JPH0317577B2 - - Google Patents

Info

Publication number
JPH0317577B2
JPH0317577B2 JP61213314A JP21331486A JPH0317577B2 JP H0317577 B2 JPH0317577 B2 JP H0317577B2 JP 61213314 A JP61213314 A JP 61213314A JP 21331486 A JP21331486 A JP 21331486A JP H0317577 B2 JPH0317577 B2 JP H0317577B2
Authority
JP
Japan
Prior art keywords
binder
sand
mold
molds
thickener
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61213314A
Other languages
Japanese (ja)
Other versions
JPS6368240A (en
Inventor
Yoshiharu Yanagimoto
Yasushi Yoshida
Fumio Shirota
Takeshi Hinotani
Isamu Ide
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIGUNAITO KK
Original Assignee
RIGUNAITO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIGUNAITO KK filed Critical RIGUNAITO KK
Priority to JP21331486A priority Critical patent/JPS6368240A/en
Publication of JPS6368240A publication Critical patent/JPS6368240A/en
Publication of JPH0317577B2 publication Critical patent/JPH0317577B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[技術分野] 本発明は、三次元構造の鋳物を鋳造するのに適
した鋳型の製造方法に関するものである。 [背景技術] 現在使用されている鋳型は、生砂型や高圧造
型、高速造型など粘土類を粘結剤として用いる普
通鋳型と、熱硬化性鋳型、自硬性鋳型、ガス硬化
鋳型、電子線硬化鋳型、揮散硬化鋳型、精密鋳造
鋳型など硬化性粘結剤を用いる特殊鋳型と、消失
模型鋳型、減圧造形鋳型、凍結鋳型などその他の
鋳型とに分類される。 普通鋳型は最も一般的な鋳型で、鋳型砂を繰り
返し使用することができて安価であるために、今
なお鋳型の中心になつている。しかし生砂型を代
表例とする普通鋳型は粘土類や亜麻仁油などを粘
結剤として用いるために、鋳型を加熱セツトする
にあたつて170〜180℃の温度で数十分から数時間
程度の長時間を必要として生産性が低く、さらに
鋳込み時にガスの発生が多くガス圧で鋳型が破損
されたり鋳物に欠陥が多発したり易いためにガス
抜き用のパイプをセツトしておかなければならな
いなどの問題がある。また普通鋳型は水平割りや
垂直割りに構成されるのが一般的であり、鋳造す
べき物の表面が二次元的に単純なものであれば模
型を造型ののちに容易に抜き取ることができる
が、三次元インペラーなどのように鋳造すべき物
の表面が三次元的に複雑に湾曲したものであれ
ば、模型を抜き取ることが不可能な場合がある。
そこでこの場合には、模型を数個から数十個に分
割し、分割した個々の模型について手込めで造型
したのちにそれぞれの模型を抜き、そして各造型
したものを手直ししたのちにこれら合体させて鋳
型を製造するようにしている。しかし上記のよう
に普通鋳型では粘土類を粘結剤として用いてお
り、加熱セツトに長時間を要するためにこの間に
鋳型に垂れ変形や崩壊などの型くずれが生じるお
それがあり、このために鋳型内に芯金を入れて補
強しておく必要があつて、造型の作業手間が非常
に繁雑になるものであつた。 また、特殊鋳型は硬化性粘結剤を用い加熱硬化
や硬化剤の併用による常温硬化などで粘結剤を迅
速に硬化させることができ、生産性が高く、また
安定した品質をもつた造型をおこなうことがで
き、自動車や自動二輪車の生産台数の増加ととも
に急速に進展しており、特に粘結剤としてフエノ
ール樹脂を用いるシエルモールドは鋳型中子など
として急速に伸びている。そしてこの特殊鋳型は
手込めや注型、ブロー等で造型して硬化性粘結剤
を硬化させ、次いで水平割りや垂直割り、ダンプ
ボツクス法などで模型を抜き取るとによつて製造
される。しかしこのように模型の抜き取りは既に
硬化されている鋳型からおこなう必要があるため
に、鋳造すべき物の表面が二次元的に単純なもの
以外のもの、例えば三次元インペラーなどのよう
に鋳造すべき物の表面が三次元的に複雑に湾曲し
たものであれば模型を抜き取ることができない。
そこでこの場合には前記普通鋳型と同様に、模型
を数個から数十個に分割し2分割した個々の模型
について手込めで造型して粘結剤を硬化させたの
ちにそれぞれの模型を抜き取るように工夫がおこ
なわれている。しかしこの特殊鋳型の場合には普
通鋳型と異なつて粘結剤が硬化した鋳型から模型
を抜く必要があり、硬化した粘結剤からの模型の
離型が困難であると共に粘結剤が硬化状態にあつ
て可塑性のない鋳型から複雑な形状の模型を抜く
ことが困難であつて、模型の抜き取りが不可能に
なることがあつた。 [発明の目的] 本発明は、上記の点に鑑みて為されたものであ
り、三次元的な形状を有する鋳物を鋳造する鋳型
を容易に製造できる鋳型の製造方法を提供するこ
とを目的とするものである。 [発明の開示] しかして本発明に係る鋳型の製造方法は、増粘
剤を配合した熱硬化性樹脂の液状の粘結剤を砂に
混合し、この砂を造型して模型を抜き取つたのち
に粘結剤を硬化させることを特徴とするものであ
り、複雑な形状の模型の抜き取りが容易な普通鋳
型の方法をそのまま活かしつつ、増粘剤による適
度の粘りや熱硬化性樹脂の粘結剤の迅速な硬化で
芯金を用いずとも型くずれを防止できるようにす
ると共に、生産性を高くすることができる特殊鋳
型の方法をそのまま活かすことができるようにし
たものである。 以下本発明を詳細に説明する。粘結剤としては
硬化が迅速におこなわれるフエノール樹脂やフラ
ン樹脂など熱硬化性樹脂を用いるものであり、な
かでもシエルモールドにおいて汎用されるフエノ
ール樹脂が好ましく、フエノール樹脂はレゾール
型でもノボラツク型でもいずれでもよい。またこ
の熱硬化性樹脂粘結剤は液状で使用されるもので
あり、従つて常温で液状のものはそのまま、ある
いは常温で固形のものは溶剤に溶解するなど常温
で液状になるようにして用いる。この熱硬化性樹
脂粘結剤に粘りを出すために増粘剤を添加して均
一に溶解させる。増粘剤としては液状の熱硬化性
樹脂粘結剤に良く溶解して分離せず、温度―粘度
曲線が余り変化しないものが好ましく、特に使用
する熱硬化性樹脂粘結剤と反応するものがより好
ましい。また熱硬化性樹脂粘結剤を増粘させても
余り糸を引いたり、模型に対して付着性が高いも
のは好ましくない。さらに低沸点溶解を併用した
場合には砂と混練したものからの溶剤の揮散の調
整でで粘性を任意に変えることができ、鋳型の形
状や大きさに対応して一つの増粘剤を使い分けて
用いることができる。用いて好ましい増粘剤を具
体的に例示すると、α澱粉、β澱粉、カルボキシ
メチルセルロース(CMC)、ポリビルアルコー
ル、ポリエチレンオキサイド、グアーガムなどで
あり、さらに市販されているものとしてはイソバ
ン(株式会社クラレ)、サイリル(鋳淵化学工業
株式会社)、プルラン(林原生物化学研究所)、カ
ネカゼムラツク(鋳淵化学工業株式会社)などを
例示することができる。イソバンはイソブチレン
と無水マレイン酸との共重合物であり、外観は白
色であつて一般にアルカリ水溶液に溶解して使用
される。サイリルは主鎖がポリプロピレンオキサ
イドで未端に反応性シリル基を持つ変成シリコン
系の液状ポリマーであり、分子量が約8000で粘度
が約230ポイズ(23℃)の淡黄色透明液状体であ
る。そしてこのサイリルはフエノール樹脂と反応
性を有しており、常温よりも温度が高くなつても
温度の上昇に伴うフエノール樹脂に対する反応
で、増粘の効果を保持することができる。従つて
サイリルは増粘剤として最も好ましいものの一つ
である。プルランはブドウ糖を最少単位とする天
然多糖類で、マルトトリオースがα‐1,6結合
で繰り返される線状構造をした水溶液のゲル化し
ない粘性物である。カネカゼムラツクはアクリル
酸変性シリコンオリゴマー(Acrylic Silicone
Oligomer)である。 しかして造型にあたつては、上記の増粘剤を配
合した液状の熱硬化性樹脂粘結剤を砂と混練し、
模型にこの砂を充填させる。このとき、鋳造すべ
き物が三次元インペラーなど三次元的に複雑な形
状をするものであるときには、模型を数個から数
十個に分割し、この各分割模型について造型をお
こなう。砂と混練した液状の熱硬化性樹脂の粘結
剤は生砂型など普通鋳型における粘結剤と同じよ
うに砂を粘結させる作用をなし、砂の型に保形性
を与えることができる。従つてシエルモールドな
どの特殊鋳型のように粘結剤を硬化させて砂の型
を保形させる必要がなく、熱硬化性樹脂粘結剤に
よつて粘結され可塑性を有する状態の砂の型から
鋳型を抜き取ることができる。このように粘結剤
を硬化させる前に模型を抜くために、特殊鋳型の
場合のように模型の表面に硬化した粘結剤が付着
して模型の離型が困難になつたり、可塑性のない
砂型から複雑な形状の模型を抜くことが困難にな
つたりすることがなく、模型の抜き取りが不可能
になるおそれはないものであつて、普通鋳型の場
合と同様にして模型の抜き取りを容易におこなう
ことができる。 このように模型を抜き取つたのちに砂の型の熱
硬化性樹脂粘結剤を硬化させるが、熱硬化性樹脂
粘結剤には増粘剤が配合されていて粘りが高めら
れているために、この粘性で砂の型の保形性を高
くすることができ、垂れ変形や崩壊など型くずれ
のおそれなく模型を抜き取ることができるもので
あり、また熱硬化性樹脂粘結剤を硬化させる工程
の間に型くずれが発生することを防ぐことができ
る。特に熱硬化性樹脂の粘結剤は加熱等によつて
迅速に硬化されるものであり、硬化に長時間を要
する普通鋳型の場合のようにこの長時間の間に型
くずれが発生するようなおそれがなく、従つて普
通鋳型の場合のように型くずれの防止のために芯
金を用いるような必要はない。またこのように粘
結剤はその硬化性で迅速に硬化されるために、特
殊鋳型の場合と同様に生産性を高めることができ
るものである。ここで、増粘剤の配合量は砂の型
の型くずれを有効に防止できる粘りに熱硬化性樹
脂粘結剤の粘度を高める範囲内で設定され、増粘
剤の種類その他鋳型の形状や大きさ等によつて一
概にはいえないが、一般的には液状の熱硬化性樹
脂粘結剤100重量部に対して0.5〜50重量部程度で
ある。 上記のように分割した各模型を砂の型から抜き
取つたのちに粘結剤を硬化させて造型をおこな
い、そしてこれを集合させることによつて三次元
インペラーなど複雑な形状を有する鋳物を鋳造す
るための鋳型に仕上げるのである。 次ぎに本発明を実施例によつて例証する。 粘結剤の製造例 1 フエノール658重量部と37%ホルマリン851重量
部とを反応容器に仕込み、これに33%カセイソー
ダ水40重量部を加えて良く撹拌しながら約60分を
要して85℃まで昇温させ、そのまま2時間反応を
継続させた。反応終了後ホウ酸で中和したのちに
減圧脱水を開始し、150Torrで内温が70℃になる
まで脱水した。このようにして得られたレゾール
型フエノール樹脂は赤褐色で、25℃における粘度
が180ポアズであつた。 粘結剤の製造例 2 製造例1で得たレゾール型フエノール樹脂900
重量部にメタノール100重量部を加えて良く撹拌
するとによつて、25℃における粘度が13ポアズの
ものを得た。 粘結剤の製造例 3 フエノール940重量部と37%ホルマリン689重量
部及びシユウ酸4.7重量部を反応容器に仕込み、
約60分を要して還流させ、そのまま2時間反応を
継続させた。反応終了後減圧脱水を開始し、常圧
で150℃まで脱水をおこない、さらに減圧して
100Torrで内温が150℃になるまで脱水をおこな
つた。このようにして得られた固形のノボラツク
型フエノール樹脂の軟化点は97℃であつた。次ぎ
にこの樹脂700重量部にメタノール300重量部を加
えてよく溶解させ、25℃における粘度が5ポアズ
の液状樹脂を調製した。 粘結剤の製造例 4 製造例3で得た固形ノボラツク型フエノール樹
脂550重量部にエチレングリコール450重量部を加
えてよく溶解させ、25℃における粘度が60ポアズ
の液状樹脂を調製した。 粘結剤の製造例 5 製造例3と製造例4で調製し液状樹脂を重量比
1:1で混合し、25℃における粘度が28ポアズの
液状樹脂を調製した。 増粘剤の種類 ・ポリビルニアルコールの25%水溶液
……増粘剤No.1 ・イソバン#06の25%水溶液 ……増粘剤No.2 ・サイリル5A03 ……増粘剤No.3 ・プルランの25%水溶液 ……増粘剤No.4 実施例 1乃至4 製造例1で得た粘結剤にそれぞれNo.1〜No.4の
増粘剤を第1表に示す配合量で添加して溶解させ
た。この増粘剤の配合で粘結剤の25℃における粘
度はそれぞれ第1表に示す値に上昇した。次ぎに
ワールミキサーにフラツタリー珪砂を10Kg入れ、
これに粘結剤を第1表の配合量で添加して10分間
混練し、混練砂を調製した。混練砂の嵩比重は
1.08であつた。この混練砂を用いて種々の試験を
おこなつた。結果を第1表に示す。 手への付着性 混練砂を手に取つて強く握り締めたのちに手
を広げ、別の手でこすつて付着性の有無を調べ
た。 木製模型への付着性 混練砂を木製の模型に強く押さえ付けのちに
手でこすつて付着性の有無を調べた。 造型性 混練砂200gを50mmφのパイプに充填し、ラ
ンマーで5回付き固めたのち脱型し、嵩比重を
測定した。嵩比重が高くなるほど密度高く充填
され造型性が高まるものであり、嵩比重が1.4
以上になつたものを造型性が「良」、嵩比重が
1.4未満のものを造型性が「悪」と評価した。
またこのとき外観も観察して評価の一要素とし
た。 グリーン強度 混練砂200gを50mmφの金型に充填して嵩比
重が1.50になるようにプレスで成形し、脱型し
たのちアムスラーにてグリーン強度を測定し
た。 角欠け性 上記のグリーン強度の測定で作成したテス
トピースを予め200℃にセツトした送風式乾燥
機に入れ、1時間硬化させてテストピースの角
欠け状態を目視により観察した。 圧縮強度 上記のグリーン強度の測定で作成したテス
トピースを予め150℃にセツトした送風式乾燥
機に入れ、30分、1時間、3時間、5時間後に
それぞれテストピースを取り出してアムスラー
にて圧縮強度を測定し、粘結剤の乾燥硬化の速
度を調べた。 ガス発生量 上記の角欠け性の試験で処理したテストピ
ースを破砕し、約5gを精秤して予め1000℃に
セツトした電気炉に入れ、ガス発生量を測定し
てそのときの最大量を示した。 鋳込みテスト 混練砂を用いて三次元インペラー用鋳型を造
型し、200℃で30分間乾燥硬化させて塗型剤の
塗布なしで注湯した。そして冷却後鋳肌を観察
して鋳造表面粗さ標準板(JIS B 0601)で評
価した。 比較例 1 増粘剤を用いない他は実施例1乃至4と同様に
して混練砂を調製した。混練砂な嵩比重は1.08で
あつた。この混練砂を用いて実施例1乃至4の場
合と同様な種々の試験をおこなつた。 結果を第1表に示す。 実施例 5乃至8 製造例2で得た粘結剤にそれぞれNo.1〜No.4の
増粘剤を第2表に示す配合量で添加して溶解させ
た。この増粘剤の配合で粘結剤の25℃における粘
度はそれぞれ第2表に示す値に上昇した。次ぎに
ワールミキサーにフラツタリー珪砂を10Kg入れ、
これに粘結剤を第2表の配合量で添加して10分間
混練し、混練砂を調製した。混練砂の嵩比重は
1.08であつた。この混練砂を用いて実施例1乃至
4の場合と同様な種々の試験をおこなつた。結果
を第2表に示す。 比較例 2 増粘剤を用いない他は実施例5乃至8と同様に
して混練砂を調製した。混練砂の嵩比重は1.08で
あつた。この混練砂を用いて上記実施例1乃至4
の場合と同様な種々の試験をおこなつた。結果を
第2表に示す。 実施例 9乃至12 製造例3で得た粘結剤にそれぞれNo.1〜No.4の
増粘剤及びヘキサメチレンテトラミンを第3表に
示す配合量で添加して溶解させた。増粘剤の配合
で粘結剤の25℃における粘度はそれぞれ第3表で
示す値に上昇した。次ぎにワールミキサーにフラ
ツタリー珪砂を10Kg入れ、これに粘結剤を第3表
の配合量で添加して10分間混練し、混練砂を調製
した。混練砂の嵩比重は1.08であつた。この混練
砂を用いて上記実施例1乃至4の場合と同様な
種々の試験をおこなつた。結果を第3表に示す。 比較例 3 増粘剤を用いない他は実施例9乃至12と同様に
して混練砂を調製した。混練砂の嵩比重は1.08で
あつた。この混練砂を用いて上記実施例1乃至4
の場合と同様な種々の試験をおこなつた。結果を
第3表に示す。 実施例 13乃至16 製造例4で得た粘結剤にそれぞれNo.1〜No.4の
増粘剤及びヘキサメチレンテトラミンを第4表に
示す配合量で添加して溶解させた。増粘剤の配合
で粘結剤の25℃における粘度はそれぞれ第4表に
示す値に上昇した。次ぎにワールミキサーにフラ
ツタリー珪砂を10Kg入れ、これに粘結剤を第4表
の配合量で添加して10分間混練し、混練砂を調製
した。混練砂の嵩比重は1.08であつた。この混練
砂を用いて上記実施例1乃至4の場合と同様な
種々の試験をおこなつた。結果を第4表に示す。 比較例 4 増粘剤を用いない他は実施例13乃至16と同様に
して混練砂を調製した。混練砂の嵩比重は1.08で
あつた。この混練砂を用いて上記実施例1乃至4
の場合と同様な種々の試験をおこなつた。結果を
第4表に示す。 実施例 17乃至20 製造例5で得た粘結剤にそれぞれNo.1〜No.4の
増粘剤及びヘキサメチレンテトラミンを第5表に
示す配合量で添加して溶解させた。増粘剤の配合
で粘結剤の25℃における粘度はそれぞれ第5表に
示す値に上昇した。次ぎにワールミキサーにフラ
ツタリー珪砂を10Kg入れ、これに粘結剤を第5表
の配合量で添加して10分間混練し、混練砂を調製
した。混練砂の嵩比重は1.08であつた。この混練
砂を用いて上記実施例1乃至4の場合と同様な
種々の試験をおこなつた。結果を第5表に示す。 比較例 5 増粘剤を用いない他は実施例17乃至20と同様に
して混練砂を調製した。混練砂の嵩比重は1.08で
あつた。この混練砂を用いて上記実施例1乃至4
の場合と同様な種々の試験をおこなつた。結果を
第5表に示す。 実施例 21乃至23 製造例2で得た粘結剤に増粘剤としてNo.3のサ
イリルを第6表に示す配合量で添加して溶解させ
た。この増粘剤の配合で粘結剤の25℃における粘
度はそれぞれ第6表に示す値に上昇した。次ぎに
ワールミキサーにフラツタリー珪砂を10Kg入れ、
これに粘結剤を第6表の配合量で添加して10分間
混練し、混練砂を調製した。混練砂の嵩比重は
1.08であつた。この混練砂を用いて上記実施例1
乃至4の場合と同様な種々の試験をおこなつた。
結果を第6表に示す。 実施例 24乃至26 製造例5で得た粘結剤に増粘剤としてNo.3のサ
イリル、及びヘキサメチレンテトラミンを第6表
に示す配合量で添加して溶解させた。増粘剤の配
合で粘結剤の25℃における粘度はそれぞれ第6表
に示す値に上昇した。次ぎにワールミキサーにフ
ラツタリー珪砂を10Kg入れ、これに粘結剤を第6
表の配合量で添加して10分間混練し、混練砂を調
製した。混練砂の嵩比重は1.08であつた。この混
練砂を用いて上記実施例1乃至4の場合と同様な
種々の試験をおこなつた。結果を第6表に示す。 従来例 ワールミキサーにフラツタリー珪砂を10Kgを入
れ、これに亜麻仁油150g、ナフテン酸鉛1g、
ナフテン酸コバルト1gを加え、3分間混練した
のちアブラジン15gを加えて7分間混練して混練
砂を調製した。混練砂の嵩比重は1.08であつた。
この混練砂を用いて上記実施例1乃至4の場合と
同様な種々の試験をおこなつた。結果を第6表に
示す。
[Technical Field] The present invention relates to a method for manufacturing a mold suitable for casting a casting having a three-dimensional structure. [Background technology] The molds currently in use include ordinary molds that use clay as a binder, such as green sand molds, high-pressure molds, and high-speed molds, as well as thermosetting molds, self-hardening molds, gas-curing molds, and electron beam-curing molds. , special molds that use hardening binders, such as volatilization hardening molds and precision casting molds, and other molds, such as vanishing model molds, vacuum molding molds, and freezing molds. Ordinary molds are the most common type of mold, and because molding sand can be used repeatedly and are inexpensive, they are still the most popular type of mold. However, because ordinary molds, typically green sand molds, use clay or linseed oil as a binder, the mold is heated and set at a temperature of 170 to 180°C for several tens of minutes to several hours. It requires a long time and is low in productivity. Furthermore, a lot of gas is generated during casting, and the gas pressure can easily damage the mold or cause many defects in the casting, so a gas venting pipe must be installed. There is a problem. Additionally, molds are generally split horizontally or vertically, and if the surface of the object to be cast is two-dimensionally simple, the model can be easily extracted after molding. If the surface of the object to be cast is complicatedly curved three-dimensionally, such as a three-dimensional impeller, it may be impossible to extract the model.
Therefore, in this case, the model is divided into several to dozens of parts, each divided model is modeled manually, each model is pulled out, each model is reworked, and then they are combined. The molds are manufactured using the same technology. However, as mentioned above, ordinary molds use clay as a binder, and as it takes a long time to heat and set, there is a risk that the mold may become deformed, such as drooping or collapsing. It was necessary to insert a core metal into the core for reinforcement, which made the molding process extremely complicated. In addition, the special mold uses a curable binder and can quickly harden the binder by heat curing or room temperature curing using a hardening agent, resulting in high productivity and stable quality molding. This technology is rapidly progressing with the increase in the production of automobiles and motorcycles, and in particular, shell molds that use phenolic resin as a binder are rapidly gaining popularity as mold cores. This special mold is manufactured by hand molding, casting, blow molding, etc. to harden the curable binder, and then horizontally splitting, vertically splitting, dump box method, etc., to extract the model. However, since it is necessary to extract the model from a mold that has already been hardened, the surface of the object to be cast is not two-dimensionally simple, such as a three-dimensional impeller. If the surface of the object is complexly curved three-dimensionally, the model cannot be extracted.
In this case, the model is divided into several to dozens of parts, and each of the two parts is manually molded, the binder is hardened, and then each part is pulled out, as in the case of the ordinary mold. Efforts are being made to do so. However, in the case of this special mold, unlike ordinary molds, it is necessary to remove the model from the mold in which the binder has hardened, and it is difficult to release the model from the hardened binder, and the binder is in a hardened state. In some cases, it is difficult to extract a complicatedly shaped model from a non-plastic mold, and sometimes it becomes impossible to extract the model. [Object of the invention] The present invention has been made in view of the above points, and an object of the present invention is to provide a method for manufacturing a mold that can easily manufacture a mold for casting a casting having a three-dimensional shape. It is something to do. [Disclosure of the Invention] However, the method for manufacturing a mold according to the present invention involves mixing sand with a liquid binder made of thermosetting resin containing a thickener, molding the sand, and extracting the model. It is characterized by hardening the binder immediately, and while making use of the ordinary molding method that makes it easy to extract models with complex shapes, it also uses a thickening agent to provide appropriate viscosity and a thermosetting resin. The rapid hardening of the binder makes it possible to prevent mold deformation without the use of a core metal, and the special molding method that can increase productivity can be utilized as is. The present invention will be explained in detail below. As the binder, thermosetting resins such as phenolic resins and furan resins that harden quickly are used. Among them, phenolic resins, which are commonly used in shell molds, are preferred. But that's fine. In addition, this thermosetting resin binder is used in liquid form, so if it is liquid at room temperature, it can be used as is, or if it is solid at room temperature, it can be used by dissolving it in a solvent or otherwise making it liquid at room temperature. . A thickener is added to this thermosetting resin binder to make it sticky and uniformly dissolved. The thickener is preferably one that dissolves well in the liquid thermosetting resin binder, does not separate, and does not significantly change the temperature-viscosity curve, especially one that reacts with the thermosetting resin binder used. More preferred. Further, even if the thermosetting resin binder is thickened, it is not preferable if it becomes too stringy or has high adhesion to the model. Furthermore, when low boiling point melting is used in combination, the viscosity can be changed arbitrarily by adjusting the volatilization of the solvent from the mixture mixed with sand, and one thickener can be used depending on the shape and size of the mold. It can be used as Specific examples of preferred thickeners include α-starch, β-starch, carboxymethyl cellulose (CMC), polyvinyl alcohol, polyethylene oxide, and guar gum. ), Cyryl (Chubuchi Chemical Industry Co., Ltd.), Pullulan (Hayashibara Biochemical Research Institute), Kanekazemurak (Chubuchi Chemical Co., Ltd.), etc. can be exemplified. Isoban is a copolymer of isobutylene and maleic anhydride, has a white appearance, and is generally used after being dissolved in an aqueous alkaline solution. Cylyl is a modified silicone liquid polymer whose main chain is polypropylene oxide and has a reactive silyl group at the end. It is a pale yellow transparent liquid with a molecular weight of approximately 8,000 and a viscosity of approximately 230 poise (at 23°C). This cylyl has reactivity with the phenolic resin, and even when the temperature becomes higher than room temperature, the thickening effect can be maintained due to the reaction with the phenolic resin as the temperature rises. Therefore, pyryl is one of the most preferred thickeners. Pullulan is a natural polysaccharide whose smallest unit is glucose, and is a non-gelling viscous aqueous solution with a linear structure in which maltotriose is repeated with α-1,6 bonds. Kanekazemurakku is an acrylic acid-modified silicone oligomer (Acrylic Silicone Oligomer).
Oligomer). However, when molding, a liquid thermosetting resin binder containing the above-mentioned thickener is kneaded with sand.
Fill the model with this sand. At this time, when the object to be cast has a three-dimensionally complex shape, such as a three-dimensional impeller, the model is divided into several to several dozen pieces, and each divided model is molded. A liquid thermosetting resin binder kneaded with sand acts to bind sand in the same way as a binder in ordinary molds such as green sand molds, and can impart shape retention to the sand mold. Therefore, unlike special molds such as shell molds, there is no need to harden the binder to maintain the shape of the sand mold, and the sand mold is bound by a thermosetting resin binder and has plasticity. The mold can be removed from the mold. In this way, because the model is removed before the binder hardens, as in the case of special molds, the hardened binder may adhere to the surface of the model, making it difficult to release the model, or molds with no plasticity. It does not make it difficult to pull out a model with a complex shape from a sand mold, and there is no risk that it will become impossible to pull out the model, and the model can be easily pulled out in the same way as a normal mold. It can be done. After the model is removed in this way, the thermosetting resin binder in the sand mold is hardened, but the thermosetting resin binder contains a thickener to increase its viscosity. This viscosity makes it possible to improve the shape retention of the sand mold, allowing the model to be removed without the risk of deformation such as sagging or collapse, and the process of curing the thermosetting resin binder. This can prevent deformation from occurring during the process. In particular, binders for thermosetting resins are rapidly cured by heating, etc., and there is a risk that the mold will collapse during this long period of time, as in the case of ordinary molds that require a long time to cure. Therefore, there is no need to use a core metal to prevent deformation as is the case with ordinary molds. Furthermore, since the binder is hardened quickly due to its hardenability, productivity can be increased as in the case of special molds. Here, the amount of the thickener is set within a range that increases the viscosity of the thermosetting resin binder to a viscosity that effectively prevents the sand mold from deforming. Although it cannot be determined unconditionally depending on the size, the amount is generally about 0.5 to 50 parts by weight per 100 parts by weight of the liquid thermosetting resin binder. After pulling out each divided model from the sand mold as described above, the binder is hardened and molded, and by assembling these, castings with complex shapes such as three-dimensional impellers are cast. It is then finished into a mold to be used. The invention will now be illustrated by examples. Production example of binder 1 658 parts by weight of phenol and 851 parts by weight of 37% formalin were placed in a reaction vessel, 40 parts by weight of 33% caustic soda water was added thereto, and the mixture was heated to 85°C over about 60 minutes with good stirring. The reaction was continued for 2 hours. After the reaction was completed and neutralized with boric acid, dehydration under reduced pressure was started and dehydration was carried out at 150 Torr until the internal temperature reached 70°C. The resol type phenolic resin thus obtained was reddish brown and had a viscosity of 180 poise at 25°C. Production example of binder 2 Resol type phenolic resin 900 obtained in production example 1
By adding 100 parts by weight of methanol to the parts by weight and stirring well, a product having a viscosity of 13 poise at 25°C was obtained. Production example of binder 3 940 parts by weight of phenol, 689 parts by weight of 37% formalin and 4.7 parts by weight of oxalic acid were charged into a reaction vessel,
It took about 60 minutes to reflux, and the reaction was continued for 2 hours. After the reaction is complete, start dehydration under reduced pressure, dehydrate at normal pressure to 150℃, and then reduce the pressure further.
Dehydration was performed at 100Torr until the internal temperature reached 150℃. The solid novolak type phenolic resin thus obtained had a softening point of 97°C. Next, 300 parts by weight of methanol was added to 700 parts by weight of this resin and dissolved well to prepare a liquid resin having a viscosity of 5 poise at 25°C. Production Example 4 of Binder 450 parts by weight of ethylene glycol was added to 550 parts by weight of the solid novolak type phenolic resin obtained in Production Example 3 and thoroughly dissolved to prepare a liquid resin having a viscosity of 60 poise at 25°C. Manufacturing Example 5 of Binder The liquid resins prepared in Manufacturing Examples 3 and 4 were mixed at a weight ratio of 1:1 to prepare a liquid resin having a viscosity of 28 poise at 25°C. Type of thickener: 25% aqueous solution of polyvinyl alcohol
...Thickener No.1 ・25% aqueous solution of Isoban #06 ...Thickener No.2 ・Cyril 5A03 ...Thickener No.3 ・25% aqueous solution of Pullulan ...Thickener No.4 Implemented Examples 1 to 4 Thickeners No. 1 to No. 4 were added and dissolved in the amounts shown in Table 1 to the binder obtained in Production Example 1, respectively. By adding this thickener, the viscosity of the binder at 25°C increased to the values shown in Table 1. Next, put 10kg of flattery silica sand into the whirl mixer,
A binder was added to this in the amount shown in Table 1 and kneaded for 10 minutes to prepare kneaded sand. The bulk specific gravity of the mixed sand is
It was 1.08. Various tests were conducted using this mixed sand. The results are shown in Table 1. Adhesion to hands: After taking the mixed sand in one hand and squeezing it tightly, the hand was opened and rubbed with another hand to check for adhesion. Adhesion to wooden models The presence or absence of adhesion was examined by firmly pressing the mixed sand onto a wooden model and then rubbing it by hand. Moldability 200g of kneaded sand was filled into a 50mmφ pipe, hardened 5 times with a rammer, removed from the mold, and the bulk specific gravity was measured. The higher the bulk specific gravity, the higher the density and the higher the moldability, and the bulk specific gravity is 1.4.
If the moldability exceeds the above, the moldability is "good" and the bulk specific gravity is
If the value was less than 1.4, the moldability was evaluated as "poor."
At this time, the appearance was also observed and used as a factor in the evaluation. Green strength: 200 g of kneaded sand was filled into a 50 mmφ mold, molded using a press so that the bulk specific gravity was 1.50, and after demolding, the green strength was measured using an Amsler. Corner chipping property The test piece prepared in the above green strength measurement was placed in a blow dryer preset at 200°C, allowed to harden for 1 hour, and the state of corner chipping on the test piece was visually observed. Compressive strength The test pieces prepared in the above green strength measurement were placed in a blower dryer set at 150℃ in advance, and after 30 minutes, 1 hour, 3 hours, and 5 hours, the test pieces were taken out and tested for compressive strength using Amsler. was measured to investigate the drying and hardening speed of the binder. Amount of gas generated: Crush the test piece processed in the corner chipping test above, weigh approximately 5g accurately, place it in an electric furnace preset at 1000℃, measure the amount of gas generated, and calculate the maximum amount at that time. Indicated. Casting test A mold for a three-dimensional impeller was made using kneaded sand, dried and cured at 200°C for 30 minutes, and poured without applying a molding agent. After cooling, the casting surface was observed and evaluated using a casting surface roughness standard plate (JIS B 0601). Comparative Example 1 Kneading sand was prepared in the same manner as in Examples 1 to 4 except that no thickener was used. The bulk specific gravity of the kneaded sand was 1.08. Using this kneaded sand, various tests similar to those in Examples 1 to 4 were conducted. The results are shown in Table 1. Examples 5 to 8 Thickeners No. 1 to No. 4 were added and dissolved in the blending amounts shown in Table 2 to the binder obtained in Production Example 2, respectively. By adding this thickener, the viscosity of the binder at 25°C increased to the values shown in Table 2. Next, put 10kg of flattery silica sand into the whirl mixer,
A binder was added thereto in the amount shown in Table 2 and kneaded for 10 minutes to prepare kneaded sand. The bulk specific gravity of the mixed sand is
It was 1.08. Using this kneaded sand, various tests similar to those in Examples 1 to 4 were conducted. The results are shown in Table 2. Comparative Example 2 Kneading sand was prepared in the same manner as in Examples 5 to 8 except that no thickener was used. The bulk specific gravity of the mixed sand was 1.08. Using this kneaded sand, the above Examples 1 to 4
We conducted various tests similar to those in the case of . The results are shown in Table 2. Examples 9 to 12 Thickeners No. 1 to No. 4 and hexamethylenetetramine were added to the binder obtained in Production Example 3 and dissolved in the amounts shown in Table 3, respectively. By adding a thickener, the viscosity of the binder at 25°C increased to the values shown in Table 3. Next, 10 kg of flattery silica sand was placed in a Whirl mixer, a binder was added in the amount shown in Table 3, and the mixture was kneaded for 10 minutes to prepare kneaded sand. The bulk specific gravity of the mixed sand was 1.08. Using this kneaded sand, various tests similar to those in Examples 1 to 4 above were conducted. The results are shown in Table 3. Comparative Example 3 Kneading sand was prepared in the same manner as in Examples 9 to 12, except that no thickener was used. The bulk specific gravity of the mixed sand was 1.08. Using this kneaded sand, the above Examples 1 to 4
We conducted various tests similar to those in the case of . The results are shown in Table 3. Examples 13 to 16 Thickeners No. 1 to No. 4 and hexamethylenetetramine were added to the binder obtained in Production Example 4 and dissolved in the amounts shown in Table 4, respectively. By adding a thickener, the viscosity of the binder at 25°C increased to the values shown in Table 4. Next, 10 kg of flattery silica sand was placed in a Whirl mixer, a binder was added thereto in the amount shown in Table 4, and the mixture was kneaded for 10 minutes to prepare kneaded sand. The bulk specific gravity of the mixed sand was 1.08. Using this kneaded sand, various tests similar to those in Examples 1 to 4 above were conducted. The results are shown in Table 4. Comparative Example 4 Kneaded sand was prepared in the same manner as in Examples 13 to 16 except that no thickener was used. The bulk specific gravity of the mixed sand was 1.08. Using this kneaded sand, the above Examples 1 to 4
We conducted various tests similar to those in the case of . The results are shown in Table 4. Examples 17 to 20 Thickeners No. 1 to No. 4 and hexamethylenetetramine were added to the binder obtained in Production Example 5 in the amounts shown in Table 5 and dissolved therein. By adding a thickener, the viscosity of the binder at 25°C increased to the values shown in Table 5. Next, 10 kg of flattery silica sand was placed in a Whirl mixer, a binder was added in the amount shown in Table 5, and the mixture was kneaded for 10 minutes to prepare kneaded sand. The bulk specific gravity of the mixed sand was 1.08. Using this kneaded sand, various tests similar to those in Examples 1 to 4 above were conducted. The results are shown in Table 5. Comparative Example 5 Kneading sand was prepared in the same manner as in Examples 17 to 20, except that no thickener was used. The bulk specific gravity of the mixed sand was 1.08. Using this kneaded sand, the above Examples 1 to 4
We conducted various tests similar to those in the case of . The results are shown in Table 5. Examples 21 to 23 Cylyl No. 3 was added as a thickener to the binder obtained in Production Example 2 in the amount shown in Table 6 and dissolved. By adding this thickener, the viscosity of the binder at 25°C increased to the values shown in Table 6. Next, put 10kg of flattery silica sand into the whirl mixer,
A binder was added to this in the amount shown in Table 6 and kneaded for 10 minutes to prepare kneaded sand. The bulk specific gravity of the mixed sand is
It was 1.08. Using this kneaded sand, the above Example 1
Various tests similar to those in cases 4 to 4 were conducted.
The results are shown in Table 6. Examples 24 to 26 Thyryl No. 3 and hexamethylenetetramine as thickeners were added and dissolved in the amounts shown in Table 6 to the binder obtained in Production Example 5. By adding a thickener, the viscosity of the binder at 25°C increased to the values shown in Table 6. Next, put 10 kg of flattery silica sand into the whirl mixer, and add the binder to it.
The amounts listed in the table were added and kneaded for 10 minutes to prepare kneaded sand. The bulk specific gravity of the mixed sand was 1.08. Using this kneaded sand, various tests similar to those in Examples 1 to 4 above were conducted. The results are shown in Table 6. Conventional example: Put 10 kg of flattery silica sand into a whirl mixer, add 150 g of linseed oil, 1 g of lead naphthenate,
After adding 1 g of cobalt naphthenate and kneading for 3 minutes, 15 g of Abrazin was added and kneaded for 7 minutes to prepare kneaded sand. The bulk specific gravity of the mixed sand was 1.08.
Using this kneaded sand, various tests similar to those in Examples 1 to 4 above were conducted. The results are shown in Table 6.

【表】【table】

【表】 ※は角欠けのために型の作成できず。
[Table] *The mold could not be made due to missing corners.

【表】【table】

【表】 ※は角欠けのために型の作成できず。
[Table] *The mold could not be made due to missing corners.

【表】【table】

【表】 ※は角欠けのために型の作成できず。
[Table] *The mold could not be made due to missing corners.

【表】【table】

【表】 ※は角欠けのために型の作成できず。
[Table] *The mold could not be made due to missing corners.

【表】【table】

【表】 ※は角欠けのために型の作成できず。
[Table] *The mold could not be made due to missing corners.

【表】【table】

【表】 第1表〜第6表の結果、増粘剤を配合したフエ
ノール樹脂粘結剤を用いるようにした各実施例の
ものは、各比較例のものに比べて付着性や造形
性、角欠け状、鋳込みテストなどにおいて優れて
おり、三次元的な鋳物を鋳込む鋳型の製造を容易
におこなうことができることが確認される。また
生砂型法に相当する従来例に対しても各実施例の
ものは造型性、角欠け性、硬化性(圧縮強度の欄
参照)、鋳込みテストなどにおいて優れており、
三次元的な鋳物を鋳込む鋳型の製造を容易におこ
なえることが確認される。 [発明の効果] 上述のように本発明にあつては、増粘剤を配合
した熱硬化性樹脂の液状の粘結剤を砂に混合し、
この砂を造型して模型を抜き取つたのちに粘結剤
を硬化させるようにしたものであるから、液状の
熱硬化性樹脂の粘結剤は普通鋳型における粘結剤
と同じように砂を粘結させる作用をなして砂の型
に保形性を与えることができるものであつて、粘
結剤を硬化させて砂の型を保形させる必要がな
く、熱硬化性樹脂粘結剤によつて粘結され可塑性
を有する状態の砂の型から鋳型を容易に抜き取る
ことができるものであり、また粘結剤には増粘剤
が配合されていて粘りが高められているために、
この粘性で砂の型の保形性を高くすることがで
き、垂れ変形や崩壊など型くずれのおそれなく模
型を抜き取ることができると共に、熱硬化性樹脂
の粘結剤は迅速に硬化され、硬化に長時間を要す
る普通鋳型の場合のようにこの長時間の間に型く
ずれが発生するようなおそれがなく、従つて普通
鋳型の場合のように型くずれの防止のために芯金
を用いるような必要はないものである。またこの
ように粘結剤はその硬化性で迅速に硬化されるた
めに、特殊鋳型の場合と同様に生産性を高めるこ
とができるものである。
[Table] As shown in Tables 1 to 6, each example using a phenolic resin binder containing a thickener had better adhesion and moldability than each comparative example. It has been confirmed that it is excellent in corner notch shape and casting tests, and can easily manufacture molds for casting three-dimensional castings. In addition, compared to the conventional method corresponding to the green sand mold method, each example has excellent moldability, corner chipping resistance, hardenability (see compressive strength column), casting test, etc.
It is confirmed that it is possible to easily manufacture a mold for casting three-dimensional castings. [Effects of the Invention] As described above, in the present invention, a liquid binder made of a thermosetting resin containing a thickener is mixed with sand,
The binder is hardened after the sand is molded and the model is extracted, so the binder of liquid thermosetting resin is used in sand in the same way as the binder in ordinary molds. It has a caking effect and can give shape retention to the sand mold, and there is no need to harden the binder to retain the shape of the sand mold, and it is suitable for thermosetting resin binders. As a result, the mold can be easily removed from the sand mold, which is caked and has plasticity, and the caking agent contains a thickener to increase its viscosity.
This viscosity makes it possible to improve the shape retention of the sand mold, allowing the model to be removed without the risk of deformation such as sagging or collapse, and the binder of the thermosetting resin hardens quickly. There is no risk of mold deformation occurring during this long period of time, unlike in the case of ordinary molds, which require a long time, and therefore there is no need to use a core metal to prevent mold deformation, as in the case of ordinary molds. It's something that doesn't exist. Furthermore, since the binder is hardened quickly due to its hardenability, productivity can be increased as in the case of special molds.

Claims (1)

【特許請求の範囲】 1 増粘剤を配合した熱硬化性樹脂の液状の粘結
剤を砂に混合し、この砂を造型して模型を抜き取
つたのちに粘結剤を硬化させることを特徴とする
鋳型の製造方法。 2 粘結剤はフエノール樹脂であることを特徴と
する特許請求の範囲第1項記載の鋳型の製造方
法。 3 増粘剤は熱硬化性樹脂粘結剤に反応性を有す
るものであることを特徴とする特許請求の範囲第
1項または第2項記載の鋳型の製造方法。
[Claims] 1. A liquid binder made of a thermosetting resin containing a thickener is mixed with sand, and the binder is hardened after the sand is molded and a model is extracted. Characteristic mold manufacturing method. 2. The method for manufacturing a mold according to claim 1, wherein the binder is a phenolic resin. 3. The mold manufacturing method according to claim 1 or 2, wherein the thickener is reactive with a thermosetting resin binder.
JP21331486A 1986-09-10 1986-09-10 Production of casting mold Granted JPS6368240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21331486A JPS6368240A (en) 1986-09-10 1986-09-10 Production of casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21331486A JPS6368240A (en) 1986-09-10 1986-09-10 Production of casting mold

Publications (2)

Publication Number Publication Date
JPS6368240A JPS6368240A (en) 1988-03-28
JPH0317577B2 true JPH0317577B2 (en) 1991-03-08

Family

ID=16637088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21331486A Granted JPS6368240A (en) 1986-09-10 1986-09-10 Production of casting mold

Country Status (1)

Country Link
JP (1) JPS6368240A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102179470B (en) * 2011-03-29 2013-02-20 龙岩市升伍旗车桥有限公司 Easy collapsibility foundry sand polymerizer and preparation method thereof
CN104057013B (en) * 2014-05-28 2016-05-18 安徽鑫润新型材料有限公司 A kind of environmental protection casting sand and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119332A (en) * 1978-01-07 1979-09-17 Nobuo Miyazawa Organic coking agent for casting sand
JPS57184549A (en) * 1981-05-11 1982-11-13 Gunei Kagaku Kogyo Kk Binder for molding of mold

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119332A (en) * 1978-01-07 1979-09-17 Nobuo Miyazawa Organic coking agent for casting sand
JPS57184549A (en) * 1981-05-11 1982-11-13 Gunei Kagaku Kogyo Kk Binder for molding of mold

Also Published As

Publication number Publication date
JPS6368240A (en) 1988-03-28

Similar Documents

Publication Publication Date Title
EP2323783B1 (en) Core or foundry sand coated and/or mixed with soluble glass with a water content in the area of > approx. 0.25 weight % to approx 0.9 weight %
CN101360574B (en) Process for making molds
JPH0532864A (en) Phenol-formaldehyde resin composition
CN109454200B (en) Liquid curing agent for phosphate binder and application thereof
CN101559472A (en) Soluble mold core and preparation method thereof
US3549584A (en) No-bake resin binders
JPS58154434A (en) Casting mold and core
JPH02500753A (en) Modifier for aqueous base solution of phenolic resol resin
CN108405794A (en) A kind of hot core sand inorganic binder and preparation method thereof
US3285756A (en) Mold or core composition for metal casting purposes
US3059297A (en) Foundry molds and cores and process for making same
US3046147A (en) Water soluble mold and core binders and method
JPH0317577B2 (en)
CN100434388C (en) Raw material formulation for ceramics polymer composite material and preparing method
JP2859653B2 (en) Mold production method
JPS6312700B2 (en)
CN113857421B (en) Preparation method and application of wet precoated sand
CN114082888A (en) Low-cost environment-friendly water-soluble sand core mold and preparation method thereof
KR100893423B1 (en) Molding process and molds made by the process
JPH06227854A (en) Production of formed ceramic article
SU914168A1 (en) Method of producing binding for manufacturing casting sheel moulds and cores in heated equipment
JPS591140B2 (en) Binder for molds
CN109794580A (en) A kind of internal combustion engine water pump sand core for casting and preparation method thereof
JPH06340467A (en) Production of ceramic molded body
JPS6152953A (en) Binder composition for casting mold

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees