JPH0317538A - Adjusting device of quantity of light in husking rate detecting apparatus - Google Patents

Adjusting device of quantity of light in husking rate detecting apparatus

Info

Publication number
JPH0317538A
JPH0317538A JP1152987A JP15298789A JPH0317538A JP H0317538 A JPH0317538 A JP H0317538A JP 1152987 A JP1152987 A JP 1152987A JP 15298789 A JP15298789 A JP 15298789A JP H0317538 A JPH0317538 A JP H0317538A
Authority
JP
Japan
Prior art keywords
light
emitting element
amount
digital signal
emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1152987A
Other languages
Japanese (ja)
Inventor
Takashi Nagai
隆 永井
Koichi Hachitsuka
浩一 八塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP1152987A priority Critical patent/JPH0317538A/en
Publication of JPH0317538A publication Critical patent/JPH0317538A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Adjustment And Processing Of Grains (AREA)

Abstract

PURPOSE:To enable quick and reliable adjustment of the quantity of light by correcting the quantity of emission of a light-emitting element to be an intermediate value between the current quantity and the preceding when the maximum number of the degree of measured distribution exceeds a set range being appropriate for detection of a husk rate. CONSTITUTION:First, the quantity of emission of a light-emitting element 4 is changed in a staged manner on the basis of an n-bit digital signal for light quantity adjustment by a light quantity changing means. Next, by a maximum degree number detecting means, a husking rate sensor 1 is made to measure a plurality of samples every time when the quantity of emission is changed, a measured distribution is prepared from each measured value and the maximum number of the degree is determined. Subsequently, a correction instruction output means detects whether or not the maximum number of the degree determined exceeds a set range, and when the range is thereby exceeded, it outputs a correction instruction. When the correction instruction is outputted, a light quantity correcting means increases resolution and corrects the quantity of emission of the light-emitting element 4 to be an intermediate value between the current quantity and the preceding on the basis of an (n+1)-bit digital signal for light quantity adjustment. Accordingly, the light quantity adjustment can be executed quickly and reliably irrespective of nonuniformity in the characteristics of the light-emitting element 4 or others.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、籾摺機に設けられ、脱桿ロールで脱欅処理後
の穀物から脱伴率を調べる脱桿率検出装置の改良に関す
る. (従来の技術) 従来,この種の装置としては,例えば発光素子と受光素
子とから反射型または透過型の脱伴率センサを形戊する
とともに、その脱伴率センサに脱伴ロールで脱袢処理後
の穀物サンプルを1粒ずつ供給し、そのセンサの測定値
に基いて籾または玄米であるかを判別し、その判別結果
から脱f!5!率を求めるものが知られている. そして、例えば透過型の脱浮率センサでは、発光素子の
発光量が多くても少なくても脱伴率の検出精度が低下す
るので、発光素子の発光量を最適値に設定する光量調節
を、出荷時に行っている.(発明が解決しようとする課
題) ところが、従来の光量調節は、発光素子における特性の
ばらつきなどに起因し、光量調節に時間がかかる上に確
実性に乏しいという欠点があった. 木発明は、上記の欠点を解消し、発光素子における特性
のばらつきなどにかかわらず、光量調節を迅速かつ確実
に行うことを目的とする.(課題を解決するための手段
) かかる目的を達戊するために、本発明は、以下のように
構成した. すなわち、本発明は、発光素子と受光素子とからなる脱
浮率センサに脱浮ロールで脱浮処理後の穀物サンプルを
1粒ずつ供給するとともに、脱浮率センサの測定値に基
いて籾または玄米であるかを判別し、その判別結果から
脱浮率を求める脱浮率検出装置において、前記発光素子
の発光量を、nビットの光量調節用デジタル信号により
段階的に変更する光量変更手段と、発光量を変更するた
びに、前記脱浮率センサに複数個のサンプルを測定させ
、その各′測定値から測定分布を作成してその最大度数
を求める最大度数検出手段と、その求めた最大度数が設
定範囲内を越えたか否かを検出し,越えたときに補正指
令を出力する補正指令出力手段と、その補正指令の出力
があるときに、( n. + 1 )ビットの光量調箇
用デジタル信号により、発光素子の発光量を現在と前回
との中間値に補正する光量補正手段と,を備えてなるも
のである. (作用) このように構戒する本発明では、nビットの光量調節用
デジタル信号により光量変更手段が発光素子の発光量を
段階的に変更する. この発光量が変丈するたびに,最大度数検出手段は、脱
浮率センサに複数個のサンプルを測定させ、その各測定
値から測定分布を作或してその最大度数を求める. 補正指令出力手段は,その求めた最大度数が設定範囲内
を越えたか否かを検出し,越えたときに補正指令を出力
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in a dehulling rate detection device that is installed in a rice huller and is used to check the dehulling rate from grain that has been dehulled using a dehulling roll. (Prior art) Conventionally, this type of device has been designed such that, for example, a reflective or transmissive degassing rate sensor is formed from a light emitting element and a light receiving element, and the degassing rate sensor is debonded with a degassing roll. Grain samples after processing are fed one by one, and based on the measured value of the sensor, it is determined whether it is paddy or brown rice, and based on the determination result, deff! 5! It is known to calculate the ratio. For example, in a transmission-type debuoyancy rate sensor, the detection accuracy of the debuoyancy rate decreases regardless of whether the amount of light emitted by the light emitting element is large or small. This is done at the time of shipment. (Problem to be Solved by the Invention) However, conventional light intensity adjustment has the disadvantage that it takes time and is not reliable due to variations in characteristics of light emitting elements. The object of the invention is to eliminate the above-mentioned drawbacks and to quickly and reliably adjust the amount of light regardless of variations in the characteristics of the light emitting elements. (Means for Solving the Problem) In order to achieve the above object, the present invention is configured as follows. That is, in the present invention, grain samples after defloation treatment are fed one by one using a defloation roll to a defloation rate sensor consisting of a light emitting element and a light receiving element, and paddy or A de-flotation rate detection device that determines whether rice is brown rice and determines the de-flotation rate from the determination result, comprising a light amount changing means for changing the amount of light emitted by the light emitting element in stages using an n-bit digital signal for adjusting the light amount; , a maximum frequency detection means that causes the de-flotation rate sensor to measure a plurality of samples each time the amount of light emission is changed, creates a measurement distribution from each of the measured values, and determines the maximum frequency; A correction command output means that detects whether or not the degree exceeds a set range and outputs a correction command when the degree exceeds the set range, and a light amount adjustment unit of (n. + 1) bits when the correction command is output. The device is equipped with a light amount correction means for correcting the amount of light emitted from the light emitting element to an intermediate value between the current value and the previous value using a digital signal. (Function) In the present invention constructed as described above, the light amount changing means changes the amount of light emitted by the light emitting element in stages based on the n-bit digital signal for adjusting the light amount. Each time the amount of light emitted changes, the maximum frequency detection means causes the de-flotation rate sensor to measure a plurality of samples, creates a measurement distribution from each measured value, and determines the maximum frequency. The correction command output means detects whether or not the obtained maximum frequency exceeds a set range, and outputs a correction command when it exceeds the set range.

この補正指令の出力があると、光量補正手段は、分解能
を上げて(n+1)ビットの光量調節用デジタル信号に
より、発光素子の発光量を現在と前回との中間値に補正
する. 従って、木発明では,発光素子の特性などのばらつきに
かかわらず、光量調節を迅速かつ確実に実現できる. (実施例) 第1図は、本発明実施例のブロック図である.図におい
て、一点鎖線で囲まれた部分は透過型の脱欅率センサl
であり、脱浮ロール(図示せず)で脱欅処理されて1粒
ずつ供給される穀物サンプルaに光を照射し、その光の
透過量に応じた電気信号を出力する. 脱欅率センサ1は、入力回路2、駆動回路3、および発
光ダイオードのような発光素子4から発光系を構成する
とともに、ホトトランジスタのような受光素子5,光量
一電圧変換回路6,および出力回路7から受光系を構成
する. 8は制御用マイクロコンピュータであり、第2図に示す
ような制御処理を行うとともに、各種のデータを記憶す
るメモリを有する. 9はD/A変換回路、10は出力回路であり、これらは
制御用マイクロコンピュータ8の出力系を構戊する.ま
た,11は入力回路、l2はピーク値ホールド回路、1
3はA/D変挽回路、14は一粒信号検出回路であり,
これらは制御用マイクロコンピュータ8の入力系を構威
する.次に、このように構戊する本発明実施例の制御処
理例について第2図のフローチャートを参照して説明す
る. この実施例では、nビットからなる光量調節用デジタル
信号により発光素子4の光量調節を開始する(ステップ
S1).いま、その光量調節用デジタル信号を第4図で
示すように7ビットからなる符合のうちLSBを使用せ
ずに6ビットで構成すると、最小発光量に対応するデジ
タル信号は“111111”となり,この信号を光量調
節開始時にセットする(ステップS2). これにより、光量調節用デジタル信号はD/A変換回路
9でD/A変換され、発光素子4の発光!よは最小とな
る. 次に、このような状態において、脱浮率センサ1で所定
個数の穀物サンプルの測定を行い、その各測定値をメモ
リに格納する(ステップS3).そして.その各測定値
から第3図で示すような測定分布の処理を行ったのち,
その最大度数を求める(ステ−2ブS4). 次いで、その求めた最大度数が、脱浮率の検出に適切な
設定範囲X(第3図参照)にあるか否,かを判別し(ス
テップS5)、設定範囲外のときには,さらにその設定
範囲Xを越えたか否かを判別する(ステップS6). その結果,設定範囲Xを越えないときには,光量2gI
!!i用デジタル信号を第4図で示すように1ビ−/I
ずつ変更する(ステップS7).これにより、発光素子
4の発光量は段階的に順次増加していき、光量調節用デ
ジタル信号が“oooooO゜′のときには発光素子4
は最大光量となる.そして、このように発光素子4の発
光量を順次増加していく途中において、第3図のAで示
すように測定分布の最大度数が設定範囲X内に入ったと
きには,光itJRmを終了する. 他方、第3図で示すように前回の測定分布がBで今回の
測定分布がCとなり、その最大度数が許容範囲Xを飛び
越してしまったときには、ステップS8に進む. ステップS8では、今回の光量調節用デジタル信号と前
回の光量調節用デジタル信号から中間値を算出するとと
もに(ステップS8)、光量調節用デジタル信号を(n
+1)ビットに変更し(ステップS9)、(n+1)ビ
ットの信号により上述の中間値をセットする(ステップ
SIO),すなわち、例えば第4図で示すように今回の
゛光量調節用デジタル信号が“111000”とすれば
、LSBをOから1にして゛1110001”にセット
する. このような処理により、新たに設定された発光素子4の
発光量は、今回と前回の発光量の中間値となる.従って
、次いでステップSllおよびS12においてステップ
S3およびS4と同様の処理を行えば、脱浮率センサI
の測定分布は第3図のDのようにその最大度数が測定範
囲X内となり、光延調節を終了する.(ステップ513
).(発明の効果) 以上のように本発明では、nビットの光量3l!!l1
!i用デジタル信号のより発光素子の発光量を段階的に
変更するとともに,その発光量を変更するたびに脱浮率
センサの複数の測定値から測定分布を作成し、その測定
分布の最大度数が脱浮率を検出するのに適切な設定範囲
を越えたときには、分解能を上げて(n+ 1)ビット
の光量調節用デジタル信号により、発光素子の発光量を
現在と前回との中間値に補正するようにした.従って、
本発明では、発光素子の特性のばらつきなどにかかわら
ず、光量7A節を迅速かつ確実に行うことができる.
When this correction command is output, the light amount correcting means increases the resolution and corrects the light emitting amount of the light emitting element to an intermediate value between the current value and the previous value using an (n+1)-bit light amount adjustment digital signal. Therefore, the wood invention can quickly and reliably adjust the amount of light regardless of variations in the characteristics of the light emitting elements. (Embodiment) FIG. 1 is a block diagram of an embodiment of the present invention. In the figure, the area surrounded by the dashed line is a transmission type evaporation rate sensor l.
It irradiates light onto a grain sample a that has been dehulled by a defloating roll (not shown) and is supplied one grain at a time, and outputs an electrical signal according to the amount of light transmitted. The desaturation rate sensor 1 includes a light emitting system including an input circuit 2, a drive circuit 3, and a light emitting element 4 such as a light emitting diode, as well as a light receiving element 5 such as a phototransistor, a light amount to voltage conversion circuit 6, and an output. A light receiving system is constructed from circuit 7. 8 is a control microcomputer that performs control processing as shown in FIG. 2 and has a memory for storing various data. 9 is a D/A conversion circuit, and 10 is an output circuit, which constitute the output system of the control microcomputer 8. In addition, 11 is an input circuit, l2 is a peak value hold circuit, 1
3 is an A/D conversion circuit, 14 is a single signal detection circuit,
These constitute the input system of the control microcomputer 8. Next, an example of the control processing of the embodiment of the present invention structured as described above will be explained with reference to the flowchart of FIG. In this embodiment, light intensity adjustment of the light emitting element 4 is started using a light intensity adjustment digital signal consisting of n bits (step S1). Now, if the digital signal for light intensity adjustment is composed of 6 bits out of the 7-bit code as shown in Figure 4 without using the LSB, the digital signal corresponding to the minimum light emission amount will be "111111", and this A signal is set at the start of light intensity adjustment (step S2). As a result, the digital signal for adjusting the amount of light is D/A converted by the D/A conversion circuit 9, and the light emitting element 4 emits light! yo is the minimum. Next, in this state, a predetermined number of grain samples are measured by the deflotation rate sensor 1, and each measured value is stored in the memory (step S3). and. After processing the measurement distribution as shown in Figure 3 from each measurement value,
Find the maximum frequency (Step 2 S4). Next, it is determined whether the obtained maximum frequency is within the setting range X (see Figure 3) appropriate for detecting the defloating rate (step S5), and if it is outside the setting range, the setting range is further adjusted. It is determined whether the value exceeds X (step S6). As a result, when the setting range X is not exceeded, the light amount is 2gI.
! ! The digital signal for i is 1b/I as shown in Figure 4.
(step S7). As a result, the amount of light emitted from the light emitting element 4 increases step by step, and when the digital signal for adjusting the amount of light is "ooooooO゜', the amount of light emitted from the light emitting element 4 increases.
is the maximum amount of light. While the amount of light emitted from the light emitting element 4 is gradually increased in this way, when the maximum frequency of the measurement distribution falls within the setting range X as shown by A in FIG. 3, the optical itJRm is terminated. On the other hand, as shown in FIG. 3, if the previous measured distribution is B and the current measured distribution is C, and the maximum frequency exceeds the allowable range X, the process advances to step S8. In step S8, an intermediate value is calculated from the current light intensity adjustment digital signal and the previous light intensity adjustment digital signal (step S8), and the light intensity adjustment digital signal (n
+1) bit (step S9), and set the above-mentioned intermediate value using the (n+1) bit signal (step SIO). In other words, for example, as shown in FIG. 111000'', the LSB is changed from O to 1 and set to ``1110001''. Through such processing, the newly set light emitting amount of the light emitting element 4 becomes an intermediate value between the current and previous light emitting amounts. Therefore, if the same processing as steps S3 and S4 is then performed in steps Sll and S12, the deflotation rate sensor I
The maximum frequency of the measured distribution is within the measurement range X, as shown in D in Figure 3, and the Mitsunobu adjustment is completed. (Step 513
). (Effects of the Invention) As described above, in the present invention, the amount of light for n bits is 3l! ! l1
! The amount of light emitted by the light emitting element is changed step by step using the digital signal for i, and each time the amount of light emitted is changed, a measurement distribution is created from multiple measured values of the levitation rate sensor, and the maximum frequency of the measurement distribution is When the setting range suitable for detecting the de-flotation rate is exceeded, the resolution is increased and the light emission amount of the light emitting element is corrected to the intermediate value between the current and previous values using a digital signal for adjusting the light amount of (n + 1) bits. I did it like this. Therefore,
According to the present invention, a light intensity of 7A can be achieved quickly and reliably regardless of variations in characteristics of light emitting elements.

【図面の簡単な説明】[Brief explanation of drawings]

その制御処理の一例を示すフローチャート、第3図は測
定分布の一例を示す図、第4図は光量:A序用デジタル
信号の一例を示す図,第5図はそのデジタル信号に対応
するマイクロコンピュータとD/A変換回路との関係を
示す図である.l・・・脱桿率センサ、4・・・発光素
子、5・・・受光素子、
A flowchart showing an example of the control process, FIG. 3 is a diagram showing an example of the measurement distribution, FIG. 4 is a diagram showing an example of the light intensity: A basic digital signal, and FIG. 5 is a microcomputer corresponding to the digital signal. FIG. 3 is a diagram showing the relationship between the . l... Rod removal rate sensor, 4... Light emitting element, 5... Light receiving element,

Claims (1)

【特許請求の範囲】  発光素子と受光素子とからなる脱■率センサに脱■ロ
ールで脱■処理後の穀物サンプルを1粒ずつ供給すると
ともに、脱■率センサの測定値に基いて籾または玄米で
あるかを判別し、その判別結果から脱■率を求める脱■
率検出装置において、前記発光素子の発光量を、nビッ
トの光量調節用デジタル信号により段階的に変更する光
量変更手段と、 発光量を変更するたびに、前記脱■率センサに複数個の
サンプルを測定させ、その各測定値から測定分布を作成
してその最大度数を求める最大度数検出手段と、 その求めた最大度数が設定範囲内を越えたか否かを検出
し、越えたときに補正指令を出力する補正指令出力手段
と、 その補正指令の出力があるときに、(n+1)ビットの
光量調節用デジタル信号により、発光素子の発光量を現
在と前回との中間値に補正する光量補正手段と、 を備えてなる光量調節器。
[Scope of Claims] Grain samples that have been de-diagnosed by de-rolling are fed one by one to a de-degradation rate sensor consisting of a light-emitting element and a light-receiving element. Determine whether it is brown rice or not, and calculate the de-■ rate from the determination result.
The rate detection device includes a light amount changing means for changing the amount of light emitted by the light emitting element stepwise using an n-bit digital signal for adjusting the light amount; a maximum frequency detection means for determining the maximum frequency by creating a measurement distribution from each measured value, and detecting whether or not the calculated maximum frequency exceeds a set range, and issuing a correction command when it exceeds the set range. a correction command output means for outputting the correction command; and a light amount correction means for correcting the light emission amount of the light emitting element to an intermediate value between the current value and the previous value using an (n+1)-bit light amount adjustment digital signal when the correction command is output. A light amount adjuster equipped with and.
JP1152987A 1989-06-15 1989-06-15 Adjusting device of quantity of light in husking rate detecting apparatus Pending JPH0317538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1152987A JPH0317538A (en) 1989-06-15 1989-06-15 Adjusting device of quantity of light in husking rate detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1152987A JPH0317538A (en) 1989-06-15 1989-06-15 Adjusting device of quantity of light in husking rate detecting apparatus

Publications (1)

Publication Number Publication Date
JPH0317538A true JPH0317538A (en) 1991-01-25

Family

ID=15552485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1152987A Pending JPH0317538A (en) 1989-06-15 1989-06-15 Adjusting device of quantity of light in husking rate detecting apparatus

Country Status (1)

Country Link
JP (1) JPH0317538A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5577088U (en) * 1978-11-17 1980-05-27
JPS56119977U (en) * 1980-02-15 1981-09-12
JPS597887A (en) * 1982-07-06 1984-01-17 Mitsubishi Heavy Ind Ltd Production of meandering pipe type heat-transmitting pipe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5577088U (en) * 1978-11-17 1980-05-27
JPS56119977U (en) * 1980-02-15 1981-09-12
JPS597887A (en) * 1982-07-06 1984-01-17 Mitsubishi Heavy Ind Ltd Production of meandering pipe type heat-transmitting pipe

Similar Documents

Publication Publication Date Title
US5067704A (en) Double-feed sheet detection apparatus
US8154635B2 (en) Image sensor and digital gain compensation method thereof
US4745488A (en) Image reader
JPS61189579A (en) Exposure adjusting device for copying machine
JPH0317538A (en) Adjusting device of quantity of light in husking rate detecting apparatus
JP2929992B2 (en) Optical transmission circuit
CA1301859C (en) Automatic gain control circuit
US4498140A (en) Automated self calibrating exposure computer
JPH11136114A (en) Photoelectric switch
US7225094B2 (en) Electronic circuit for measured parameter recording
KR20040040143A (en) apparatus for standard voltage correction and method therefor
US5134438A (en) Image forming apparatus having a device for measuring an original density
JPH0869550A (en) Automatic correcting device for optical sensor output
JP2000020852A (en) Photoelectric smoke sensor and method for adjusting sensitivity and method for compensating temperature
CN112735353B (en) Screen brightness uniformity correction device and method
JP2984389B2 (en) Light control device
JPH0679948B2 (en) Two-sheet insertion detector
JPH0514835A (en) Television receiver
JPH032545A (en) Light quantity controller in hulling rate detector
JPH04373259A (en) Picture reader
JPH0259410B2 (en)
JPH0317537A (en) Adjusting device of quantity of light in husking rate detecting apparatus
JP2918939B2 (en) Light intensity adjustment method
JPS6131509B2 (en)
JPH1169242A (en) Image signal processor