JPH03175362A - Automatic cell treatment apparatus - Google Patents

Automatic cell treatment apparatus

Info

Publication number
JPH03175362A
JPH03175362A JP15746790A JP15746790A JPH03175362A JP H03175362 A JPH03175362 A JP H03175362A JP 15746790 A JP15746790 A JP 15746790A JP 15746790 A JP15746790 A JP 15746790A JP H03175362 A JPH03175362 A JP H03175362A
Authority
JP
Japan
Prior art keywords
sample
nozzle
tube
reagent
loading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15746790A
Other languages
Japanese (ja)
Inventor
Shiro Kimura
木村 士郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Manufacturing Corp
Original Assignee
Chiyoda Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Manufacturing Corp filed Critical Chiyoda Manufacturing Corp
Priority to JP15746790A priority Critical patent/JPH03175362A/en
Publication of JPH03175362A publication Critical patent/JPH03175362A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0401Sample carriers, cuvettes or reaction vessels
    • G01N2035/0437Cleaning cuvettes or reaction vessels

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To automate the pretreatment of flow cytophotometry by appropriately rotating a sample disc holding specimen tubes to perform a predetermined treatment process. CONSTITUTION:A predetermined reagent such as fluorescent dye is dripped in the specimen tube 2 advancing under a distribution nozzle 12 with the rotation of a sample disc 1 from the nozzle 12 and, subsequently, the disc 1 is rotated around a vertical shaft 3 at high speed to perform the centrifugal separation of the specimen in the tube 1. Next, the tube 2 is allowed to advance under the nozzle 12 and the specimen in the tube 2 is sucked in a taking in and out container 14 or returned to the tube 2 by the nozzle 12 to stirr the specimen and the reagent. Further, a washing solution is supplied to the tube 2 and discharged therefrom by the nozzle 12 to perform treatments such as the removal of the impurity unsuitable for flow cytophotometry in the specimen, the discharge of the supernatant solution of the specimen or the like. The treated tube 2 is moved to the first temp. control tank 15 with the rotation of the disc to be held to predetermined temp.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明に係る自動細胞処理装置は、細胞の大きさや相
対的DNA量の測定を行なう為のフローサイトメトリー
を実施する為の前処理を、自動的に行なう為に利用する
Detailed Description of the Invention (Industrial Application Field) The automatic cell processing device according to the present invention performs pretreatment for flow cytometry to measure cell size and relative DNA content. Use it to do it automatically.

(従来の技術) 細胞生物学、細胞免疫学、癌の細胞診断学等の分野に於
いて、取り扱う細胞をその大きさや形態、細胞内物質の
含有量等の性格によって分類する為、フローサイトメト
リーと呼ばれる測定方法を実施する場合がある。
(Prior art) In fields such as cell biology, cell immunology, and cancer cell diagnosis, flow cytometry is used to classify cells according to their size, morphology, content of intracellular substances, etc. In some cases, a measurement method called

フローサイトメトリーは、蛍光色素で染色した細胞を、
1個ずつ遊離した状態で、細い管の内側を通過させつつ
、この細胞にレーザ光線を当てて蛍光を発生させ、この
蛍光の強弱を測定する事で、細胞の大きさや相対的DN
A量を測定するものである。
Flow cytometry measures cells stained with fluorescent dyes.
The cells are released one by one and passed through a thin tube, and a laser beam is applied to the cells to generate fluorescence.By measuring the intensity of this fluorescence, the size of the cells and relative DNA can be determined.
This is to measure the amount of A.

この様なフローサイトメトリーによる測定作業を行なう
場合には、測定作業に先立って、測定すべき細胞を蛍光
色素で染色する等の、前処理作業を行なわなければなら
ない。
When carrying out a measurement operation using such flow cytometry, it is necessary to perform a pretreatment operation such as staining the cells to be measured with a fluorescent dye prior to the measurement operation.

この様な前処理作業は、例えば′s22図に示す様な多
くの行程から成っており、この行程を決められた通りの
順番で行なわなければならない。
Such preprocessing work consists of many steps as shown in Figure 's22, for example, and these steps must be performed in a predetermined order.

(発明が解決しようとする課題) 上述の様な複雑な行程を有する前処理作業を、従来は人
手により行なフていたが、作業完了化に多くの時間を要
し、その間作業員が拘束されるだけでなく、作業員によ
って作業にバラツキが生じる為、省力化と処理の安定化
の為にも、自動化が望まれていた。
(Problem to be solved by the invention) Conventionally, the pre-processing work, which has a complicated process as described above, was carried out manually, but it took a lot of time to complete the work, and the workers were tied up during that time. Not only that, but there are also variations in the work done by workers, so automation was desired to save labor and stabilize the process.

ところが、前処理作業の行程を総て自動化する事は難し
く、従来は実用的な自動処理装置が知られていなかフた
However, it is difficult to automate the entire pre-processing process, and no practical automatic processing equipment has been known so far.

本発明の自動細胞処理装置は、この様な事情に鑑みて考
えられたものである。
The automatic cell processing device of the present invention was conceived in view of these circumstances.

(課題を解決する為の手段) 本発明の自動細胞処理装置は、処理すべき細胞を含む液
状の検体を納めた検体管を支持した状態で、竪軸を中心
として回転するサンプルディスクと、このサンプルディ
スクの上方に設けられ、上記検体管内に試薬を滴下自在
な分注ノズルと、上記サンプルディスクの上方に昇降自
在に設けられ、サンプルディスクに支持された検体管内
への液体の給排を自在な出し入れノズルと、この出し入
れノズルと接続自在な出し入れ容器と、上記サンプルデ
ィスクの下方に昇降自在に設けられ、上昇時にこのサン
プルディスクに支持された検体管の下部を挿入自在な温
度制御槽とから構成されている。
(Means for Solving the Problems) The automatic cell processing device of the present invention includes a sample disk that rotates around a vertical axis while supporting a sample tube containing a liquid sample containing cells to be processed; A dispensing nozzle is provided above the sample disk and is capable of freely dropping a reagent into the sample tube. A dispensing nozzle is provided above the sample disk and is movable up and down, and is capable of freely supplying and discharging liquid into the sample tube supported by the sample disk. a loading/unloading nozzle, a loading/unloading container that can be freely connected to the loading/unloading nozzle, and a temperature-controlled tank that is provided below the sample disk so as to be able to rise and fall freely, and into which the lower part of the sample tube supported by the sample disk can be freely inserted when rising. It is configured.

(作  用) 上述の様に構成される本発明の自動細胞処理装置により
、フローサイトメトリーの為の前処理等、細胞の処理作
業を行なう場合、処理すべき細胞を含む液状の検体を納
めた検体管をサンプルディスクに支持し、竪軸を中心と
して、このサンプルディスクを適宜回転させ、所定の処
理行程を順番に行なう。
(Function) When carrying out cell processing operations such as pretreatment for flow cytometry using the automatic cell processing apparatus of the present invention configured as described above, a liquid sample containing cells to be processed is placed. The sample tube is supported on a sample disk, and the sample disk is appropriately rotated about a vertical axis to sequentially perform predetermined processing steps.

即ち、先ず上記サンプルディスクの回転に伴なって、検
体管が分注ノズルの下方に進入したならば、この分注ノ
ズルから検体管内に、蛍光色素等の所定の試薬を滴下す
る。
That is, first, as the sample disk rotates, the sample tube enters below the dispensing nozzle, and a predetermined reagent such as a fluorescent dye is dropped from the dispensing nozzle into the sample tube.

次に、サンプルディスクを竪軸を中心として高速で回転
させる事により、検体管内に納められた検体の遠心分離
を行なう。
Next, the sample contained in the sample tube is centrifuged by rotating the sample disk at high speed around the vertical axis.

又、この遠心分離作業と前後して、検体管を、出し入れ
ノズルの下方に進入させ、この出し入れノズルを適宜昇
降させる事により、この検体管内の検体を、上記出し入
れノズルに接続された出し入れ容器に吸引したり、或は
出し入れ容器内に吸引された検体を、再び出し入れノズ
ルを通じて、検体管に戻したりする事で、上記検体と試
薬とを攪拌したり、或は出し入れノズルを通じて、検体
管内に洗浄液を給排する事により、上記検体管や出し入
れノズルの内側を洗浄処理したり、検体中に混入してい
る細胞塊等、フローサイトメトリーに通さない不純物を
濾過したり、更には検体の上澄み液の排出等の、必要と
する作業を行なう。
Also, before and after this centrifugation work, the sample tube is introduced below the loading/unloading nozzle, and by moving the loading/unloading nozzle up and down appropriately, the sample in this sample tube is transferred to the loading/unloading container connected to the loading/unloading nozzle. By aspirating or returning the sample aspirated into the loading/unloading container to the sample tube through the loading/unloading nozzle, the sample and reagent can be stirred, or the cleaning liquid can be added into the sample tube through the loading/unloading nozzle. By supplying and discharging the sample, it is possible to clean the inside of the sample tube and the inlet/outlet nozzle, filter impurities that cannot be passed through flow cytometry such as cell clusters mixed in the sample, and even remove the supernatant liquid of the sample. Carry out necessary work such as discharging water.

更に、出し入れノズルにより、これらの処理を行なわれ
た検体を納めた検体管は、サンプルディスクの回転に伴
なって、温度制御槽の上方に移動し、この温度制御槽の
上昇に伴なって、温度制御槽内に挿入され、所定の温度
に保持される。
Furthermore, as the sample disk rotates, the sample tube containing the sample subjected to these treatments is moved above the temperature-controlled tank by the loading/unloading nozzle, and as the temperature-controlled tank rises, It is inserted into a temperature controlled tank and maintained at a predetermined temperature.

これらの行程を、サンプルディスクを適当な方向に適当
な角度だけ回転させる事で、順次行ない、検体管内に納
めた検体に、所定の前処理を施す。
These steps are performed sequentially by rotating the sample disk in an appropriate direction and at an appropriate angle, and the sample placed in the sample tube is subjected to a predetermined pretreatment.

前処理を施された検体を納めた検体管は、サンプルディ
スクから取り出し、上記検体を、フローサイトメトリー
を行なう装置に穆し替える。
The sample tube containing the pretreated sample is removed from the sample disk, and the sample is transferred to an apparatus for flow cytometry.

(実施例) 次に、図示の実施例を説明しつつ、本発明を更に詳しく
説明する。
(Example) Next, the present invention will be explained in more detail while explaining the illustrated embodiment.

第1〜4図は本発明の自動細胞処理装置の構成を示して
おり、第1図は基本構成を示す側面図、第2図は分注ノ
ズルと出し入れノズルとの配置状態を示す、第1図のA
−A親図、第3図は温度制御槽と廃液ボートとの配置状
態を示す、第1図のB−B祖国、第4図はサンプルディ
スクを示す、第1図のC−C親図である。又、第5〜7
図は出し入れノズルを示しており、第5図は最も下降さ
せた状態を、第6図は半分だけ下降させた状態を、第7
図は最も上昇させた状態を、それぞれ表している。
1 to 4 show the configuration of the automatic cell processing device of the present invention, FIG. 1 is a side view showing the basic configuration, and FIG. A in the diagram
-A parent diagram, Figure 3 shows the arrangement of the temperature control tank and waste liquid boat, B-B homeland in Figure 1, Figure 4 shows the sample disk, CC parent diagram in Figure 1. be. Also, 5th to 7th
The figures show the loading and unloading nozzles. Figure 5 shows the nozzle in the lowest position, Figure 6 shows the nozzle in the lowered position, and Figure 6 shows the nozzle in the lowered position.
The figures each show the highest raised state.

円形のサンプルディスク1は、処理すべき細胞を含む液
状の検体を納めた検体管2.2を支持した状態で、竪軸
3を中心とする回転を自在とされている。そしてこの竪
軸3は、図示しない電磁クラッチを介して、遠心分離用
の第一のモータ4、位置決め用の第二のモータ5に選択
的に結合自在とし、上記サンプルディスク1を高速回転
させたり、或は比較的低速で回転させたりする事により
、上記検体管2.2を保持したホルダ6、或は外周寄り
部分に形成した通孔7を、所定の位置に移動出来る様に
している。但し、サンプルディスク1を、第4図の釦線
よりも外側を除去する事で小判型に形成すれば、上記通
孔7は不要となる。
The circular sample disk 1 is rotatable about a vertical shaft 3 while supporting a sample tube 2.2 containing a liquid sample containing cells to be processed. This vertical shaft 3 can be selectively connected to a first motor 4 for centrifugal separation and a second motor 5 for positioning through an electromagnetic clutch (not shown) to rotate the sample disk 1 at high speed. , or by rotating at a relatively low speed, the holder 6 holding the sample tube 2.2 or the through hole 7 formed near the outer periphery can be moved to a predetermined position. However, if the sample disk 1 is formed into an oval shape by removing the outside of the button line in FIG. 4, the through hole 7 becomes unnecessary.

上記ホルダ6は、複数の検体管2.2を保持する為、上
面に開口する複数の支持孔8.8を形成したもので、上
記サンプルディスク1の外周縁に形成した切り欠き部1
0の内側に、その両端上部を横軸9.9によって枢支す
る事により、支持されている。この為上記ホルダ6は、
サンプルディスク1の停止時には、検体管2.2を直立
させた状態で保持するが、上記第一のモータ4によりサ
ンプルディスク1を高速で回転させた場合には、遠心力
によりホルダ6の下部が外方に振れ、検体管2.2内に
納められた検体が溢れない様にしつつ、この検体の遠心
分離が行なわれる。尚、サンプルディスク1の外周部分
で、前記ホルダ6と反対位置にはバランサ11を支持し
て、サンプルディスク1を高速で回転させた場合に於け
る、バランス保持を図っている。
The holder 6 is formed with a plurality of support holes 8.8 opening on the upper surface in order to hold a plurality of sample tubes 2.2, and has a notch 1 formed on the outer periphery of the sample disk 1.
It is supported inside the 0 by pivoting the upper portions of both ends thereof by a horizontal shaft 9.9. For this reason, the holder 6 is
When the sample disk 1 is stopped, the sample tube 2.2 is held in an upright state, but when the sample disk 1 is rotated at high speed by the first motor 4, the lower part of the holder 6 is rotated due to centrifugal force. Centrifugation of the sample is carried out while swinging outward to prevent the sample contained in the sample tube 2.2 from overflowing. A balancer 11 is supported on the outer periphery of the sample disk 1 at a position opposite to the holder 6 to maintain balance when the sample disk 1 is rotated at high speed.

上述の様なサンプルディスク1の上方には、このサンプ
ルディスク1に支持されたホルダ6に保持された検体管
2.2内に、適当な試薬を滴下自在な、複数の(使用す
る試薬の数と同数の)分注ノズル12.12と、昇降自
在で上記検体管2.2内への液体の給排を自在な、1本
の出し入れノズル13とが設けられている。
Above the sample disk 1 as described above, there are a plurality of (number of reagents to be used) into which suitable reagents can be freely dropped into the sample tubes 2.2 held in the holder 6 supported by the sample disk 1. There are provided the same number of dispensing nozzles 12.12, and one inlet/outlet nozzle 13 which can be raised and lowered to supply and discharge liquid into and out of the sample tube 2.2.

この内の出し入れノズル13には、上記検体管2.2内
に納められた検体を一時貯溜しておく為の、出し入れ容
器14(後述の、配管系統を表す第9図以下を参照。)
を接続自在としている。
The loading/unloading nozzle 13 includes a loading/unloading container 14 for temporarily storing the sample contained in the sample tube 2.2 (see FIG. 9 and subsequent figures showing the piping system, which will be described later).
can be freely connected.

又、この出し入れノズル13は、ウオームナツト機構、
リニアモータ等、公知の昇降機構により昇降自在とされ
ており、第5図に示した最下位置(Z2位置)と、第6
図に示した中間位置(Z1位置)と、’$7図に示した
最上位置(ZO位置)とを選択自在としている。
Moreover, this loading/unloading nozzle 13 has a worm nut mechanism,
It can be raised and lowered by a known lifting mechanism such as a linear motor, and there are two positions: the lowest position (Z2 position) shown in Figure 5 and the sixth position.
The intermediate position (Z1 position) shown in the figure and the uppermost position (ZO position) shown in the '$7 figure are freely selectable.

この出し入れノズル13には、検体管2内に圧縮空気を
送り込む為の空気流路22と、検体や洗浄液等の液体を
、上記検体管2内に出し入れする為の液体流路23とが
設けられている。尚、出し入れノズル13の中間部外周
面には、外向きフランジ状のi部21を設け、出し入れ
ノズル13を最も下降させた場合には、この蓋部21が
、検体管2の開口部を塞ぐ様にしている。
This loading/unloading nozzle 13 is provided with an air flow path 22 for feeding compressed air into the sample tube 2 and a liquid flow path 23 for feeding liquids such as the sample and washing liquid into and out of the sample tube 2. ing. An outward flange-shaped i part 21 is provided on the outer circumferential surface of the intermediate portion of the loading/unloading nozzle 13, and when the loading/unloading nozzle 13 is lowered to its lowest position, this lid portion 21 closes the opening of the sample tube 2. I'm doing it like that.

更に、前記サンプルディスク1の下方には、第第二、第
三の温度制御槽15.16.17が、それぞれ昇降自在
に設けられている。
Further, below the sample disk 1, second and third temperature control tanks 15, 16, and 17 are provided so as to be movable up and down, respectively.

各温度制御槽15.16.17の上面には、それぞれ、
前記ホルダ6に形成した支持孔8.8と同じピッチで、
凹孔18.18を形成しており、上記ホルダ6を所定の
温度制御槽の上方に移動させ、この温度制御槽を上昇さ
せた場合に、ホルダ6に保持された検体管2.2の下部
が、その温度制御槽の凹孔18.18内に進入する様に
している。
On the top surface of each temperature control tank 15, 16, 17,
At the same pitch as the support holes 8.8 formed in the holder 6,
A concave hole 18.18 is formed, and when the holder 6 is moved above a predetermined temperature-controlled tank and this temperature-controlled tank is raised, the lower part of the sample tube 2.2 held in the holder 6 is enters into the recessed hole 18.18 of the temperature controlled tank.

尚、第一 第二、第三の温度制御槽15.16.17の
内、第一の温度制御槽15は例えば4℃に、第二の温度
制御槽16は例えば40℃に、第三の温度制御槽17は
例えば30℃に、それぞれ保持される。各温度制御槽1
5.’16.17を所定の温度に保つ為には、例えば各
温度制御槽15.16.17をアルミニウムブロックに
より造ると共に、このアルミニウムブロックにサーモモ
ジュールを取り付ける。又、ホルダ6にスリットを設け
、このスリットを通じてホルダ6内の検体管2.2に温
風若しくは冷風を吹き付ける様にして、各検体管2.2
内の試薬等の加温、冷却の効率を向上させる事も出来る
Of the first, second and third temperature control tanks 15, 16 and 17, the first temperature control tank 15 is heated to, for example, 4°C, the second temperature control tank 16 is set to, for example, 40°C, and the third temperature control tank is heated to, for example, 40°C. The temperature control tanks 17 are each maintained at, for example, 30°C. Each temperature control tank 1
5. In order to maintain the '16.17 at a predetermined temperature, for example, each temperature control tank 15.16.17 is made of an aluminum block, and a thermo module is attached to this aluminum block. In addition, a slit is provided in the holder 6, and hot or cold air is blown onto the sample tubes 2.2 inside the holder 6 through the slit.
It is also possible to improve the efficiency of heating and cooling of reagents, etc. inside.

上述の様に構成される本発明の自動細胞処理装置により
、フローサイトメトリーの為の前処理等、細胞の処理作
業を行なう場合、処理すべき細胞を含む液状の検体を納
めた検体管2.2を、サンプルディスク1に設けたホル
ダ6の支持孔8.8に上方から挿通する事で、上記検体
管2.2をサンプルディスク1の周縁部に支持し、第一
のモータ4、或は第二のモータ5に通電する事により、
竪軸3を中心として、このサンプルディスク1を適宜回
転させ、所定の処理行程を順番に行なう。
When performing cell processing operations such as pretreatment for flow cytometry using the automatic cell processing apparatus of the present invention configured as described above, a sample tube containing a liquid sample containing cells to be processed is used. 2 is inserted from above into the support hole 8.8 of the holder 6 provided on the sample disk 1, so that the sample tube 2.2 is supported on the peripheral edge of the sample disk 1, and the first motor 4 or By energizing the second motor 5,
The sample disk 1 is appropriately rotated about the vertical shaft 3, and predetermined processing steps are sequentially performed.

この処理行程に就いて、第8図以下に示したフローチャ
ート並びに配管系統図を参照しつつ、詳細に説明する。
This processing step will be explained in detail with reference to the flowchart and piping system diagram shown in FIG. 8 and subsequent figures.

先ず、第二のモータ5への通電に基づく、上記サンプル
ディスク1の回転に伴なって、ホルダ6に保持された検
体管2.2が分注ノズル12.12の下方に進入したな
らば、所定の分注ノズル12から検体管2.2内に、蛍
光色素等の所定の試薬を滴下する。この際に於ける作用
は、第8図に示したフローチャートの通りである。
First, when the sample tube 2.2 held in the holder 6 enters below the dispensing nozzle 12.12 as the sample disk 1 rotates based on the energization of the second motor 5, A predetermined reagent such as a fluorescent dye is dropped into the sample tube 2.2 from a predetermined dispensing nozzle 12. The operation at this time is as shown in the flowchart shown in FIG.

所定の試薬の分注を完了したならば、第14図のフロー
チャートに示す様な行程により、検体と試薬との攪拌、
及び検体管2.2等の内部の洗浄を行なう。
After dispensing the prescribed reagent, the sample and reagent are stirred,
And clean the inside of the sample tube 2.2, etc.

攪拌を行なう場合、先ず、攪拌を行なうべき検体と試薬
とを納めた検体管2を、出し入れノズル13の下方に移
動させ、この出し入れノズル13を、z2位置(第5図
)に迄下降させる。
When stirring, first, the sample tube 2 containing the sample and reagent to be stirred is moved below the loading/unloading nozzle 13, and the loading/unloading nozzle 13 is lowered to the z2 position (FIG. 5).

次いで、第9図に示す様に、検体押し出し用の圧縮空気
を、第一の切換弁19、出し入れノズル13に付属の空
気流路22を介して、検体管2内に送り込み、この検体
管2内に納められていた検体と試薬とを、出し入れノズ
ル13に設けられた液体流路23、第二の切換弁20を
介して、出し入れ容器14内に送り込む。出し入れ容器
14内への検体と試薬との送り込み完了は、図示しない
センサ等により検出し、完了後直ちに、第一の切換弁1
9を閉じる。
Next, as shown in FIG. 9, compressed air for pushing out the sample is sent into the sample tube 2 via the first switching valve 19 and the air passage 22 attached to the inlet/outlet nozzle 13. The sample and reagent stored therein are sent into the loading/unloading container 14 via the liquid flow path 23 provided in the loading/unloading nozzle 13 and the second switching valve 20. Completion of feeding the sample and reagent into the loading/unloading container 14 is detected by a sensor (not shown), and immediately after the feeding is completed, the first switching valve 1 is opened.
Close 9.

この様にして、検体と試薬とを、出し入れ容器14内に
送り込んだならば、第10図に示す様に、圧縮空気を、
第三〜第六の切換弁24〜27を介して、出し入れ容器
14内に送り込み、この出し入れ容器14内の検体と試
薬とを、検体管2に戻す。この際、第一の切換弁19は
、検体管2の上部を大気に連通させる状態に切り換えて
おく。検体と試薬との攪拌は、上述の様な、検体管2と
出し入れ容器14との間の移動を所定回数繰り返す事で
行なう。
After the specimen and reagent are fed into the container 14 in this way, compressed air is introduced into the container 14 as shown in FIG.
The sample and reagent are fed into the loading/unloading container 14 via the third to sixth switching valves 24 to 27, and the sample and reagent in the loading/unloading container 14 are returned to the sample tube 2. At this time, the first switching valve 19 is switched to a state in which the upper part of the sample tube 2 is communicated with the atmosphere. The sample and reagent are stirred by repeating the movement between the sample tube 2 and the loading/unloading container 14 a predetermined number of times as described above.

尚、前処理の方法によっては、検体管2内で検体と試薬
とを機械的に攪拌する必要があるが、この場合には、サ
ンプルディスク1の上方で、各検体管2内に挿入可能な
位置に、下端部を大径にした茸弁状の撹拌棒を昇降自在
に設け、この撹拌棒の昇降に伴なって、上記検体と試薬
とを攪拌する事も出来る。
Note that depending on the pretreatment method, it may be necessary to mechanically stir the sample and reagent in the sample tubes 2. In this case, there is a It is also possible to provide a mushroom valve-shaped stirring rod with a large diameter at the lower end so that it can move up and down, and as the stirring rod moves up and down, the sample and reagent can be stirred.

検体と試薬との攪拌が完了したならば、次の検体の処理
作業に備えて、出し入れノズル13及び出し入れ容器1
4の内部等、攪拌作業に伴なって検体や試薬が触れた部
分の洗浄作業を行なう。
Once the sample and reagent have been stirred, the loading/unloading nozzle 13 and loading/unloading container 1 are opened in preparation for the next specimen processing operation.
4. Clean the parts that came into contact with the sample or reagent during the stirring process, such as the inside of 4.

この洗浄作業を行なう場合に当たっては、先ず、検体と
試薬とを、第9図に示した状態を経て、出し入れ容器1
4に一時貯溜してから、第一〜第六の切換弁19.20
.24〜27を、第11図に示す状態に切り換え、洗浄
液容器28内に圧縮空気を送り込んで、この洗浄液容器
28内に貯溜されている洗浄液を、出し入れノズル13
に向けて送り出す。
When performing this cleaning work, first, the sample and reagent are placed in the container after passing through the state shown in Figure 9.
4, and then the first to sixth switching valves 19.20
.. 24 to 27 are switched to the state shown in FIG.
send it towards.

洗浄液容器28から送り出された洗浄液は、第四の切換
弁25、第五の切換弁26、第六の切換弁27、検体と
試薬とを一時貯溜している出し入れ容器14と並列に設
けられたバイパスチューブ29、第二の切換弁20を介
して、出し入れノズル13に送り込まれ、この出し入れ
ノズル13の液体流路23から、検体管2内に注入され
る。
The cleaning liquid sent out from the cleaning liquid container 28 is provided in parallel with the fourth switching valve 25, the fifth switching valve 26, the sixth switching valve 27, and the loading/unloading container 14 that temporarily stores the specimen and reagent. The liquid is sent to the inlet/outlet nozzle 13 via the bypass tube 29 and the second switching valve 20, and is injected into the sample tube 2 from the liquid flow path 23 of the inlet/outlet nozzle 13.

この様にして、洗浄液を検体管2内に注入したならば、
次いで、第一〜第六の切換弁19.20.24〜27を
、第12図に示す状態に切り換え、検体管2内に圧縮空
気を送り込んで、この検体管2内の洗浄液を、出し入れ
ノズル13の液体流路23、第二の切換弁20、バイパ
スチューブ29、第六、第五の切換弁27.26を通じ
て、廃液タンク30に排出する。
Once the cleaning solution is injected into the sample tube 2 in this way,
Next, the first to sixth switching valves 19, 20, 24 to 27 are switched to the state shown in FIG. The liquid is discharged into the waste liquid tank 30 through the thirteen liquid flow paths 23, the second switching valve 20, the bypass tube 29, and the sixth and fifth switching valves 27 and 26.

この結果、出し入れノズル13の予備洗浄が完了する為
、次いで、第一〜第六の切換弁19.20.24〜27
を、第10図に示す状態に切り換え、出し入れ容器14
内に圧縮空気を送り込んで、この出し入れ容器14内の
検体と試薬とを、検体管2内に戻す。
As a result, the preliminary cleaning of the loading/unloading nozzle 13 is completed, and then the first to sixth switching valves 19, 20, 24 to 27
is switched to the state shown in FIG. 10, and the loading/unloading container 14
Compressed air is sent into the sample tube 2 to return the sample and reagent in the container 14 to the sample tube 2.

次いで、出し入れノズル13を20位置(第7図)に迄
上昇させ、第二のモータ5への通電に基づきサンプルデ
ィスク1を回転させて、このサンプルディスク1を原点
位置に復帰させる。
Next, the loading/unloading nozzle 13 is raised to the 20 position (FIG. 7), and the sample disk 1 is rotated based on the energization of the second motor 5, thereby returning the sample disk 1 to the original position.

サンプルディスク1の原点への復帰に基づぎ、出し入れ
ノズル13と、この出し入れノズル13の直下に設けら
れた廃液ボート31(第3図)との間に、サンプルディ
スク1の通孔7がB動する。
Based on the return of the sample disk 1 to the origin, the through hole 7 of the sample disk 1 is inserted between the loading/unloading nozzle 13 and the waste liquid boat 31 (FIG. 3) provided directly below the loading/unloading nozzle 13. move.

そこで、出し入れノズル13を21位置(第6図)に迄
下降させ、第一〜第六の切換弁19.20124〜27
を、第13図に示す状態に切り換え、洗浄液タンク28
内に圧縮空気を送り込んで、この洗浄液タンク28内の
洗浄液を、第四〜第六の切換弁25〜27、出し入れ容
器14、第二の切換弁20、廃液ポート31を通じて、
廃液タンク30に排出する。
Therefore, the inlet/outlet nozzle 13 is lowered to the 21 position (Fig. 6), and the first to sixth switching valves 19.20124 to 27
is switched to the state shown in FIG. 13, and the cleaning liquid tank 28 is
By sending compressed air into the cleaning liquid tank 28, the cleaning liquid in the cleaning liquid tank 28 is transferred through the fourth to sixth switching valves 25 to 27, the loading/unloading container 14, the second switching valve 20, and the waste liquid port 31.
It is discharged into the waste liquid tank 30.

この結果、出し入れノズル13及び出し入れ容器14の
内部等、検体や試薬が接触する部分の洗浄が行なわれ、
洗浄作業が完了する。そこで、出し入れノズル13を2
0位置に迄上昇させて、検体と試薬との攪拌、並びに内
部の洗浄作業を完了する。これらの作業をフローチャー
トで表すと、第14図に示す様になる。
As a result, parts that come into contact with the sample or reagent, such as the inside of the loading/unloading nozzle 13 and loading/unloading container 14, are cleaned.
Cleaning work is completed. Therefore, the loading and unloading nozzle 13 is
Raise it to the 0 position and complete stirring of the sample and reagent as well as internal cleaning work. A flowchart of these operations is shown in FIG. 14.

上述の様な行程により、検体と試薬との攪拌、並びに内
部の洗浄作業を完了したならば、竪軸3に付属の電磁ク
ラッチを切り換えると共に、第一のモータ4に通電する
事により、サンプルディスク1を竪軸3を中心として高
速で回転させ、ホルダ6に支持された検体管2.2内に
納められた検体の遠心分離を行なう。
After completing the stirring of the sample and reagent as well as the internal cleaning work through the steps described above, the electromagnetic clutch attached to the vertical shaft 3 is switched and the first motor 4 is energized to remove the sample disk. 1 is rotated at high speed around a vertical shaft 3, and a sample contained in a sample tube 2.2 supported by a holder 6 is centrifuged.

遠心分離を行なった後、出し入れノズル13により、適
宜検体の上澄み液を排出すると共に、第15図のフロー
チャートに示す様な行程により、検体管2.2を適当な
温度に保持し、検体管2.2内の検体の処理を行なう。
After centrifugation, the supernatant liquid of the specimen is discharged as appropriate using the loading/unloading nozzle 13, and the specimen tube 2.2 is maintained at an appropriate temperature through the steps shown in the flowchart of FIG. Process the specimens in .2.

更に、これら一連の処理作業を行なった後、検体中に混
入している細胞塊等、フローサイトメトリーに適さない
不純物を濾過する、濾過作業を行なう。
Furthermore, after performing these series of processing operations, a filtration operation is performed to filter out impurities that are not suitable for flow cytometry, such as cell clusters mixed in the specimen.

この濾過作業を行なう場合、前述の攪拌作業を行なう場
合と同様に、先ず、第9図に示す様な配管状態で、検体
管2内の検体を、検体管2と第二の切換弁20との間に
設けたフィルタ(図示省略)を通じて出し入れ容器14
内に移す。次いで、第11図に示した状態の配管状態で
、洗浄液容器28から上記フィルタに洗浄液を送り、こ
のフィルタに付着した不純物を洗浄液と共に検体管2内
に送り込み、更にその後、第12図に示す様な配管状態
とする事により、上記不純物を含む洗浄液を、廃液タン
ク30に排出する。その後、第10図に示す様な配管状
態とする事により、上記出し入れ容器14に一時貯溜さ
れていた検体を、検体管2に戻す。
When performing this filtration work, in the same way as when performing the above-mentioned stirring work, first, the sample in the sample tube 2 is transferred between the sample tube 2 and the second switching valve 20 in the piping state shown in FIG. A filter (not shown) provided between the containers 14 and 14
Move inside. Next, with the piping in the state shown in FIG. 11, the cleaning liquid is sent from the cleaning liquid container 28 to the filter, and the impurities adhering to this filter are sent into the sample tube 2 together with the cleaning liquid, and then, as shown in FIG. By setting the piping in such a manner, the cleaning liquid containing the above-mentioned impurities is discharged to the waste liquid tank 30. Thereafter, by setting the piping as shown in FIG. 10, the sample temporarily stored in the container 14 is returned to the sample tube 2.

この様な濾過作業を終了した後、前述した攪拌作業後の
場合と同様の行程(第13図参照)により、出し入れノ
ズル13及び出し入れ容器14の内部等を洗浄する。こ
れら濾過作業と洗浄作業とは、第16図に示したフロー
チャートの様に行なわれる。
After completing such a filtration operation, the inside of the loading/unloading nozzle 13 and the loading/unloading container 14, etc. are cleaned by the same steps as after the stirring operation described above (see FIG. 13). These filtering operations and cleaning operations are performed as shown in the flowchart shown in FIG.

これらの行程を、複数の検体管2.2の1個毎に、第二
のモータ5により、サンプルディスク1を適当な方向に
適当な角度だけ回転させつつ、順次行ない、各検体管2
.2内に納めた検体に、所定の前処理を施す。
These steps are sequentially performed for each of the plurality of sample tubes 2.2 while rotating the sample disk 1 in an appropriate direction by an appropriate angle by the second motor 5.
.. Specimen stored in 2 is subjected to predetermined pretreatment.

前処理を施された検体を納めた検体管2.2は、サンプ
ルディスク1のホルダ6から取り出し、゛上記検体を、
フローサイトメトリーを行なう装置にBし替える。
The sample tube 2.2 containing the pretreated sample is taken out from the holder 6 of the sample disk 1, and the sample tube 2.2 is
Change B to a device for flow cytometry.

尚、サンプルディスク1に複数本の検体管2.2をセッ
トし、この検体管2.2内への試薬の分注作業を、1本
の分注ノズル12で行なった場合、検体管2.2によっ
て分注時期がずれる事に伴ない、各検体管2.2ごとに
反応時間の相違が生じるが、反応時間を厳密に規制する
必要がある場合には、検体管2.2の数に合わせて、分
注ノズル12を複数個設ければ、上記複数の検体管2.
2への分注作業を同時に行なって、各検体管2.2ごと
に反応時間がずれる事を防止出来る。
Note that when a plurality of sample tubes 2.2 are set on the sample disk 1 and a single dispensing nozzle 12 is used to dispense the reagent into the sample tubes 2.2, the sample tubes 2.2. Due to the difference in the dispensing timing due to 2.2, the reaction time will differ for each sample tube 2.2, but if it is necessary to strictly control the reaction time, the number of sample tubes 2.2 may vary. In addition, if a plurality of dispensing nozzles 12 are provided, the plurality of sample tubes 2.
By performing the dispensing work to the sample tubes 2.2 at the same time, it is possible to prevent the reaction time from being different for each sample tube 2.2.

同様に、検体管2.2の数に合わせて、出ル入れノズル
13と、各出し入れノズル13に対して直列に接続自在
な出し入れ容器14とを、それぞれ複数個設ける事によ
り、複数の検体管2.2への液体の出し入れ作業を同時
に行なえる様にする事も出来る。
Similarly, by providing a plurality of inlet/outlet nozzles 13 and a plurality of inlet/outlet containers 14 that can be freely connected in series to each inlet/outlet nozzle 13 according to the number of sample tubes 2.2, a plurality of sample tubes can be stored. It is also possible to perform the work of putting liquid in and out of 2.2 at the same time.

更に、各検体管2.2内に分注する試薬の中には、4℃
程度と、比較的低温で貯溜する必要のあるものが存在す
るが、この様に低温で貯蔵された試薬を、そのまま検体
管2.2内に分注した場合、温度が低い事により、反応
時間が長くなり過ぎる場合がある。
Furthermore, some of the reagents dispensed into each sample tube 2.2 must be kept at 4°C.
There are some reagents that need to be stored at relatively low temperatures, but if reagents stored at such low temperatures are dispensed as they are into the sample tube 2.2, the reaction time will be shorter due to the lower temperature. may become too long.

そこで、この様な場合には、試薬を低温で貯蔵した貯蔵
容器(図示せず)と分注ノズル12とを結ぶ配管の途中
に、次回の分注に使用する程度の、少量の試薬を貯溜自
在な一時貯溜部(図示せず)を、上記配管と直列に設け
れば、貯蔵容器から取り出された試薬が、上記−時貯溜
部に存在する間に、室温程度に迄温度上昇してから上記
分注ノズル12に送られる様になり、反応時間の長期化
を防止出来る。
Therefore, in such a case, a small amount of reagent to be used for the next dispensing is stored in the pipe connecting the dispensing nozzle 12 and a storage container (not shown) in which the reagent is stored at a low temperature. If a flexible temporary storage section (not shown) is provided in series with the above-mentioned piping, the reagent taken out from the storage container can be heated to about room temperature while remaining in the above-mentioned temporary storage section. The liquid is now sent to the dispensing nozzle 12, thereby preventing the reaction time from becoming prolonged.

次に、第17〜21図は、本発明の自動細胞処理装置の
配管系統の別個を示している。
Next, FIGS. 17 to 21 show separate piping systems of the automatic cell processing apparatus of the present invention.

即ち、前記′s9〜13図に示した配管系統に於いては
、試薬等の出し入れを行なうのに、何れの部分に圧縮空
気を送り込むかにより行なっていたのに対し、第17〜
21図に示した配管系統の場合、加圧ポンプ32と吸引
ポンプ33とを設け、何れのポンプ32.33を何れの
部分に通じさせるかにより、自動細胞処理作業を行なう
様にしている。尚、加圧ポンプ32と吸引ポンプ33と
は、単一のコンプレッサの吐出口と吸引口とする事も出
来る。
That is, in the piping system shown in Figures 9 to 13 above, reagents, etc. were taken in and out depending on which part the compressed air was sent into, whereas
In the case of the piping system shown in FIG. 21, a pressure pump 32 and a suction pump 33 are provided, and automatic cell processing is performed depending on which pump 32 or 33 is connected to which part. Note that the pressurizing pump 32 and the suction pump 33 can also be used as a discharge port and a suction port of a single compressor.

先ず、検体管2(第9〜13図参照)内に試薬を分注す
る際には、第17図に太線で示す状態に各部を切り換え
て、加圧ポンプ32を運転し、試薬ボトル34内の試薬
を、分注ノズル12に向けて押し出す。
First, when dispensing a reagent into the sample tube 2 (see FIGS. 9 to 13), each part is switched to the state shown by the thick line in FIG. The reagent is pushed out toward the dispensing nozzle 12.

又、試薬と検体とを攪拌する際には、第18図に太い実
線で示す状態に各部を切り換えて吸引ポンプ33を運転
した後、同図に太い破線で示す状態に各部を切り換えて
加圧ポンプ32を運転する作業を繰り返し行なう。
When stirring the reagent and sample, after switching each part to the state shown by the thick solid line in FIG. 18 and operating the suction pump 33, switch each part to the state shown by the thick broken line in the same figure to apply pressure. The operation of operating the pump 32 is repeated.

又、上澄み液を排出する際には、第19図に太線で示す
状態に各部を切り換えて、吸引ポンプ33を運転し、上
澄み液を廃液ボトル35に排出する。
Further, when discharging the supernatant liquid, each part is switched to the state shown by the thick line in FIG. 19, the suction pump 33 is operated, and the supernatant liquid is discharged into the waste liquid bottle 35.

又、洗浄作業を行なう場合には、N20図に太線で示す
状態に各部を切り換えて、加圧ポンプ32を運転し、洗
浄液容器28内の洗浄液を、出し入れ容器14とバイパ
スチューブ29とを介して比し入れノズル13に送り、
廃液ポート31(第3図)から排出する。又、この際、
別の配管(図示せず)を通じて、上記出し入れノズル1
3の外面にも洗浄液を吹き付け、この出し入れノズル1
3の外面も併せて洗浄する。出し入れノズル13外面の
洗浄に供された洗浄液は、図示しない廃液トレーと配管
とを介して、廃液ボトル35に廃棄される。
In addition, when performing cleaning work, each part is switched to the state shown by the thick line in the N20 diagram, the pressurizing pump 32 is operated, and the cleaning liquid in the cleaning liquid container 28 is pumped through the loading/unloading container 14 and the bypass tube 29. Send it to the pouring nozzle 13,
It is discharged from the waste liquid port 31 (FIG. 3). Also, at this time,
The above-mentioned inlet/outlet nozzle 1 is connected through another pipe (not shown).
Spray the cleaning liquid on the outer surface of Nozzle 3 as well, and
Also clean the outer surface of step 3. The cleaning liquid used for cleaning the outer surface of the loading/unloading nozzle 13 is discarded into a waste liquid bottle 35 via a waste liquid tray and piping (not shown).

更に、不純物を濾過する、濾過作業を行なう場合には、
第21図に太い破線で示す状態に各部を切り換えて吸引
ポンプ33を運転し、検体管2内の検体を出し入れ容器
14に穆す・。この際、検体中に混入している不純物の
固まりは、出し入れノズル13と第二の切換弁20との
間に設けたフィルタ36に捕集される0次いで、出し入
れノズル13の廃液ポート31 (第3図)上に6動さ
せてから、同図に太い実線で示す状態に各部を切り換え
て加圧ポンプ32を運転し、洗浄液容器28内の洗浄液
を、フィルタ36を通じて出し入れノズル13に送り込
む。
Furthermore, when performing filtration work to filter impurities,
Each part is switched to the state shown by the thick broken line in FIG. 21, the suction pump 33 is operated, and the sample in the sample tube 2 is taken out and put into the container 14. At this time, the lumps of impurities mixed in the sample are collected by the filter 36 provided between the inlet/outlet nozzle 13 and the second switching valve 20. (Figure 3) After moving up six times, each part is switched to the state shown by the thick solid line in the same figure, the pressurizing pump 32 is operated, and the cleaning liquid in the cleaning liquid container 28 is sent to the inlet/outlet nozzle 13 through the filter 36.

この結果、上記フィルタ36に捕集されていた4゜ 不純物がフィルタ36から分離し、出し入れノズル13
、廃液ボート31を通じて排出される。その後、出し入
れノズル13の検体管2の上方に6動させ(戻し)でか
ら、第三、第四、第六の切換弁24.25.27を、出
し入れ容器14と加圧ポンプ32とを、洗浄液容器28
を介さずに、直接連通する状態に切り換え、出し入れ容
器14内の検体を検体管2に吐出する(戻す)。
As a result, the 4° impurities collected in the filter 36 are separated from the filter 36 and transferred to the inlet/outlet nozzle
, and is discharged through the waste liquid boat 31. After that, after moving the loading/unloading nozzle 13 upwards (returning) the sample tube 2, the third, fourth, and sixth switching valves 24, 25, and 27, the loading/unloading container 14, and the pressure pump 32 are Cleaning liquid container 28
The state is switched to a state where direct communication is established without going through the tube, and the sample in the loading/unloading container 14 is discharged (returned) to the specimen tube 2.

(発明の効果) 本発明の自動細胞処理装置は、以上に述べた通り構成さ
れ作用する為、複雑なフローサイトメトリーの前処理作
業を自動的に行なう事が出来、省力化を図れると同時に
、常に安定した処理作業を行なう事が出来る為、前処理
後に行なうフローサイトメトリーによる病理診断等の信
頼性が向上する。
(Effects of the Invention) Since the automatic cell processing device of the present invention is configured and operates as described above, it is possible to automatically perform complicated preprocessing work for flow cytometry, and at the same time, it can save labor. Since stable processing can be performed at all times, the reliability of pathological diagnosis by flow cytometry performed after pretreatment is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜4図は本発明の自動細1lIIA理装置の構成を
示しており、第1図は基本構成を示す側面図、第2図は
分注ノズルと出し入れノズルとの配置状態を示す、第1
図のA−A親図、第3図は温度制御槽と廃液ボートとの
配置状態を示す、第1図のB−B親図、第4図はサンプ
ルディスクを示す、第1図のC−C親図である。 又、第5〜7図は出し入れノズルを示しており、第5図
は最も下降させた状態を、第6図は半分だけ下降させた
状態を、第7図は最も上昇させた状態を、それぞれ表し
ている。 第8図は試薬分注作業のフローチャートである。 第9〜13図は攪拌と装置内部の洗浄とを行なう際の配
管中の弁切り換え状態を行程類に示す、それぞれ配管図
、第14図は攪拌と洗浄との行程を示すフローチャート
である。 第15図は、検体を納めた検体管を温度制御槽に挿入す
る作業のフローチャートである。 第16図は検体を濾過すると共に装置内部を洗浄する作
業のフローチャートである。 第17〜21図は攪拌と装置内部の洗浄とを行なう際の
配管の別個を示す、第9〜13図と同様の図である。 第22図は本発明の自動細胞処理装置により行なわれる
前処理作業の1例を示すフローチャートである。 1:サンプルディスク、2:検体管、3:竪軸、4:第
一のモータ、5;第二のモータ、6:ホルダ、7:通孔
、8;支持孔、9:横軸、1゜:切り欠き部、11;バ
ランサ、12:分注ノズル、13:出し入れノズル、1
4:出し入れ容器、15:第一の温度制御槽、16:第
二の温度制御槽、17:第三の温度制御槽、18:凹孔
、19:第一の切換弁、20;第二の切換弁、21:蓋
部、22:空気流路、23:液体流路、24:第三の切
換弁、25:第四の切換弁、26:第五の切換弁、27
 :34六の切換弁、28:洗浄液容器、29:バイパ
スチューブ、30:廃液タンク、31:廃液ポート、3
2:加圧ポンプ、33:吸引ポンプ、34:試薬ボトル
、35:廃液ボトル、36:フィルタ。 第 8 図 第 6 図 第 9 図 第 1O図 第 f 図 籐 2 図 第 3 図 第 14図 第 17図 第1υ 図 第17図 第20図 第21 図 第 ?。
Figures 1 to 4 show the configuration of the automatic thinning device of the present invention, with Figure 1 being a side view showing the basic configuration, and Figure 2 being a side view showing the arrangement of the dispensing nozzle and the loading/unloading nozzle. 1
Figure 3 shows the arrangement of the temperature control tank and waste liquid boat, B-B diagram in Figure 1, Figure 4 shows the sample disk, C- in Figure 1. This is the parent diagram of C. In addition, Figures 5 to 7 show the nozzle in and out. Figure 5 shows the lowered state, Figure 6 shows the state lowered by half, and Figure 7 shows the lowered state. represents. FIG. 8 is a flowchart of the reagent dispensing operation. FIGS. 9 to 13 are piping diagrams showing the valve switching states in the piping when stirring and cleaning the inside of the apparatus, respectively, and FIG. 14 is a flowchart showing the steps of stirring and cleaning. FIG. 15 is a flowchart of the operation of inserting a sample tube containing a sample into a temperature-controlled tank. FIG. 16 is a flowchart of the work of filtering the sample and cleaning the inside of the apparatus. FIGS. 17-21 are views similar to FIGS. 9-13, showing separate piping for stirring and cleaning the inside of the apparatus. FIG. 22 is a flowchart showing one example of pretreatment work performed by the automatic cell processing apparatus of the present invention. 1: Sample disk, 2: Sample tube, 3: Vertical shaft, 4: First motor, 5: Second motor, 6: Holder, 7: Through hole, 8: Support hole, 9: Horizontal shaft, 1° : Notch, 11; Balancer, 12: Dispensing nozzle, 13: Loading/unloading nozzle, 1
4: Loading/unloading container, 15: First temperature control tank, 16: Second temperature control tank, 17: Third temperature control tank, 18: Recessed hole, 19: First switching valve, 20: Second temperature control tank Switching valve, 21: Lid, 22: Air flow path, 23: Liquid flow path, 24: Third switching valve, 25: Fourth switching valve, 26: Fifth switching valve, 27
: 346 switching valve, 28: Cleaning liquid container, 29: Bypass tube, 30: Waste liquid tank, 31: Waste liquid port, 3
2: Pressure pump, 33: Suction pump, 34: Reagent bottle, 35: Waste liquid bottle, 36: Filter. Figure 8 Figure 6 Figure 9 Figure 1 O Figure f Figure Rattan 2 Figure 3 Figure 14 Figure 17 Figure 1 υ Figure 17 Figure 20 Figure 21 Figure ? .

Claims (5)

【特許請求の範囲】[Claims] (1)処理すべき細胞を含む液状の検体を納めた検体管
を支持した状態で、竪軸を中心として回転するサンプル
ディスクと、このサンプルディスクの上方に設けられ、
上記検体管内に試薬を滴下自在な分注ノズルと、上記サ
ンプルディスクの上方に昇降自在に設けられ、サンプル
ディスクに支持された検体管内への液体の給排を自在な
出し入れノズルと、この出し入れノズルと接続自在な出
し入れ容器と、上記サンプルディスクの下方に昇降自在
に設けられ、上昇時にこのサンプルディスクに支持され
た検体管の下部を挿入自在な温度制御槽とから成る自動
細胞処理装置。
(1) A sample disk that rotates around a vertical axis while supporting a sample tube containing a liquid sample containing cells to be processed; and a sample disk provided above the sample disk;
a dispensing nozzle that can freely drop a reagent into the sample tube; an in/out nozzle that is provided above the sample disk so as to be movable up and down and that can freely supply and drain liquid into and out of the sample tube supported by the sample disk; and this in/out nozzle. An automatic cell processing device comprising a storage container that can be freely connected to and removed from the sample disk, and a temperature-controlled tank that is movable up and down below the sample disk and into which the lower part of the sample tube supported by the sample disk can be inserted when the sample disk is raised.
(2)検体管の数に合わせて分注ノズルを複数個設ける
事により、複数の検体管への分注作業を同時に行なえる
様にした、請求項1に記載の自動細胞処理装置。
(2) The automatic cell processing device according to claim 1, wherein a plurality of dispensing nozzles are provided in accordance with the number of sample tubes, so that dispensing to a plurality of sample tubes can be performed simultaneously.
(3)検体管の数に合わせて出し入れノズルと、各出し
入れノズルに対して直列に接続自在な出し入れ容器とを
、それぞれ複数個設ける事により、複数の検体管への液
体の出し入れ作業を同時に行なえる様にした、請求項1
〜2の何れかに記載の自動細胞処理装置。
(3) By providing a plurality of loading/unloading nozzles according to the number of sample tubes and a plurality of loading/unloading containers that can be freely connected in series to each loading/unloading nozzle, it is possible to simultaneously load and unload liquid into multiple sample tubes. Claim 1
2. The automatic cell processing device according to any one of 2 to 2.
(4)試薬を反応温度以外の温度で貯蔵した貯蔵容器と
分注ノズルとを結ぶ配管の途中に、少量の試薬を貯溜自
在な一時貯溜部を、上記配管と直列に設ける事により、
貯蔵容器から取り出された試薬が、反応温度に近付いて
から上記分注ノズルに送られる様にした、請求項1〜3
の何れかに記載の自動細胞処理装置。
(4) By providing a temporary storage section that can freely store a small amount of reagent in the middle of the piping connecting the storage container storing the reagent at a temperature other than the reaction temperature and the dispensing nozzle in series with the piping,
Claims 1 to 3, wherein the reagent taken out from the storage container is sent to the dispensing nozzle after it approaches the reaction temperature.
The automatic cell processing device according to any one of the above.
(5)検体管内に挿入可能な位置に、昇降に伴なって検
体管内の液体を攪拌する撹拌棒を設けた、請求項1〜4
の何れかに記載の自動細胞処理装置。
(5) Claims 1 to 4, wherein a stirring rod is provided at a position that can be inserted into the sample tube to stir the liquid in the sample tube as it moves up and down.
The automatic cell processing device according to any one of the above.
JP15746790A 1989-09-13 1990-06-18 Automatic cell treatment apparatus Pending JPH03175362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15746790A JPH03175362A (en) 1989-09-13 1990-06-18 Automatic cell treatment apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-235798 1989-09-13
JP23579889 1989-09-13
JP15746790A JPH03175362A (en) 1989-09-13 1990-06-18 Automatic cell treatment apparatus

Publications (1)

Publication Number Publication Date
JPH03175362A true JPH03175362A (en) 1991-07-30

Family

ID=26484907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15746790A Pending JPH03175362A (en) 1989-09-13 1990-06-18 Automatic cell treatment apparatus

Country Status (1)

Country Link
JP (1) JPH03175362A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005057224A1 (en) * 2003-12-08 2005-06-23 Wako Pure Chemical Industries,Ltd. Automatic analyzer-use reaction disc and separating cell
JP2011227065A (en) * 2010-04-01 2011-11-10 Toshiba Corp Automatic analyzer
JP2013522641A (en) * 2010-03-22 2013-06-13 ノバシ Automated process and automated device for preparing and analyzing multiple cell suspensions
JP2013532834A (en) * 2010-08-03 2013-08-19 ビオメリュー Chemical and / or biological analysis method and apparatus
JP2015508177A (en) * 2012-02-24 2015-03-16 インストルノル エーエス System, apparatus and device for preparing cells
JP2017198625A (en) * 2016-04-28 2017-11-02 シスメックス株式会社 Pre-treatment device and sample analyzer
US11099200B2 (en) 2016-12-15 2021-08-24 Sysmex Corporation Pretreatment apparatus and pretreatment method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005057224A1 (en) * 2003-12-08 2005-06-23 Wako Pure Chemical Industries,Ltd. Automatic analyzer-use reaction disc and separating cell
US7722812B2 (en) 2003-12-08 2010-05-25 Wako Pure Chemical Industries, Ltd. Reaction disk and separation cell for automatic analyzer
JP2013522641A (en) * 2010-03-22 2013-06-13 ノバシ Automated process and automated device for preparing and analyzing multiple cell suspensions
JP2011227065A (en) * 2010-04-01 2011-11-10 Toshiba Corp Automatic analyzer
JP2015043003A (en) * 2010-04-01 2015-03-05 株式会社東芝 Automatic analyzer
US8999267B2 (en) 2010-04-01 2015-04-07 Kabushiki Kaisha Toshiba Automatic analyzer
US9606134B2 (en) 2010-04-01 2017-03-28 Toshiba Medical Systems Corporation Automatic analyzer
JP2013532834A (en) * 2010-08-03 2013-08-19 ビオメリュー Chemical and / or biological analysis method and apparatus
JP2015508177A (en) * 2012-02-24 2015-03-16 インストルノル エーエス System, apparatus and device for preparing cells
JP2017198625A (en) * 2016-04-28 2017-11-02 シスメックス株式会社 Pre-treatment device and sample analyzer
US11099200B2 (en) 2016-12-15 2021-08-24 Sysmex Corporation Pretreatment apparatus and pretreatment method
JP2021193381A (en) * 2016-12-15 2021-12-23 シスメックス株式会社 Preprocessing equipment and preprocessing method

Similar Documents

Publication Publication Date Title
US5167926A (en) Apparatus for pretreating cells for flow cytometry
EP2780722B1 (en) An automated system and method of treating tissue samples on slides
US8877485B2 (en) Apparatus and method for processing biological samples
CA2301551C (en) Method and apparatus for automatically forming monolayers from particulate matter separated from fluid samples
US3892197A (en) Light microscopy processing apparatus
HU230739B1 (en) Apparatus and method for automatic staining masking, digitizing of slides
JPH04164257A (en) Automatic pretreatment device
US11579053B2 (en) Specimen processing systems, pipette assemblies and methods for preparing reagents
JP6603237B2 (en) Automatic specimen processing system and multi-step processing of microscope slides
CN107208344B (en) dyeing device
JPH03175362A (en) Automatic cell treatment apparatus
EP1177276B1 (en) Device for extracting DNA, RNA and proteins from biological samples
KR20200006113A (en) Apparatus for processing tissue samples and in particular for producing wax blocks containing tissue samples
JP2023089003A (en) Contactless mixing using modulated air jets
US4001460A (en) Light microscopy processing method
JP2966057B2 (en) Automatic cell processing device
JPS60252268A (en) Automatic chemical analysis instrument
USRE29073E (en) Light microscopy processing apparatus
WO2014001531A2 (en) A system and a dip tank for washing and target retrieval of tissue samples mounted on microscope slides
RU2763339C2 (en) Device and method for coloring organic material on micro-preparation
JPS5992355A (en) Chemical manipulator
DK173797B1 (en) Mixing module for use with an analyzer
CN115820403A (en) In-situ hybridization instrument liquid path
JPS6035626B2 (en) Multi-sample multi-item automatic chemical analyzer
JPS6244222B2 (en)