at 100°C longitudinal direction (MD)/horizontal direction (TD) = 3.8/4
.. Inflation stretching was carried out at a stretching ratio of 0. The obtained film-like moisture-shrinkable resin molded product of the present invention has a thickness of 65
It was μm. The performance measurement results of this product are also listed in Table 1.

実施例3 粉末状ザンタンガム100部を水6000部に加え、窒
素雰囲気下で60°Cにて攪拌し溶解させた後、アクリ
ル酸メチル200部、セリウム硫酸アンモニウム2部、
IN硫酸50部を添加し、70〜75℃にて3時間攪拌
して重合させた。次いで得られた生成物を過剰のメタノ
ール中に加えて沈澱させた後、乾燥、粉砕してグラフト
共重合体を得た。このグラフト共重合体に可塑剤として
水を少量添加し、かきまぜて均一にした。これをホッパ
ーから投入し、環状ダイ付き混練押出し機にて樹脂温度
70〜95°Cで溶融押出しした後、95°Cに保った
環状グイより縦軸方向(MD)/横軸方向(TD) =
4.2/4.3の延伸倍率でインフレーション延伸した
。得られた本発明のフィルム状の水分収縮性樹脂成形物
の厚さ50μmであった。このものの性能測定結果を第
1表に併記する。
Example 3 100 parts of powdered xanthan gum was added to 6000 parts of water, stirred and dissolved at 60°C under a nitrogen atmosphere, and then 200 parts of methyl acrylate, 2 parts of cerium ammonium sulfate,
50 parts of IN sulfuric acid was added, and the mixture was stirred at 70 to 75°C for 3 hours to polymerize. Next, the obtained product was added to excess methanol to precipitate it, then dried and pulverized to obtain a graft copolymer. A small amount of water was added as a plasticizer to this graft copolymer, and the mixture was stirred to make it homogeneous. This is introduced from a hopper, melted and extruded in a kneading extruder with an annular die at a resin temperature of 70 to 95°C, and then transferred from an annular goo kept at 95°C in the longitudinal direction (MD)/horizontal direction (TD). =
Inflation stretching was performed at a stretching ratio of 4.2/4.3. The thickness of the obtained film-like moisture-shrinkable resin molded product of the present invention was 50 μm. The performance measurement results of this product are also listed in Table 1.

実施例4 実施例3において、粉末状ザンタンガムに代えてグアー
ガムを使用する以外は実施例3と同様にして厚さ60μ
mの本発明のフィルム状の水分収縮性樹脂成形物を得た
。このものの性能測定結果を第1表に併記する。
Example 4 In the same manner as in Example 3, except that guar gum was used instead of powdered xanthan gum, the thickness was 60 μm.
A film-like moisture-shrinkable resin molded product of the present invention of m was obtained. The performance measurement results of this product are also listed in Table 1.

実施例5 実施例3において、粉末状ザンタンガムに代えてキトサ
ンを使用する以外は実施例3と同様にして厚さ45μm
の本発明のフィルム状の水分収縮性樹脂成形物を得た。
Example 5 In Example 3, the thickness was 45 μm in the same manner as in Example 3 except that chitosan was used instead of powdered xanthan gum.
A film-like moisture-shrinkable resin molded product of the present invention was obtained.

このものの性能測定結果を第1表に併記する。The performance measurement results of this product are also listed in Table 1.

実施例6 実施例3において、粉末状ザンタンガムに代えてアラビ
アガムを使用する以外は実施例3と同様にして厚さ65
μmの本発明のフィルム状の水分収縮性樹脂成形物を得
た。このものの性能測定結果を第1表に併記する。
Example 6 A product with a thickness of 65 mm was prepared in the same manner as in Example 3 except that gum arabic was used instead of powdered xanthan gum.
A film-like moisture-shrinkable resin molded product of the present invention having a diameter of μm was obtained. The performance measurement results of this product are also listed in Table 1.

比較例1 カチオンデンプン150部を水3000部に分散させ、
窒素雰囲気下で攪拌しながら35℃まで昇温した。
Comparative Example 1 150 parts of cationic starch was dispersed in 3000 parts of water,
The temperature was raised to 35°C while stirring under a nitrogen atmosphere.

95℃で30分間保った後、40℃まで冷却した。これ
にアクリル酸メチル225部、セリウム硝酸アンモニウ
ム5部、IN硝酸45部を添加し、40〜45℃にて3
時間攪拌して重合させた。次いで得られた生成物を水酸
化ナトリウム水溶液でpH7まで中和し、これを過剰の
メタノール中に加えて沈澱させた後、乾燥、粉砕してデ
ンプン系グラフト共重合体を得た。このデンプン系グラ
フト共重合体に可塑剤として水及び尿素を少量添加し、
かきまぜて均一にした。これをホッパーから投入し、環
状ダイ付き混練押出し機にて樹脂温度70〜90℃で溶
融押出しした後、95℃に保った環状ダイより縦軸方向
(MD)/横軸方向(TD)=4.0/4.2の延伸倍
率でインフレーション延伸した。得られたデンプン系フ
ィルムの厚さ55μmであった。このものの性能測定結
果を第1表に併記する。
After being kept at 95°C for 30 minutes, it was cooled to 40°C. To this were added 225 parts of methyl acrylate, 5 parts of cerium ammonium nitrate, and 45 parts of IN nitric acid, and
The mixture was stirred for an hour to allow polymerization. Next, the obtained product was neutralized to pH 7 with an aqueous sodium hydroxide solution, added to excess methanol to precipitate it, and then dried and pulverized to obtain a starch-based graft copolymer. A small amount of water and urea are added as plasticizers to this starch-based graft copolymer,
Stir to make it homogeneous. This was introduced from a hopper, melted and extruded in a kneading extruder with an annular die at a resin temperature of 70 to 90°C, and then passed through an annular die maintained at 95°C in the longitudinal direction (MD)/horizontal direction (TD) = 4. Inflation stretching was carried out at a stretching ratio of .0/4.2. The thickness of the starch film obtained was 55 μm. The performance measurement results of this product are also listed in Table 1.

比較例2 市販のポリエチレン系熱収縮性フィルム(「オークラッ
プPEシュリンク」:大金工業社製)の性能測定結果を
第1表に併記する。
Comparative Example 2 Table 1 also shows the performance measurement results of a commercially available polyethylene heat-shrinkable film ("Oaklap PE Shrink", manufactured by Daikin Kogyo Co., Ltd.).

第1表 性能測定結果 [発明の効果] 本発明の水分収縮性樹脂成形物を使用することにより、
次のような効果を奏する。
Table 1 Performance measurement results [Effects of the invention] By using the moisture-shrinkable resin molded product of the present invention,
It has the following effects.

(1)水分を吸収し収縮した後でも長期間安定である。(1) Stable for a long time even after absorbing moisture and shrinking.

従来のデンプン系フィルムはそのフィルム構成成分中に
α化デンプンを含むため、水分を吸収し収縮したまま放
置しておくと、引張り強度などのフィルム強度が著しく
低下するいわゆる老化現象が起きる。本発明の水分収縮
性樹脂成形物をフィルム状で使用した場合、その構成成
分中にデンプンを含まないため、水分を吸収し収縮した
後長期間保存しておいても、引張り強度などのフィルム
強度の低下が少ない。
Conventional starch-based films contain pregelatinized starch in their film constituents, so if they absorb water and are left to shrink, a so-called aging phenomenon occurs in which film strength such as tensile strength is significantly reduced. When the moisture-shrinkable resin molded product of the present invention is used in the form of a film, it does not contain starch in its constituent components, so even if it is stored for a long time after absorbing moisture and shrinking, the film strength such as tensile strength will decrease. decrease is small.

(2)水分を吸収し収縮した直後の引張り強度の低下が
少ない。
(2) There is little decrease in tensile strength immediately after absorbing moisture and shrinking.

従来のデンプン系フィルムはそのフィルム構成成分中に
α化デンプンを含むため、収縮前の乾燥した状態のフィ
ルム強度は良好なものの、−旦水分を吸収して収縮する
とフィルム強度、特に引張り強度が著しく低下する。本
発明の水分収縮性樹脂成形物をフィルム状で使用した場
合、その構成成分中にデンプンを含まないため、水分を
吸収し収縮した後、デンプン系フィルムに見られるよう
な著しい引張り強度の低下がない。
Conventional starch-based films contain pregelatinized starch in their film constituents, so although the film strength in the dry state before shrinkage is good, once it absorbs moisture and shrinks, the film strength, especially the tensile strength, decreases significantly. descend. When the water-shrinkable resin molded product of the present invention is used in the form of a film, it does not contain starch in its constituent components, so after absorbing water and shrinking, there is no significant decrease in tensile strength as seen in starch-based films. do not have.

(3)熱収縮性フィルムや熱収縮性クロスでは使用でき
なかった、熱に弱い物に対しても適用可能である。
(3) It can also be applied to heat-sensitive materials that cannot be used with heat-shrinkable films or heat-shrinkable cloths.

従来の熱収縮性フィルムや熱収縮性クロスは加熱により
変質する物に対して使用できなかった。
Conventional heat-shrinkable films and heat-shrinkable cloths cannot be used for materials that change in quality when heated.

本発明の水分収縮性樹脂成形物をフィルム状、クロス状
で使用した場合、水分を吸収することにより低温でも収
縮することができる。特に、50″C以下の温度でも、
相対湿度75%以上の高湿度雰囲気下において空気中の
湿気を吸収するだけで収縮することができる。この為、
熱に弱い物の包装等に好適である。
When the moisture-shrinkable resin molded product of the present invention is used in the form of a film or cloth, it can be shrunk even at low temperatures by absorbing moisture. In particular, even at temperatures below 50″C,
It can shrink simply by absorbing moisture in the air in a high humidity atmosphere with a relative humidity of 75% or more. For this reason,
Suitable for packaging items that are sensitive to heat.

以上の効果を奏することから本発明の水分収縮性樹脂成
形物は、包装用資材(青果物・加工食品・生肉その他食
品、雑貨、ガラス製品、精密部品、科学装置など)、水
分検出材(湿度センサー 水分検出機、漏れ感知機など
)、農業用資材、医療分野、オムツのギヤザー エネル
ギー変換装置などに適用することができる。
Due to the above-mentioned effects, the moisture-shrinkable resin molded product of the present invention can be used for packaging materials (fruits and vegetables, processed foods, raw meat and other foods, miscellaneous goods, glass products, precision parts, scientific instruments, etc.), moisture detection materials (humidity sensors, etc.) It can be applied to equipment such as moisture detectors, leak detectors, etc.), agricultural materials, medical fields, diaper gears, and energy conversion devices.

Claims (1)

【特許請求の範囲】 1、セルロース系多糖類、植物ゴム質系多糖類、海藻系
多糖類、ヘテログリカンの植物粘質物系多糖類、動物系
多糖類および微生物系多糖類からなる群より選ばれる多
糖類と熱可塑性樹脂のグラフト共重合体からなり、且つ
延伸されており、水分により収縮することを特徴とする
水分収縮性樹脂成形物。 2、50℃以下の温度で相対湿度75%以上の高湿度雰
囲気下において、空気中の湿気を吸収することにより収
縮する請求項1記載の成形物。 3、熱可塑性樹脂が、エラストマー類である請求項1ま
たは2記載の成形物。 4、水分収縮性樹脂成形物の形状がフィルム状である請
求項1〜3のいずれか記載の成形物。
[Scope of Claims] 1. Selected from the group consisting of cellulose polysaccharides, plant rubber polysaccharides, seaweed polysaccharides, heteroglycan plant mucilage polysaccharides, animal polysaccharides, and microbial polysaccharides. A water-shrinkable resin molded product made of a graft copolymer of a polysaccharide and a thermoplastic resin, which is stretched and shrinks when exposed to water. 2. The molded article according to claim 1, which shrinks by absorbing moisture in the air in a high humidity atmosphere of 75% or more relative humidity at a temperature of 50° C. or less. 3. The molded article according to claim 1 or 2, wherein the thermoplastic resin is an elastomer. 4. The molded article according to any one of claims 1 to 3, wherein the moisture-shrinkable resin molded article has a film-like shape.
JP31691189A 1989-07-04 1989-12-06 Molded article of moisture-shrinkable resin Pending JPH03177431A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP31691189A JPH03177431A (en) 1989-12-06 1989-12-06 Molded article of moisture-shrinkable resin
US07/546,889 US5112903A (en) 1989-07-04 1990-07-02 Articles molded from moisture shrinkable resins
EP90307267A EP0407147B1 (en) 1989-07-04 1990-07-03 Articles molded from moisture shrinkable resins
DE69030844T DE69030844T2 (en) 1989-07-04 1990-07-03 Molded parts of moisture-shrinkable resins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31691189A JPH03177431A (en) 1989-12-06 1989-12-06 Molded article of moisture-shrinkable resin

Publications (1)

Publication Number Publication Date
JPH03177431A true JPH03177431A (en) 1991-08-01

Family

ID=18082285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31691189A Pending JPH03177431A (en) 1989-07-04 1989-12-06 Molded article of moisture-shrinkable resin

Country Status (1)

Country Link
JP (1) JPH03177431A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128264A1 (en) * 2011-03-24 2012-09-27 三洋化成工業株式会社 Aqueous-liquid-absorbable resin, aqueous-liquid-absorbable composition, and absorber material and absorbable object each produced using same
WO2014046106A1 (en) * 2012-09-21 2014-03-27 三洋化成工業株式会社 Aqueous liquid absorbing resin, aqueous liquid absorbing composition, and absorbent body and absorbent article using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128264A1 (en) * 2011-03-24 2012-09-27 三洋化成工業株式会社 Aqueous-liquid-absorbable resin, aqueous-liquid-absorbable composition, and absorber material and absorbable object each produced using same
CN103443187A (en) * 2011-03-24 2013-12-11 三洋化成工业株式会社 Aqueous-liquid-absorbable resin, aqueous-liquid-absorbable composition, and absorber material and absorbable object each produced using same
WO2014046106A1 (en) * 2012-09-21 2014-03-27 三洋化成工業株式会社 Aqueous liquid absorbing resin, aqueous liquid absorbing composition, and absorbent body and absorbent article using same

Similar Documents

Publication Publication Date Title
Cheng et al. Impact of ultrasonic treatment on properties of starch film-forming dispersion and the resulting films
FI102478B (en) Polymer-based blend compositions containing modified starch
US5314754A (en) Starch derived shaped articles
JPH0374446A (en) Polymer-base blend composition containing modified starch
AU685805B2 (en) Biodegradable films fabricated from mixtures of pectin/starch/plasticizers
JPH0356543A (en) Polymer-based blend composition containing modified starch
EP0407147B1 (en) Articles molded from moisture shrinkable resins
JP2006526546A (en) Smoke- and water-vapor-permeable food casing made of a thermoplastic mixture with a natural appearance
MX2010014473A (en) Fragranced water-sensitive film.
JPH0679833A (en) Multi-layer laminated film having improved gas barrier function
JPH0725938B2 (en) Polymer-based blend composition containing modified starch
EP1594914A1 (en) Smoke-permeable food envelope based on polyamide and water-soluble polymers
WO2013042083A1 (en) Biodegradable films obtained from cassava starch and their manufacture process
TW202222857A (en) Polyvinyl alcohol resin film, method for identifying polyvinyl alcohol resin film, and method for producing polyvinyl alcohol resin film
Mohamed et al. Swelling and tensile properties of starch glycerol system with various crosslinking agents
JPH0395239A (en) Polymer-base blend composition containing modified starch
Rouilly et al. Thermo-mechanical processing of sugar beet pulp. III. Study of extruded films improvement with various plasticizers and cross-linkers
Machado et al. Characterization of cassava starch films plasticized with glycerol and strengthened with nanocellulose from green coconut fibers
JPH03177431A (en) Molded article of moisture-shrinkable resin
Mali et al. Polyvinyl alcohol films with different degrees of hydrolysis and polymerization
CN110228261A (en) A kind of degradable once plastic foil and preparation method thereof
JP3026825B2 (en) Biodegradable laminated products
JPH04114044A (en) Preparation of biodegradable molding
JP2660796B2 (en) Moisture shrinkable resin molding
CN111349298A (en) Low-cost thermoplastically-processable PVA-EVOH high-barrier composition, and preparation method and application thereof