JPH03176900A - Semiconductor memory - Google Patents

Semiconductor memory

Info

Publication number
JPH03176900A
JPH03176900A JP1315804A JP31580489A JPH03176900A JP H03176900 A JPH03176900 A JP H03176900A JP 1315804 A JP1315804 A JP 1315804A JP 31580489 A JP31580489 A JP 31580489A JP H03176900 A JPH03176900 A JP H03176900A
Authority
JP
Japan
Prior art keywords
signal
level
determination signal
semiconductor memory
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1315804A
Other languages
Japanese (ja)
Inventor
Kazuhiro Nakada
和宏 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1315804A priority Critical patent/JPH03176900A/en
Publication of JPH03176900A publication Critical patent/JPH03176900A/en
Pending legal-status Critical Current

Links

Landscapes

  • For Increasing The Reliability Of Semiconductor Memories (AREA)
  • Dram (AREA)

Abstract

PURPOSE:To shorten test time at a wafer state in spite of specification by setting the level of at least one of second deciding signals at the level corresponding to the prescribed level of a first decision signal compulsorily with the first deciding signal. CONSTITUTION:When a bonding terminal 11 is set at an NC state not being connected to any part, a bonding switching signal BO goes to a low level, and the deciding signal B1 goes to the low level. Since the judging signal B1 is set at the low level, the judging signal NBL goes to the low level inspite of the connecting state of an input switching part 21. Therefore, the same state can be set as when a signal FNBL goes to the low level, then, input/output data can be processed with four bits. In such a way, it is possible to perform a test in a short period of time at the wafer state in spite of the specification.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体メモリに関し、特にボンディング端子の
接続状態、マスクの切換えに応じてレベルが設定される
判定信号により品種の判別ができる半導体メモリに関す
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a semiconductor memory, and more particularly to a semiconductor memory whose type can be determined by a determination signal whose level is set according to the connection state of bonding terminals and switching of masks. .

〔従来の技術〕[Conventional technology]

半導体メモリは、ダイナミック型RAMに代表されるよ
うに、大容量化に伴ないテスト時間が増大し、また製造
プロセスの複雑化、微細化により拡散期間が長くなって
いる。
In semiconductor memories, as typified by dynamic RAMs, the test time increases as the capacity increases, and the diffusion period becomes longer due to the complexity and miniaturization of the manufacturing process.

そこで出力データのビット構成や機能の異なる品種を、
同一ペレットのヒユーズ切換、アルミニューム配線マス
クの切換やボンディング点切換にて展開可能とし、拡散
期間が長くても品種ごとの生産調整が行いやすく、また
同時多品種開発を行えるようにしている。
Therefore, we have developed products with different output data bit configurations and functions.
It is possible to deploy the same pellet by switching fuses, aluminum wiring masks, and bonding points, making it easy to adjust production for each product even if the diffusion period is long, and allowing simultaneous development of multiple products.

特に出力データのビット構成については、多数ビット出
力の品種は同一メモリ容量でも少数ビット出力の品種よ
りもテスト時間が短くて済むため、出力データのビット
構成切換をボンディングオプションにて行い、ウェーハ
状態では多ヒツト構成にてテストを行い、選別テスト時
間を短縮している。
In particular, regarding the bit configuration of output data, products with multiple bit output require shorter test time than products with fewer bits output even with the same memory capacity. Tests are conducted in a multi-hit configuration to reduce selection test time.

従来のこの種の半導体メモリは、−例として第3図に示
すように、入力切換部21により信号FSC,FNBL
を電源電位■。0点又は接地電位点にマスク切換可能と
し、この信号FSC,FNBLをインバータI4.I5
. 工8.I3により増幅し、判定信号SC,NBLと
して出力する判定信号発生部2B、2Dと、ボンディン
グ端子11と、インバータII、I2と、NチャネルM
O8型のトランジスタQlとを備え、ボンディング端子
11が電源電位■。。点に接稗されているか否かに応じ
て所定のレベルの判定信号Blを出力する判定信号発生
回路1とを有し、判定信号Bl、SC,NBLにより種
別を判別する構成となっている。
In the conventional semiconductor memory of this type, as shown in FIG.
■The power potential. The mask can be switched to the 0 point or the ground potential point, and the signals FSC and FNBL are sent to the inverter I4. I5
.. Engineering 8. Judgment signal generators 2B and 2D amplified by I3 and output as judgment signals SC and NBL, bonding terminal 11, inverters II and I2, and N-channel M
It is equipped with an O8 type transistor Ql, and the bonding terminal 11 is at the power supply potential ■. . It has a determination signal generation circuit 1 that outputs a determination signal Bl of a predetermined level depending on whether a point is touched or not, and is configured to determine the type based on the determination signals Bl, SC, and NBL.

次に、この半導体メモリの動作について説明する。Next, the operation of this semiconductor memory will be explained.

第1表は第3図に示された半導体メモリのマスク切換え
とボンディング切換えの組合せにより展開された品種を
示すものである。
Table 1 shows the types developed by the combination of mask switching and bonding switching of the semiconductor memory shown in FIG.

第1表 例えば、ボンディング切換信号BOが電源電位vooに
、信号FSCが接地電位(以下GNDと記す)信号FN
BLがGNDになっている場合、1ビツト出力のファー
ストページ品(XIF、P、)になり、ボンディング端
子11がどこにも接続されない時(以下NCと記す)は
、4ビツト出力のファーストページ品(X4  F、P
、)となる。
Table 1 For example, the bonding switching signal BO is set to the power supply potential voo, and the signal FSC is set to the ground potential (hereinafter referred to as GND) signal FN.
When BL is GND, it becomes a 1-bit output first page product (XIF, P,), and when the bonding terminal 11 is not connected to anything (hereinafter referred to as NC), it becomes a 4-bit output first page product ( X4 F, P
,) becomes.

同様に信号FSCが電源電位V。い信号FNBLがGN
Dになっている場合、ボンディング切換信号BOが電源
電位V。。ならば1ビツト出力のスタティックカラム品
(Xi  S、C,)となりボンディング端子11がN
Cならば4ビツト出力のスタティックカラム品(X4 
 S、C,)となる。ボンティング切換信号B○が電源
電位■。0、信号FSCがGND、信号FNBLが電源
電位V。。ならば1ビット出力のニブル品(XI NI
BBLE)となる。
Similarly, the signal FSC is at the power supply potential V. signal FNBL is GN
When the voltage is D, the bonding switching signal BO is at the power supply potential V. . In this case, it becomes a static column product (Xi S, C,) with a 1-bit output, and the bonding terminal 11 is N.
C is a 4-bit output static column product (X4
S, C,). The bonding switching signal B○ is the power supply potential ■. 0, signal FSC is GND, signal FNBL is power supply potential V. . If so, it is a nibble product with 1-bit output (XI NI
BLE).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の半導体メモリは、例えば、信号FSCを
GNDに、信号FNBLを電源電位v。。
In the conventional semiconductor memory described above, for example, the signal FSC is set to GND, and the signal FNBL is set to the power supply potential v. .

にしてXi  NIBBLE品とした場合、ボンディン
グ切換信号BOは必ず電源電位■。0とする必要がある
ので、ウェー/’1状態でのテストが1ビツト出力構成
で行なわれるためテスト時間が長くなるという欠点があ
る。
When using a Xi NIBBLE product, the bonding switching signal BO is always at the power supply potential ■. Since it is necessary to set the value to 0, the test in the way/'1 state is performed in a 1-bit output configuration, which has the disadvantage that the test time becomes longer.

本発明の目的は、品種に関係なくウェー/’を状態での
テストを短時間で行うことができる半導体メモリを提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor memory that can be tested in a short time regardless of the product type.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体メモリは、ボンディング端子を備え、こ
のボンディング端子が所定の電位の第1の電位点に接続
されているか否かにより第1及び第2のレベルの何れか
一方のレベルとなる第1の判定信号を出力する第1の判
定信号発生部と、マスクの切換えにより前記第1の電位
点及びこの第1の電位点とは異る電位の第2の電位点の
何れか一方との接続の切換えができる入力切換部をそれ
ぞれ備え、この入力切換部が接続されている電位点に対
応したレベルの第2の判定信号をそれぞれ出力する複数
の第2の判定信号発生部とを有し、=6一 前記第1及び第2の判定信号により品種の判別ができる
半導体メモリにおいて、前記第2の判定信号の少なくと
も一つを、前記第1の判定信号により強制的にこの第1
の判定信号の所定のレベルと対応したレベルにするレベ
ル切換手段を設けて構成される。
The semiconductor memory of the present invention includes a bonding terminal, and a first level that is at one of the first and second levels depending on whether or not the bonding terminal is connected to a first potential point of a predetermined potential. A first determination signal generation unit that outputs a determination signal of the above is connected to either the first potential point or a second potential point having a different potential from the first potential point by switching the mask. and a plurality of second determination signal generation units each outputting a second determination signal of a level corresponding to the potential point to which the input switching unit is connected, =6 - In a semiconductor memory whose type can be determined based on the first and second judgment signals, at least one of the second judgment signals is forcibly set to the first judgment signal.
A level switching means is provided to set the level corresponding to a predetermined level of the determination signal.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例を示す回路図である。FIG. 1 is a circuit diagram showing a first embodiment of the present invention.

この実施例が第3図に示された従来の半導体メモリと相
違する点は、従来の判定信号発生部2Dのインバータ■
8を2人力のNANDゲートG1に変更し、このNAN
Dゲートの一方の入力端には入力切換部の出力を接続し
、他方の入力端には判定信号発生部1の出力、すなわち
第1の判定信号B1を接続し、入力切換部21.インバ
ータ■3と共に判定信号発生部2Aを形成し、ウェーハ
状態のテスト時、ボンディング端子11をNC状態とす
ることにより判定信号NBLを強制的にGNDレベルと
した点にある。
This embodiment is different from the conventional semiconductor memory shown in FIG.
8 to a two-man powered NAND gate G1, this NAN
The output of the input switching section is connected to one input terminal of the D gate, the output of the judgment signal generating section 1, that is, the first judgment signal B1 is connected to the other input terminal, and the input switching section 21. The determination signal generating section 2A is formed together with the inverter (2) 3, and the determination signal NBL is forced to the GND level by bringing the bonding terminal 11 into the NC state during a test of the wafer state.

ここで、NANDゲートグー、このNANDゲートグー
1の入力端と判定信号発生部1の出力端との間の接続、
及びボンディング端子11をNC状態とすることがレベ
ル切換手段となる。
Here, a NAND gate 1, a connection between the input terminal of this NAND gate 1 and the output terminal of the determination signal generation section 1,
And setting the bonding terminal 11 to the NC state serves as a level switching means.

次に、この実施例の動作について説明する。Next, the operation of this embodiment will be explained.

ボンディング端子11をNC状態とすると、ポンディン
グ切換信号BOは低レベルとなり、従って判定信号Bl
は低レベルとなる。
When the bonding terminal 11 is brought into the NC state, the bonding switching signal BO becomes low level, and therefore the judgment signal Bl
is at a low level.

判定信号B1が低レベルであるので、判定信号NBLは
入力切換部21の接続状態に関係なく低レベルとなる。
Since the determination signal B1 is at a low level, the determination signal NBL is at a low level regardless of the connection state of the input switching section 21.

従って信号FNBLが低レベル(GND) の、!:。Therefore, the signal FNBL is at low level (GND)! :.

きと同等となり、第1表から分るように、X4F、P、
、X4  S、C,と同一品種として、入出力データを
4ビツトで処理することができる。
As can be seen from Table 1, X4F, P,
, X4 S, C, and can process input/output data in 4 bits.

第2図は本発明の第2の実施例を示す回路図である。FIG. 2 is a circuit diagram showing a second embodiment of the present invention.

この実施例は、判定信号発生部1と同一構成の判定信号
発生部IAを設け、第1の実施例の判定信号発生部2B
のインバータ■4を2人力のNANDケートG2に変更
してこのNANDゲートG2の一方の入力端に判定信号
発生部IAの出力を接続し、ボンディング端子11をN
C状態として、判定信号SCを強制的に低レベルにし、
X4F。
This embodiment includes a decision signal generating section IA having the same configuration as the decision signal generating section 1, and a decision signal generating section 2B of the first embodiment.
Change the inverter 4 to a two-man powered NAND gate G2, connect the output of the judgment signal generator IA to one input terminal of this NAND gate G2, and connect the bonding terminal 11 to the NAND gate G2.
As state C, the determination signal SC is forcibly set to a low level,
X4F.

P、としてテストができるようにしたもので、テストプ
ログラムを変更する必要がないという利点がある。
This allows testing to be performed as P, and has the advantage that there is no need to change the test program.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、第2の判定信号を強制的
に第1の判定信号の所定レベルと対応したレベレにする
構成とすることにより、品種に関係なく、ウェーハ状態
におけるテストを多ビットの入出力機構で行うことがで
きるのでテストを短時間で行うことができる効果がある
As explained above, the present invention is configured to forcibly set the second judgment signal to a level corresponding to the predetermined level of the first judgment signal, so that the test in the wafer state can be performed with multiple bits regardless of the product type. This has the effect of allowing testing to be performed in a short time because it can be performed using the input/output mechanism of

体メモリの一例を示す回路図である。FIG. 2 is a circuit diagram showing an example of a physical memory.

1、L、2A〜2D・・・・・判定信号発生部、11ボ
ンデインク端子、21・・・・・・入力切換部、Gl。
1, L, 2A to 2D...determination signal generation section, 11 bond ink terminal, 21...input switching section, Gl.

G2・・・・・NANDゲート、■1〜■8・・印・イ
ンバータ、Ql、G2・・・・・・トランジスタ。
G2...NAND gate, ■1 to ■8...inverter, Ql, G2...transistor.

Claims (1)

【特許請求の範囲】 1、ボンディング端子を備え、このボンディング端子が
所定の電位の第1の電位点に接続されているか否かによ
り第1及び第2のレベルの何れか一方のレベルとなる第
1の判定信号を出力する第1の判定信号発生部と、マス
クの切換えにより前記第1の電位点及びこの第1の電位
点とは異る電位の第2の電位点の何れか一方との接続の
切換えができる入力切換部をそれぞれ備え、この入力切
換部が接続されている電位点に対応したレベルの第2の
判定信号をそれぞれ出力する複数の第2の判定信号発生
部とを有し、前記第1及び第2の判定信号により品種の
判別ができる半導体メモリにおいて、前記第2の判定信
号の少なくとも一つを、前記第1の判定信号により強制
的にこの第1の判定信号の所定のレベルと対応したレベ
ルにするレベル切換手段と設けたことを特徴とする半導
体メモリ。 2、第2の判定信号発生部の少なくとも一つが、第1の
入力端に入力切換部からの信号を入力し第2の入力端に
第1の判定信号を入力するNANDゲートと、このNA
NDゲートの出力を反転するインバータとを備えて構成
された請求項1記載の半導体メモリ。
[Scope of Claims] 1. A bonding terminal that is provided with a bonding terminal and is at one of the first and second levels depending on whether or not the bonding terminal is connected to a first potential point of a predetermined potential. A first determination signal generating section that outputs one determination signal, and one of the first potential point and a second potential point having a different potential from the first potential point by switching the mask. Each input switching unit is provided with an input switching unit that can switch the connection, and each of the input switching units is provided with a plurality of second determination signal generation units that outputs a second determination signal of a level corresponding to the potential point to which the input switching unit is connected. , in a semiconductor memory whose type can be determined based on the first and second judgment signals, at least one of the second judgment signals is forcibly set to a predetermined value of the first judgment signal. A semiconductor memory characterized in that it is provided with a level switching means for setting a level corresponding to the level of the semiconductor memory. 2. At least one of the second determination signal generation sections includes a NAND gate that inputs the signal from the input switching section to the first input terminal and inputs the first determination signal to the second input terminal;
2. The semiconductor memory according to claim 1, further comprising an inverter for inverting the output of the ND gate.
JP1315804A 1989-12-04 1989-12-04 Semiconductor memory Pending JPH03176900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1315804A JPH03176900A (en) 1989-12-04 1989-12-04 Semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1315804A JPH03176900A (en) 1989-12-04 1989-12-04 Semiconductor memory

Publications (1)

Publication Number Publication Date
JPH03176900A true JPH03176900A (en) 1991-07-31

Family

ID=18069755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1315804A Pending JPH03176900A (en) 1989-12-04 1989-12-04 Semiconductor memory

Country Status (1)

Country Link
JP (1) JPH03176900A (en)

Similar Documents

Publication Publication Date Title
US5617366A (en) Method and apparatus for a test control circuit of a semiconductor memory device
KR970049545A (en) Programmable Parity Checking and Comparison Circuit
US5467356A (en) Burn-in circuit and burn-in test method
KR950001293B1 (en) Parallel test circuit of semiconductor memory chip
US5361230A (en) Memory device delaying timing of outputting data in a test mode as compared with a normal operating mode
JPH11316264A (en) Parallel test circuit of semiconductor device
JPH05249196A (en) Semiconductor storage device
US5610865A (en) Semiconductor memory device with redundancy structure
US5103426A (en) Decoding circuit and method for functional block selection
KR970051297A (en) Parallel Output Buffers in Memory Circuits
JPH0417349A (en) Dynamic memory device and burn-in method therefor
KR970051415A (en) Method of selecting merge data output mode of semiconductor memory device
US5420870A (en) Non-fully-decoded test address generator
JPH03176900A (en) Semiconductor memory
KR100383882B1 (en) Cycle selection circuit and semiconductor memory storage using the same
JP3241302B2 (en) Semiconductor storage device
KR100279293B1 (en) Semiconductor device packaged by micro ball grid array package
US6473345B2 (en) Semiconductor memory device which can be simultaneously tested even when the number of semiconductor memory devices is large and semiconductor wafer on which the semiconductor memory devices are formed
KR100524925B1 (en) Semiconductor memory device implemented parallel bit test capable of test time and parallel bit test method using the same
JPH08235898A (en) Semiconductor device
JP2810944B2 (en) Semiconductor storage device
JP2753285B2 (en) Semiconductor storage device
KR100532391B1 (en) Test control circuit having minimum number of pad
JPH04113580A (en) Semiconductor integrated circuit device
KR0182973B1 (en) Wafer burn-in test circuit of a semiconductor memory device