JPH03177357A - Burning of barium titanate-based semiconductor porcelain - Google Patents

Burning of barium titanate-based semiconductor porcelain

Info

Publication number
JPH03177357A
JPH03177357A JP1318024A JP31802489A JPH03177357A JP H03177357 A JPH03177357 A JP H03177357A JP 1318024 A JP1318024 A JP 1318024A JP 31802489 A JP31802489 A JP 31802489A JP H03177357 A JPH03177357 A JP H03177357A
Authority
JP
Japan
Prior art keywords
fired
temperature
burning
layer
barium titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1318024A
Other languages
Japanese (ja)
Other versions
JP2808758B2 (en
Inventor
Mitsuru Tamaoki
充 玉置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1318024A priority Critical patent/JP2808758B2/en
Publication of JPH03177357A publication Critical patent/JPH03177357A/en
Application granted granted Critical
Publication of JP2808758B2 publication Critical patent/JP2808758B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To prevent scattering of the characteristics by accommodating a BaTiO3-based molding in a burning sheath composed of an SiC layer and Al2O3 layers so that the molding is located on the Al2O3 layer side, placing the sheath in a furnace and carrying out burning. CONSTITUTION:A prescribed ratio of respective components are weighed so as to have a composition of BaTiO3 semiconductor porcelain and the weighed components are mixed, ground and dried. A suitable amount of a binder is added to the resultant dried powder of the raw materials and the obtained mixture is granulated and subsequently press-formed so as to obtain a molding 6. On the Al2O3 layer 1 side in a burning sheath composed of an SiC layer 2 sandwiched between Al2O3 layers 1, powdery ZrO2 7 is then laid over and the molding 6 is accommodated thereon. The burning sheath is subsequently placed in a furnace, burnt by raising the temperature to a prescribed temperature at a prescribed rate and then cooled, thus obtaining the objective BaTiO3- based semiconductor porcelain.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は周囲温度によって抵抗値が変化するチタン酸バ
リウム系半導体磁器を用いて電流制御を行う温度補償用
、温度センサーとして利用されるチタン酸バリウム系半
導体磁器の焼成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a barium titanate semiconductor porcelain whose resistance value changes depending on the ambient temperature, which is used for temperature compensation and as a temperature sensor for controlling current. The present invention relates to a method for firing semiconductor porcelain.

従来の技術 チタン酸バリウム系の正特性サーミスタは、チタン酸バ
リウムを主成分として半導体化にはY。
Conventional technology A barium titanate-based positive temperature coefficient thermistor uses barium titanate as its main component and is made into a semiconductor.

La、Ce、Nb、Bi、Sb、Wなどの酸化物の1種
以上を微量含有させたもので、好適な温度で焼成すると
半導体化し、ある温度で抵抗が著しく増加(キュリー点
)する正の抵抗温度変化を示す特徴を有している。
It contains trace amounts of one or more oxides such as La, Ce, Nb, Bi, Sb, and W. It becomes a semiconductor when fired at a suitable temperature, and is a positive oxide whose resistance increases significantly at a certain temperature (Curie point). It has the characteristic of showing resistance temperature change.

そして、チタン酸バリウムのキュリー点は、はぼ120
℃付近にある。このキュリー点は、チタン酸バリウム(
BaTiO3)の中のBa、Tiの一部を置換すること
によって変化させることができる。例えば、キュリー点
を高い温度に移動させ°るためには、Baの一部を鉛(
Pb)で置換することにより得られる。また、キュリー
点を低い温度に移動させるためには、Baの一部をスト
ロンチウム(Sr)で、あるいはTfの一部をすず(S
n)で置換することにより得られることが知られている
The Curie point of barium titanate is 120.
It is around ℃. This Curie point is barium titanate (
It can be changed by partially substituting Ba and Ti in BaTiO3). For example, in order to move the Curie point to a higher temperature, some of the Ba must be replaced with lead (
Pb). In addition, in order to move the Curie point to a lower temperature, it is necessary to replace part of Ba with strontium (Sr) or replace part of Tf with tin (Sr).
It is known that it can be obtained by substituting with n).

ところで、チタン酸バリウム系半導体磁器を製造するた
めには、通常1200℃〜1400℃の高温で焼成する
必要がある。しかしながら、温度補償用として用いられ
るチタン酸バリウム系半導体磁器は、キュリー点を低温
側にもツB al−xS rxT i 03系あるいは
BaTi1−xSrx○3系であり、チタン酸バリウム
系半導体磁器の温度特性において、キュリー点以上の温
度での抵抗値が直線的に増加する部分を利用して電流制
御を行っている。このため、温度補償用素子として要求
される特性として、常温(25℃)抵抗値R25と80
℃での抵抗値Raoの比、即ちR80/R25の規格値
がある。そして、一般に焼成においては、最高温度から
冷却する速度が速いほど、R80/R25の値は小さく
なることが知られている。このようなチタン酸バリウム
系半導体磁器を焼成する場合、一般にアルミナ質(A!
! 2(h)の焼成さやに酸化ジルコニウム(Zr02
)の粉末を敷きつめ、その上に成形体を並べ、温度設定
のできる単炉あるいはトンネル炉で焼成を行っている。
By the way, in order to manufacture barium titanate-based semiconductor ceramics, it is usually necessary to fire at a high temperature of 1200°C to 1400°C. However, the barium titanate-based semiconductor porcelain used for temperature compensation is a B al-xS rxT i 03 system or BaTi1-xSrx○3 system, which has a Curie point on the low temperature side. In terms of characteristics, current control is performed using the part where the resistance value increases linearly at temperatures above the Curie point. For this reason, the characteristics required for a temperature compensation element are the resistance value R25 and 80°C at room temperature (25°C).
There is a standard value of the ratio of resistance values Rao at °C, ie, R80/R25. It is generally known that in firing, the faster the cooling rate from the maximum temperature, the smaller the value of R80/R25. When firing such barium titanate-based semiconductor porcelain, alumina (A!
! Zirconium oxide (Zr02
) powder is laid down, the molded bodies are arranged on top of it, and fired in a single furnace or tunnel furnace where the temperature can be set.

発明が解決しようとする課題 しかしながら、上記の従来の構成では、焼成時の最高温
度からの冷却速度が速くなるほど、焼成炉内の温度が設
定値になっているにもかかわらず、アルミナ質の焼成さ
やの熱容量が大きいため、炉内の温度にさやがついてい
けず、さやに接している焼結体はその影響を受け、特性
のバラツキを生ずる問題点を有していた。
Problems to be Solved by the Invention However, in the conventional configuration described above, the faster the cooling rate from the maximum temperature during firing, the faster the firing rate of alumina becomes, even though the temperature in the firing furnace is at the set value. Since the heat capacity of the pod is large, the pod cannot keep up with the temperature in the furnace, and the sintered body in contact with the pod is affected by this, resulting in variations in properties.

本発明は上記従来の問題点を解決するもので、焼成時に
おいて、最高温度からの冷却速度を速くして行った場合
でも、冷却過程による焼結体の特性のバラツキを抑えた
焼結体を得ることができるチタン酸バリウム系半導体磁
器の焼成方法を提供することを目的とするものである。
The present invention solves the above-mentioned conventional problems, and provides a sintered body that suppresses variations in the properties of the sintered body due to the cooling process even when the cooling rate from the maximum temperature is increased during firing. The object of the present invention is to provide a method for firing barium titanate-based semiconductor porcelain that can be obtained.

課題を解決するための手段 この課題を達成するために本発明のチタン酸バリウム系
半導体磁器の焼成方法は、チタン酸バリウム系の成形体
を収納する焼成さやが、SiC層とAt2203層から
なる構成を有するものを用いて焼成することを特徴とす
るものである。ここで、成形体を収納する側はA220
3層であり、SiC層上に成形体を収納した場合、チタ
ン酸バリfクム系成形体はSiCと反応性が強く、使用
することはできない。
Means for Solving the Problem In order to achieve this problem, the method for firing barium titanate-based semiconductor porcelain of the present invention is such that the firing sheath containing the barium titanate-based molded body is composed of a SiC layer and an At2203 layer. It is characterized in that it is fired using a material having Here, the side where the molded body is stored is A220.
When there are three layers and the molded body is housed on the SiC layer, the baricum titanate molded body is highly reactive with SiC and cannot be used.

作用 この構成によって、AQ 203 (分子熱cp−12
4,7J −ma l−’d e g−’)とそれより
小さい比熱を有するS i C(Cp=48.6J −
ma 1−’deg=)の層をもつ構造にすることで、
焼成さやの熱放散がAl2O3だけのものよりもよくな
り、焼成さやがもつ熱容量を小さくすることができるの
で、焼成炉内の設定温度に焼成さやもついていきやすく
なるため、冷却過程による焼結体の特性のバラツキを抑
えたチタン酸バリウム系半導体磁器を得ることができる
Effect This configuration allows AQ 203 (molecular heat cp-12
4,7J-ma l-'d e g-') and a smaller specific heat of S i C (Cp=48.6J-
By creating a structure with layers of ma 1−'deg=),
The heat dissipation of the fired pod is better than that of only Al2O3, and the heat capacity of the fired pod can be reduced, making it easier for the fired pod to keep up with the set temperature in the firing furnace. It is possible to obtain barium titanate-based semiconductor porcelain with suppressed variations in properties.

また、本発明において、SiC層をAt! 203層と
組合せた焼成さやを用いるのは、SiCは熱伝導率が大
きく、かつ耐火性にすぐれており、さらにAe 203
と熱膨張係数がほぼ等しいことによっている。特に、A
e 203と熱膨張係数が異なる材質のものを用いて焼
成さやを構成すると、焼成により焼成さやが反ってしま
い好ましくない。
Moreover, in the present invention, the SiC layer is At! The reason for using the fired sheath in combination with the Ae 203 layer is that SiC has high thermal conductivity and excellent fire resistance.
This is because the coefficients of thermal expansion are almost the same. In particular, A
If the fired pod is constructed using a material with a coefficient of thermal expansion different from e203, the fired pod will warp during firing, which is not preferable.

実施例 以下、本発明の実施例について図面を参照しながら説明
する。
EXAMPLES Hereinafter, examples of the present invention will be described with reference to the drawings.

第1図は本実施例で使用した焼成さやの断面を示すもの
である。第1図(a)はA0203層1とSiC層2か
らなるサンドイッチ状の焼成さやである。
FIG. 1 shows a cross section of the fired pod used in this example. FIG. 1(a) shows a sandwich-like fired pod consisting of an A0203 layer 1 and a SiC layer 2.

また、第1図(b)は同図(a)と同様にAe 203
層1とSiC層2からなる焼成さやであるが、2層で構
成された焼成さやを示している。
In addition, FIG. 1(b) shows Ae 203 similarly to FIG. 1(a).
Although the fired sheath is composed of layer 1 and SiC layer 2, it shows a fired sheath composed of two layers.

次にAe 203層からなる焼成さやと、上記2種類の
焼成さやに熱電対をそれぞれその焼成さやの上面につけ
、温度測定を行った。このとき焼成炉内の温度設定は、
1400℃から1時間に400℃の冷却速度で行った。
Next, thermocouples were attached to the upper surfaces of the fired pods made of Ae 203 layer and the above two types of fired pods, respectively, to measure the temperature. At this time, the temperature setting in the firing furnace is
The cooling was performed from 1400°C at a cooling rate of 400°C per hour.

その結果を第2図に示す。第2図の実IAはこのときの
炉内の温度であり、実MBは第1図(a)及び(b)の
焼成さやを測定した結果であり、実線Cは従来のAe 
203層からなる焼成さやを測定したときの結果である
。この結果から分かるように、Ae2ChMだけの焼成
さやより、i 203層とSiC層とからなる焼成さや
を使用することにより、焼成時における冷却過程におい
て焼成さやの温度が炉内の設定値とほぼ同しような温度
になっていることが示されている。
The results are shown in FIG. The actual IA in Figure 2 is the temperature inside the furnace at this time, the actual MB is the result of measuring the fired pods in Figures 1 (a) and (b), and the solid line C is the temperature of the conventional Ae.
These are the results when a fired pod consisting of 203 layers was measured. As can be seen from this result, by using a fired pod consisting of an i203 layer and a SiC layer, the temperature of the fired pod during the cooling process during firing is almost the same as the set value in the furnace, rather than a fired pod made of only Ae2ChM. It is shown that the temperature is about

次に、第1図(a) 、 (b)に示される焼成さやに
成形体を収納し焼成を行った具体例について説明する。
Next, a specific example in which a molded body is housed in a firing sheath shown in FIGS. 1(a) and 1(b) and fired will be described.

ここで、成形体は次のようにして用意した。まず、組成
がB a T i o、e+ S no、+s○3+0
.014Nb20s+0.024S io2 +0.0
IAf! 203になるように市販の高純度原料を秤量
し、ゴム内張りしたポットミルにメノウ玉石と共に入れ
、混合・粉砕し乾燥した。この乾燥した原料にバインダ
ーとしてポリビニルアルコール(P、V、A)を10重
量%加えて造粒したのち、油圧プレスを用い、圧力80
0 kg / cJで直径10mm、厚さ1.2師の円
板状に成形し、成形体を得た。
Here, the molded body was prepared as follows. First, the composition is B a T io, e+ S no, +s○3+0
.. 014Nb20s+0.024S io2 +0.0
IAf! Commercially available high-purity raw materials were weighed to give a weight of 2.0 mm, put into a rubber-lined pot mill together with agate cobbles, mixed, crushed, and dried. After adding 10% by weight of polyvinyl alcohol (P, V, A) as a binder to this dried raw material and granulating it, using a hydraulic press, a pressure of 80
It was molded into a disk shape of 10 mm in diameter and 1.2 mm in thickness at 0 kg/cJ to obtain a molded body.

次に、第3図に示すように上記の成形体6を焼成さや全
体に収納した。このとき、焼成さや内には酸化ジルコニ
ウム(ZrO2)からなる粉末7を敷きつめておいた。
Next, as shown in FIG. 3, the above molded body 6 was housed in the entire firing sheath. At this time, powder 7 made of zirconium oxide (ZrO2) was spread inside the fired sheath.

また、第3図に示すようにAe 203層1の間にSi
C層2を設けたサンドイッチ状の焼成さやで実施した。
Moreover, as shown in FIG.
The experiment was carried out using a sandwich-shaped fired pod provided with a C layer 2.

ここで、本実施例に使用した焼成さやの大きさは縦及び
横の長さが280 rrm 、厚さが10mm(Al2
O3層;3mmX2.SiC層;4m)である。そして
、成形体を収納した焼成さやを温度設定ができる焼成炉
内に入れ、昇温速度毎時200℃で1380℃まで昇温
し、1380℃で1時間焼成したのち、冷却速度を変え
て降温し、チタン酸バリウム系磁器試料を得た。
Here, the size of the fired pod used in this example was 280 rrm in length and width, and 10 mm in thickness (Al2
O3 layer; 3mmX2. SiC layer; 4 m). Then, the fired pod containing the molded body was placed in a firing furnace where the temperature could be set, and the temperature was raised to 1380°C at a heating rate of 200°C per hour. After firing at 1380°C for 1 hour, the temperature was lowered by changing the cooling rate. , barium titanate-based porcelain samples were obtained.

次に、このようにして得られた試料の特性を従来のAe
 203層だけからなる焼成さやを用いた場合と併せて
調べた。即ち、得られた試料を各さや内の焼結体50ケ
をランダムサンプリングし、試料の両面にアルミニウム
溶射による電極をつけ、常温抵抗値(R25)の平均と
標準偏差(Sn−+)を計算した。また、常温抵抗値と
80℃での抵抗値(Rao )との比(R80/R25
)を測定し、平均値を計算した。その結果を下記の第1
表及び第2表に示す。第1表はSiC層とAl2O3層
からなる本発明の焼成さやを使用したときの結果であり
、第2表は従来のAt! 203の焼成さやを使用した
ときの結果である。
Next, the characteristics of the sample obtained in this way were compared with conventional Ae
This was also investigated using a fired pod consisting of only 203 layers. That is, 50 sintered bodies in each pod were randomly sampled, aluminum sprayed electrodes were attached to both sides of the sample, and the average and standard deviation (Sn-+) of the room temperature resistance value (R25) were calculated. did. Also, the ratio of the resistance value at room temperature to the resistance value at 80°C (Rao) (R80/R25
) was measured and the average value was calculated. The results are shown in the first section below.
Shown in Table and Table 2. Table 1 shows the results when using the fired pod of the present invention consisting of a SiC layer and an Al2O3 layer, and Table 2 shows the results of the conventional At! These are the results when using No. 203 fired pods.

く第 表〉 く第 表〉 以上の結果は、本発明の焼成さやを用いた場合SiCを
有することで焼成さやの熱放散がAt!203だけのも
のよりもよくなり、焼成さやがもつ熱容量を小さくする
ことができるので、焼成炉内の冷却過程における設定温
度についていくことができ、焼結体の特性のバラツキを
抑えたチタン酸バリウム系半導体磁器を得ることができ
ることを示している。
Table 1 Table 1 The above results show that when the fired pod of the present invention is used, the heat dissipation of the fired pod is At! Barium titanate is better than 203 alone, and the heat capacity of the fired pod can be reduced, allowing it to keep up with the set temperature during the cooling process in the firing furnace, suppressing variations in the properties of the sintered body. This shows that it is possible to obtain semiconducting porcelain.

発明の効果 以上のように本発明は、SiC層とAe 203層から
構成された焼成さやを用いることにより、焼成における
冷却過程による焼結体の特性のバラツキを抑えたチタン
酸バリウム系半導体磁器を得ることができるものである
Effects of the Invention As described above, the present invention provides barium titanate-based semiconductor porcelain that suppresses variations in the characteristics of the sintered body due to the cooling process during firing by using a fired sheath composed of a SiC layer and an Ae 203 layer. It is something that can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (b)はそれぞれ本発明の実施例に
係る焼成さやの断面図、第2図は本発明の実施例及び従
来例における焼成さやの温度変化を示したグラフ、第3
図は本発明の実施例におけるチタン酸バjウム系半導体
磁器焼成−工程を示す断面図である。 1・・・・・・Al1203層、2・・・・・・SiC
層。
Figures 1 (a) and (b) are cross-sectional views of fired pods according to embodiments of the present invention, Figure 2 is a graph showing temperature changes of fired pods in embodiments of the present invention and conventional examples, and Figure 3.
The figure is a sectional view showing the process of firing barium titanate semiconductor ceramics in an embodiment of the present invention. 1...Al1203 layer, 2...SiC
layer.

Claims (1)

【特許請求の範囲】[Claims]  チタン酸バリウム系の成形体を、SiC層とAl_2
O_3層からなる焼成さや内の上記Al_2O_3層側
に上記成形体を位置するようにして収納し、上記焼成さ
やを焼成炉に入れ、上記チタン酸バリウム系成形体を焼
成することを特徴とするチタン酸バリウム系半導体磁器
の焼成方法。
A barium titanate-based molded body is combined with a SiC layer and Al_2
The titanium titanium oxide is characterized in that the molded body is placed on the side of the Al_2O_3 layer in a fired sheath consisting of O_3 layers, the fired sheath is placed in a firing furnace, and the barium titanate-based molded body is fired. A method for firing barium acid semiconductor porcelain.
JP1318024A 1989-12-07 1989-12-07 Method for firing barium titanate-based semiconductor porcelain Expired - Fee Related JP2808758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1318024A JP2808758B2 (en) 1989-12-07 1989-12-07 Method for firing barium titanate-based semiconductor porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1318024A JP2808758B2 (en) 1989-12-07 1989-12-07 Method for firing barium titanate-based semiconductor porcelain

Publications (2)

Publication Number Publication Date
JPH03177357A true JPH03177357A (en) 1991-08-01
JP2808758B2 JP2808758B2 (en) 1998-10-08

Family

ID=18094646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1318024A Expired - Fee Related JP2808758B2 (en) 1989-12-07 1989-12-07 Method for firing barium titanate-based semiconductor porcelain

Country Status (1)

Country Link
JP (1) JP2808758B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5308807A (en) * 1992-07-15 1994-05-03 Nalco Chemical Company Production of lead zirconate titanates using zirconia sol as a reactant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5308807A (en) * 1992-07-15 1994-05-03 Nalco Chemical Company Production of lead zirconate titanates using zirconia sol as a reactant

Also Published As

Publication number Publication date
JP2808758B2 (en) 1998-10-08

Similar Documents

Publication Publication Date Title
JP5757239B2 (en) Semiconductor porcelain composition and method for producing the same, PTC element and heating module
KR101390609B1 (en) Semiconductor ceramic composition and method for producing the same
JPWO2008053813A1 (en) Semiconductor porcelain composition and method for producing the same
CN110128127B (en) Bismuth ferrite-barium titanate-based lead-free piezoelectric ceramic with high piezoelectric performance and high-temperature stability and preparation method thereof
KR20170016805A (en) Semiconductive ceramic composition and ptc thermistor
US3044968A (en) Positive temperature coefficient thermistor materials
JP2006179692A (en) Manufacturing method of thermistor
EP1597738B1 (en) A ceramic mixture having negative temperature co-efficient, a thermistor containing the ceramic mixture and a process for preparing thereof
JPH03177357A (en) Burning of barium titanate-based semiconductor porcelain
JP6675050B1 (en) Thermistor sintered body and temperature sensor element
JP3826494B2 (en) Wide range type thermistor element
JP2004018321A (en) Leadless piezoelectric ceramic composition and method of producing the same
JPH08195302A (en) Positive temperature coefficient thermistor
JPS6366401B2 (en)
JPH0369175A (en) Piezoelectric ceramic composition
JP3598177B2 (en) Voltage non-linear resistor porcelain
Kumar et al. Densiftcation and dielectric properties of hydrothermal BaTiO3 with different sources of Bi2O3
JPS5948521B2 (en) Method for manufacturing positive characteristic semiconductor porcelain
JP3196516B2 (en) Positive thermistor
JPS63280401A (en) Semiconductor porcelain composition
JPH0338892A (en) Piezoelectric porcelain composition
JPH02106903A (en) High-temperature ptc thermistor and manufacture thereof
JPS61253812A (en) Ceramic composition for semiconductor capacitor
JPH027166B2 (en)
JPH0692717A (en) Production of bi based oxiee superconductor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070731

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080731

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees