JPH03175143A - Fuel injection device - Google Patents

Fuel injection device

Info

Publication number
JPH03175143A
JPH03175143A JP31194590A JP31194590A JPH03175143A JP H03175143 A JPH03175143 A JP H03175143A JP 31194590 A JP31194590 A JP 31194590A JP 31194590 A JP31194590 A JP 31194590A JP H03175143 A JPH03175143 A JP H03175143A
Authority
JP
Japan
Prior art keywords
fuel
port
pressure
ring
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31194590A
Other languages
Japanese (ja)
Other versions
JP2555773B2 (en
Inventor
Masahiko Miyaki
宮木 正彦
Akira Masuda
明 益田
Toshimi Matsumura
敏美 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP2311945A priority Critical patent/JP2555773B2/en
Publication of JPH03175143A publication Critical patent/JPH03175143A/en
Application granted granted Critical
Publication of JP2555773B2 publication Critical patent/JP2555773B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent differences in the amount of fuel injected due to errors in the manufacture of a fuel injection device by forming a rectilinear channel for regulating the timing of the start of forcible feed of pressurized fuel of a pressure chamber in response to closing of a ring-shaped member by an overflow port regardless of the relative distance between the overflow port and a low-pressure port. CONSTITUTION:A reed 101 for deciding the start of injection of fuel is newly provided on the inner peripheral face of a ring-shaped member 7 in such a manner as being balanced and parallel to the generating line of the inner peripheral face. Since either one of overflow ports 71 to 74 agrees with the reed 101, fuel in a pump chamber 2 leaks to low pressure and pressure will not be raised even when force feed plungers 21, 22 are sent to force feed process by a cam mechanism. When a fuel distribution rotating member 4 rotates and either one of the ports 71 to 74 is disconnected from the reed 101 and comes to an (e) position, fuel pressure within the pump chamber 2 is raised and the force feed of fuel is started and injection of the fuel is developped. When the member 4 further rotates and one of the port comes to an (f) position where it agrees with a diagonal reed 100, high-pressure fuel overflows and injection of the fuel is finished; i.e. the angle of the cam is always constant from start to finish of the force feed of the fuel.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、燃料を加圧・圧送する燃料噴射量装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel injection amount device that pressurizes and pumps fuel.

[従来技術] 一般に燃料噴射量装置では、機関によって駆動されて周
期的な往復動あるいは回転動を行う運動部材を有し、こ
の部材の運動を利用してポンプ室の燃料の加圧・圧送を
行っている。
[Prior Art] In general, a fuel injection amount device has a moving member that is driven by an engine to perform periodic reciprocating or rotating motion, and the movement of this member is used to pressurize and pump fuel into a pump chamber. Is going.

また、この種の燃料噴射量装置では、上述した運動部材
の外周面に圧力室に連通ずる溢流ポートを形成するとと
もに、その溢流ポートを閉じるためのリング状部材を配
し、このリング状部材を軸方向に移動させることで、運
動部材の運動を利用して噴射量あるいは噴射時期の調整
を行っている。
In addition, in this type of fuel injection amount device, an overflow port that communicates with the pressure chamber is formed on the outer peripheral surface of the above-mentioned moving member, and a ring-shaped member is arranged to close the overflow port. By moving the member in the axial direction, the injection amount or injection timing is adjusted using the movement of the moving member.

さらに、この種の燃料噴射量装置では、上述した運動部
材の溢流ポートを低圧側に連通ずる低圧ポートあるいは
低圧溝に連通させることでポンプ室の加圧燃料を低圧側
に溢流させて噴射を終了するとともに、溢流ポートと低
圧ポートのいずれか一方を傾斜溝として形成することで
、圧カポ−(と低圧ポートとの相対位置を調整可能とし
、この相対位置の調整によって噴射量の調整を行ってい
る。
Furthermore, in this type of fuel injection amount device, the overflow port of the above-mentioned moving member is communicated with a low pressure port or low pressure groove that communicates with the low pressure side, so that the pressurized fuel in the pump chamber overflows to the low pressure side and is injected. At the same time, by forming either the overflow port or the low pressure port as an inclined groove, the relative position between the pressure capo (and the low pressure port) can be adjusted, and the injection amount can be adjusted by adjusting this relative position. It is carried out.

上述した公知技術に基づいて、本発明者らは次のような
燃料噴射量装置を開発し、出願している。
Based on the above-mentioned known technology, the present inventors have developed and filed an application for the following fuel injection amount device.

以下第1−1図〜第4−2図に従って、該出願中の発明
を具体的な実施例に基づいて説明する。
The invention under application will be described below based on specific examples with reference to FIGS. 1-1 to 4-2.

なお、第1−1図は発明者らが開発した出国中のインナ
カム式ポンプの中心軸に沿う断面構成図、第1−2図は
第1−1図のA−A断面図、第13図は第1−1図のB
−B断面図、第1−4図は第1−1図の要部をわかり易
く示した模式的な斜視図であり、第1−1図と同一部材
には同一の符号を付しである。
In addition, Fig. 1-1 is a cross-sectional configuration diagram along the central axis of the inner cam type pump developed by the inventors, and Fig. 1-2 is a cross-sectional view taken along the line A-A in Fig. 1-1. Fig. 13 is B in Figure 1-1.
-B sectional view and FIG. 1-4 are schematic perspective views showing the main parts of FIG. 1-1 in an easy-to-understand manner, and the same members as in FIG. 1-1 are given the same reference numerals.

ハウジングOに固定されたインナカム1の内側を燃料分
配回転部材4が公知の如く図示せぬエンジンの1/2の
回転数で周期的に連続して回転駆動される。(本実施例
では本発明を4気筒エンジンへ適用した場合につき開示
する。)前記回転より、燃料分配回転部材内の回転面逢
いラジアル方向に摺動自在に収納された圧送プランジャ
2122がカム1のプロフィルに従って周期的に往復動
し、ポンプ室2内の燃料を圧縮する。圧縮された燃料は
ポンプ室2と連通した導孔3内を経て分配ポート6に至
り、回転に応して合致した各気筒への燃料供給通路61
ないし64から吸い戻し弁601、及び図示せぬ噴射弁
を経てエンジンの各気筒へ噴射される。
As is well known, a fuel distribution rotating member 4 is periodically and continuously driven to rotate inside an inner cam 1 fixed to a housing O at 1/2 the rotation speed of an engine (not shown). (This embodiment discloses a case in which the present invention is applied to a four-cylinder engine.) Due to the rotation, the pressure-feeding plunger 2122, which is housed so as to be slidable in the radial direction in the rotating surface of the fuel distribution rotating member, moves toward the cam 1. It reciprocates periodically according to the profile and compresses the fuel in the pump chamber 2. The compressed fuel passes through the introduction hole 3 communicating with the pump chamber 2, reaches the distribution port 6, and is connected to the fuel supply passage 61 to each matched cylinder according to the rotation.
The fuel is injected from 1 to 64 to each cylinder of the engine via a suction valve 601 and an injection valve (not shown).

尚、前記プランジャ21.22による燃料油の圧送に先
だって、ポンプ室2及び導孔3内にはフィードポンプ3
00にて予圧された燃料が供給ポート5及び吸入孔51
ないし54を経て吸入される。
Note that, prior to the pressure feeding of fuel oil by the plungers 21 and 22, a feed pump 3 is installed in the pump chamber 2 and the guide hole 3.
The fuel pre-pressurized at 00 is supplied to the supply port 5 and the suction hole 51.
to 54 and then inhaled.

また、前記ポンプ室2及び導孔3と連通した溢流ポート
71ないし74を回転部材4に設けるとともに、該回転
部材4と油密に嵌合し、かつ該回転部材4の軸方向に摺
動自在に取りつけられるリング状部材7を設け、更に該
リング状部材の内周面には一端が該リング部材の内径円
筒の母線に対して傾斜して成り、更にその上方で外部で
ある低圧側に導通するよう形成された低圧ポートとして
のリード状の溝部10を有する。
In addition, overflow ports 71 to 74 communicating with the pump chamber 2 and the guide hole 3 are provided in the rotating member 4, and are fitted in the rotating member 4 in an oil-tight manner and are slidable in the axial direction of the rotating member 4. A ring-shaped member 7 that can be freely attached is provided, and one end of the inner peripheral surface of the ring-shaped member is inclined with respect to the generatrix of the inner diameter cylinder of the ring member. It has a lead-shaped groove 10 as a low-pressure port formed to be electrically conductive.

なお、第2−1図に第i=1図のC−C断面図を示すと
ともに、第2−2図に該リング状部材7の内周面を展開
図示し、前記リード溝部lOの形状を示す。
In addition, FIG. 2-1 shows a cross-sectional view taken along the line C-C in FIG. show.

以上の構成により溢流調量により燃料噴射量を制御する
作動を以下第3−1図ないし第4−2図に従って説明す
る。
The operation of controlling the fuel injection amount by overflow adjustment with the above configuration will be explained below with reference to FIGS. 3-1 to 4-2.

第3−1図では、溢流ポート71ないし74のうち当該
気筒にひとつが、リング状部材7の内周面の展開図であ
る第3−2図のa位置に来た時プランジャ21.22に
よる燃料の圧送及び噴射が開始されるものとする。そし
て、回転部材4が回転し、前記溢流ポートと、前記リン
グ状部材7のリード状の溝部10の一端が合致する時点
まで燃料は圧送され、分配ポート6、燃料供給通路63
もしくは、61,62.64より燃料噴射弁へと送られ
る。展開図のb位置でリード状の溝部1゜と溢流ポート
71ないし74とが合致すると、ポンプ室2及び導孔3
内の高圧燃料はリード状の溝部10を経て外部(図示せ
ぬポンプハウジング内)へ溢流し、噴射は終了する。す
なわちa位置からb位置までの回転角θ1の間、燃料は
圧送され該圧送期間に見合、た量の燃料が噴射される。
In FIG. 3-1, when one of the overflow ports 71 to 74 in the relevant cylinder reaches position a in FIG. 3-2, which is a developed view of the inner peripheral surface of the ring-shaped member 7, the plunger 21. The pumping and injection of fuel shall begin. Then, the rotating member 4 rotates, and the fuel is pumped until the overflow port and one end of the lead-shaped groove 10 of the ring-shaped member 7 match, and the fuel is fed under pressure to the distribution port 6 and the fuel supply passage 63.
Alternatively, it is sent to the fuel injection valve from 61, 62, and 64. When the lead-shaped groove 1° and the overflow ports 71 to 74 match at position b in the developed view, the pump chamber 2 and the guide hole 3
The high-pressure fuel inside overflows to the outside (inside the pump housing, not shown) through the reed-shaped groove 10, and the injection ends. That is, during the rotation angle θ1 from position a to position b, fuel is pumped and an amount of fuel corresponding to the pumping period is injected.

ここで、第4−1図に示すように前記リング状部材7の
位置を、前記回転部材4に対して相対的に図中上方に移
動させると、第3−2図ではb位置であった溢流時期が
斜めリードの特性に依ってリング状部材7の内周面の展
開図である第4−2図のC位置に変わり、従って圧送期
間はθ、からθ2へと長くなり、その結果、当然噴射量
も増加する。すなわち、リング状部材7の位置を回転部
材4の軸方向に移動させることによって、溢流による噴
射量調量が可能となる。
Here, when the position of the ring-shaped member 7 is moved upward in the figure relative to the rotating member 4 as shown in Fig. 4-1, it was at position b in Fig. 3-2. The overflow timing changes to position C in Figure 4-2, which is a developed view of the inner peripheral surface of the ring-shaped member 7, depending on the characteristics of the diagonal lead, and therefore the pumping period increases from θ to θ2, and as a result, Naturally, the injection amount also increases. That is, by moving the position of the ring-shaped member 7 in the axial direction of the rotating member 4, it becomes possible to adjust the injection amount by overflow.

ここで、該リング状部材7の位置制御は、例えば油圧サ
ーボや第1−1図に示すリニアソレノイド式アクチュエ
ータ等の公知の手段を用いることにより容易に達成でき
る。
Here, the position control of the ring-shaped member 7 can be easily achieved by using known means such as a hydraulic servo or a linear solenoid actuator shown in FIG. 1-1.

〔発明が解決しようとする問題点] ところで以上説明した発明者らが開発した出願中の燃料
噴射量制御装置には、以下述べる問題がある。即ち、こ
の装置では、気筒毎の噴射量にばらつきが生じてしまう
ことが判明した。
[Problems to be Solved by the Invention] By the way, the above-described fuel injection amount control device developed by the inventors and pending application has the following problems. That is, it has been found that this device causes variations in the injection amount for each cylinder.

この原因について検討したところ、本方式のように、溢
流ポート71〜74がリング状部材7で閉塞された状態
においてポンプ室2内の燃料の加圧・圧送が行われ、溢
流ポート71〜74が溝部10に合致した時に噴射を終
了するが、この構成においては、圧力開始から終了まで
のカム角は特定しておらず、1つの気筒に噴射量を合わ
せても、他の気筒がはずれてしまうという問題があった
When we investigated the cause of this, we found that, like in this system, the fuel in the pump chamber 2 is pressurized and fed with the overflow ports 71 to 74 closed by the ring-shaped member 7, and the overflow ports 71 to 74 are Injection ends when 74 matches the groove 10, but in this configuration, the cam angle from the start to the end of the pressure is not specified, so even if the injection amount is adjusted to one cylinder, other cylinders may be misaligned. There was a problem with this.

これを解決するには、傾斜した溝部10あるいは溢流ポ
ート71〜74を精度良く加工する必要があるが、製造
上不可能であり、このことは機関によって駆動される運
動部材と、その外周に配されたリング状部材とを有し、
運動部材の溢流ポートとリング状部材の低圧ポートとを
一致させて燃料の圧送を終了するポンプ全般に生じるも
のであった。
To solve this problem, it is necessary to precisely machine the inclined groove 10 or the overflow ports 71 to 74, but this is impossible due to manufacturing considerations. a ring-shaped member arranged;
This problem occurs in all pumps that complete pumping of fuel by aligning the overflow port of the moving member with the low pressure port of the ring-shaped member.

例えば、本発明者らが開発したポンプの場合は、第5図
に示すように、前記分配部材4に設けた4個の溢流ポー
トのうち、71.74は正しく目標通りに加工されてい
るが、72は正規の位置より、分配部材4の回転に対し
て遅角側に、逆に73は進角側に加工誤差を生じている
場合につき説明すると、 ′本方式の噴射装置においては、インナカム機構により
は2内の燃料が圧縮され、図示せぬノズル開弁圧に打ち
勝った時点で噴射が開始され、前記溢流ポート71〜7
4がリング状部材7のリード10に合致した時点で噴射
が終了する。ここで、噴射始めから終了までのカム角を
θで表すことにする。(θと噴射量とは1対lの相関関
係にある)ところで、前記リング状部材7のリード1o
は噴射量一定の場合は常に同一の位置で静止しており、
また噴射が開始されるカム角も、圧送機構が全気筒に対
して共通で唯一であるため、常にとの気筒に対しても同
一の位相である。そのため、溢流ポー)72.73が前
述の如く、遅角側あるいは進角側にずれている場合には
、ポート72がリードと出会う角度は遅れ、ポート73
は正規よりも早い時期にリードと合致してしまう。噴射
始めの位相は全て同じであるから、溢流の遅れたポート
72の対応気筒では、噴射始めから終了までのカム各θ
2は大きく、逆に溢流の早まったポート73の対応気筒
ではカム各θ3は小さくなる。θは各気筒の噴射量と1
対1の関係にあるため、ポート72対応気筒では噴射量
は多く、ポート73の対応気筒では噴射量は少なくなっ
てしまい、気筒間の不均量を生じることになる。
For example, in the case of the pump developed by the present inventors, as shown in FIG. However, to explain the case where a machining error occurs in 72 to the retard side with respect to the rotation of the distribution member 4 from the normal position, and conversely to the advance side in 73, 'In the injection device of this method, The inner cam mechanism compresses the fuel in 2, and when it overcomes the nozzle opening pressure (not shown), injection starts, and the overflow ports 71 to 7
4 coincides with the lead 10 of the ring-shaped member 7, the injection ends. Here, the cam angle from the start to the end of injection is expressed by θ. (θ and the injection amount have a 1:1 correlation) By the way, the lead 1o of the ring-shaped member 7
is always stationary at the same position when the injection amount is constant,
Furthermore, the cam angle at which injection is started is always the same phase for all cylinders because the pumping mechanism is unique and common to all cylinders. Therefore, if the overflow ports 72 and 73 are shifted to the retard side or the advance side as described above, the angle at which the port 72 meets the lead is delayed, and the port 73
matches the lead earlier than normal. Since the phases at the start of injection are all the same, in the cylinder corresponding to port 72 where overflow is delayed, each cam θ from the start to the end of injection is
2 is large, and conversely, each cam θ3 becomes small in the corresponding cylinder of the port 73 where the overflow is early. θ is the injection amount of each cylinder and 1
Since there is a one-to-one relationship, the injection amount is large in the cylinder corresponding to the port 72, and the injection amount is small in the cylinder corresponding to the port 73, resulting in an uneven amount between the cylinders.

ところで、この種のポート加工において加工誤差をOと
することは不可能であり1.噴射量のずれは避けること
ができない。
By the way, it is impossible to reduce the machining error to O in this type of port machining.1. Discrepancies in injection amount cannot be avoided.

そこで、本発明では、圧送開始から終了までのカム角θ
をあらかじめ設定することで、製造上の誤差による噴射
量のずれを防止するようにしたものである。
Therefore, in the present invention, the cam angle θ from the start to the end of pumping is
By setting the amount in advance, it is possible to prevent deviations in the injection amount due to manufacturing errors.

〔問題点を解決するための手段〕[Means for solving problems]

ポンプ室の燃料を加圧して圧送する燃料噴射ポンプであ
って、 機関によって駆動されて周期的な運動を行う運動部材と
、 この運動部材の外周に配されたリング状部材とを備え、 前記運動部材の外周面には、前記ポンプ室に連通する溢
流ポートが開口し、 前記リング状部材の内周面には、低圧側に連通ずる低圧
ポートが開口し、この低圧ポートは前記運動部材の運動
行程中に前記溢流ポートと連通し、前記溢流ポートと前
記低圧ポートのいづれか一方は噴射量調整のため傾斜溝
として形成され、前記溢流ポートと前記低圧ポートとが
連通ずることで前記ポンプ室の高圧が低圧側へ溢流して
燃料の圧送が終了するポンプにおいて、 前記傾斜溝が形成された部材には、前記溢流ポートと前
記低圧ポートとの相対距離に関係なく、前記リング状部
材が前記溢流ポートを閉じることで前記圧力室の加圧燃
料の圧送開始タイミングを規定する直線溝が形成されて
いることを特徴とする燃料噴射量装置。
A fuel injection pump that pressurizes and pumps fuel in a pump chamber, comprising a moving member that is driven by an engine to perform periodic motion, and a ring-shaped member disposed around the outer periphery of the moving member, An overflow port communicating with the pump chamber is opened on the outer peripheral surface of the member, and a low pressure port communicating with the low pressure side is opened on the inner peripheral surface of the ring-shaped member, and this low pressure port is connected to the moving member. During the movement stroke, the overflow port communicates with the low pressure port, and one of the overflow port and the low pressure port is formed as an inclined groove for adjusting the injection amount. In a pump in which the high pressure in the pump chamber overflows to the low pressure side and pressure feeding of fuel ends, the member in which the inclined groove is formed has the ring-shaped groove, regardless of the relative distance between the overflow port and the low pressure port. A fuel injection amount device characterized in that a straight groove is formed in which the member closes the overflow port to define a timing for starting pumping of pressurized fuel in the pressure chamber.

〔作用及び効果〕[Action and effect]

上記構成によれば、直線溝によって、圧送開始から終了
までのカム角θをあらかじめ設定することができるので
、すなわちカムの使用領域をあらかじめ特定できるので
、製造上の誤差による噴射量のばらつきを低減すること
ができるとともに、多気筒ポンプの場合には各気筒毎の
噴射量のばらつきを低減することができ、その調整も容
易になる。
According to the above configuration, the cam angle θ from the start to the end of pumping can be set in advance using the straight groove, that is, the area in which the cam is used can be specified in advance, reducing variations in injection amount due to manufacturing errors. In addition, in the case of a multi-cylinder pump, it is possible to reduce the variation in the injection amount for each cylinder, and the adjustment becomes easy.

〔実施例〕〔Example〕

以下第6−1図ないし第7図に示す本発明の実施例に従
って本発明の構成、作動を説明する。前に説明した発明
者らが開発した出願中の燃料噴射量装置において、本発
明に係わる改良点は、前記リング状部材7の内径側に設
けるリード状みぞの形状である。本発明では第6−1図
の該リング状部材7の斜視図及び第6−2図の該リング
状部材7の内周面を展開図示した展開図6−2図に示す
如く溢流により噴射終了時期を決定するための斜めリー
ド100に加えて新たに、噴射始めを決定するためのり
一ド101を望ましくはリング部材(7)の母線と平衡
に真直に設ける。そして、リード101は、燃料分配回
転部材4の回転にともない各気筒の溢流ポート71〜7
4と、リード100よりも先に出会う側に丁度、ポンプ
室2内の燃料が圧縮されはじめる位相でポートと合致す
べく設けられる。
The structure and operation of the present invention will be explained below according to the embodiments of the present invention shown in FIGS. 6-1 to 7. In the fuel injection amount device which has been developed by the inventors and is currently under application, the improvement according to the present invention is the shape of the reed-shaped groove provided on the inner diameter side of the ring-shaped member 7. In the present invention, as shown in the perspective view of the ring-shaped member 7 in Fig. 6-1 and the developed diagram 6-2 showing the inner peripheral surface of the ring-shaped member 7 in Fig. 6-2, the injection is caused by overflow. In addition to the diagonal lead 100 for determining the end time, a new lead 101 for determining the start of injection is preferably provided straight in equilibrium with the generatrix of the ring member (7). As the fuel distribution rotating member 4 rotates, the reeds 101 open the overflow ports 71 to 7 of each cylinder.
4 is provided on the side that meets the lead 100 earlier than the lead 100 so as to coincide with the port at exactly the phase when the fuel in the pump chamber 2 begins to be compressed.

以上の構成により、カム機構によって圧送プランジャ2
1.・22が圧送行程に入っても、溢流ポート71〜7
4の1つが該リード101と合致しているためにポンプ
室2内の燃料は低圧へ洩れ、圧力は上昇しない。第7図
は第6−2図に溢流ポート71(又は72,73.74
)の重なり位置を重ね書きしたものであるが、運動部材
としての燃料分配回転部材4が回転し、第7図のe位置
にてポート71〜74のうちの一つがリード101から
外れると、はじめてポンプ室2内の燃料圧力は上昇し、
燃料の圧送が始まり噴射が展開される。
With the above configuration, the cam mechanism allows the pressure-feeding plunger 2 to
1.・Even if 22 enters the pressure feeding process, the overflow ports 71 to 7
Since one of the leads 101 matches the lead 101, the fuel in the pump chamber 2 leaks to a low pressure and the pressure does not rise. Figure 7 shows the overflow port 71 (or 72, 73, 74) in Figure 6-2.
), the overlapping position of the fuel distribution rotating member 4 as a moving member rotates, and when one of the ports 71 to 74 comes off from the lead 101 at position e in FIG. The fuel pressure in the pump chamber 2 increases,
Pressure delivery of fuel begins and injection develops.

そしてさらに燃料分配回転部材4が回転しポート71〜
74の一つがリード100と合致するf位置にて、高圧
燃料が溢流し燃料圧力が下がって噴射が終了する。本構
成によれば4つの溢流ポート71〜74の相互角度間部
が若干不均一であっても、噴射量に対応する圧送開始か
ら終了までのカム角θは常に一定であって、噴射量の気
筒間差を生じない。
Then, the fuel distribution rotating member 4 further rotates, and the ports 71 to
At position f, where one of the reeds 74 coincides with the lead 100, high-pressure fuel overflows, the fuel pressure decreases, and injection ends. According to this configuration, even if the mutual angles of the four overflow ports 71 to 74 are slightly uneven, the cam angle θ from the start to the end of pumping corresponding to the injection amount is always constant, and the injection amount There is no difference between cylinders.

尚、噴射量の制御は第7図中に示した矢印の如く、前に
説明した発明者らが開発し、出願中の燃料噴射量制御装
置と同様に、リング状部材7の軸方向位置を変化させて
実現し得ることはもちろんである。
Note that the injection amount is controlled by changing the axial position of the ring-shaped member 7, as shown by the arrow shown in FIG. Of course, it can be realized by changing it.

以上詳細に説明した如く、本実施例では、溢流制御の為
の斜めリードlOOの他に、噴射始めを決めるための真
直リード101を加えるだけで、ポート加工誤差が若干
あって、噴射量のずれを防止することができ、気筒間の
噴射量のバラツキを生じないためエンジン出力低下や黒
煙の発生が生しないという優れた効果を奏する。
As explained in detail above, in this embodiment, in addition to the diagonal lead lOO for overflow control, the straight lead 101 for determining the injection start is added, but there is a slight port machining error and the injection amount is Since deviation can be prevented and there is no variation in the injection amount between cylinders, there is an excellent effect that there is no reduction in engine output or generation of black smoke.

なお、この実施例では、噴射始めを決定するリードlO
1を、リング状部材7の内径母線と平衡になるものを示
したが、これはリング状部材7を軸方向に移動させても
噴射開始時期が変化しないようにしたためであり、特に
該リード101を真直としなくとも、本発明の目的であ
る不均量の対策は達成され得る。
In addition, in this embodiment, the lead lO that determines the start of injection is
1 is shown to be in equilibrium with the inner diameter generatrix of the ring-shaped member 7, but this is because the injection start timing does not change even if the ring-shaped member 7 is moved in the axial direction. Even if it is not straight, the problem of unevenness, which is the object of the present invention, can be achieved.

なお、本実施例は、インナカム式ポンプの例を示したが
、本発明の範囲を逸脱しない限り適用することが可能で
あり、機関によって駆動される運動部材と、この運動部
材の外周に配されるリング状部材とを有する燃料噴射装
置であれば、分配型、判型の形式を問わず適用すること
ができることは言うまでもない。
Although this embodiment shows an example of an inner cam type pump, it can be applied as long as it does not deviate from the scope of the present invention. Needless to say, any fuel injection device having a ring-shaped member can be applied regardless of whether it is a distribution type or a size type.

【図面の簡単な説明】[Brief explanation of drawings]

第1−1図は発明者らが開発した出願中のインナカム式
ポンプの中心軸に沿う断面構成図、第1−2図は第1−
1図のA−A断面図、第1.−3図は第1−1図のB−
B断面図、第1−4図は第11図の要部をわかり易く示
した模式的な斜視図、第2−1図は第1−1図のC−C
断面図、第2−2図はリング状部材7の内周面を展開図
示した展開図、第3図ないし第5図は作動説明である。 第6−1図は本発明の主要部をなすリング状部材7の断
面斜視図、第6−2図はリング状部材7の内周面を展開
図示した展開図、第7図は作動説明図である。 4・・・燃料分配回転部材(運動部材)、7・・・リン
グ状部材、71,72.73.74・・・溢流ポート。 100・・・噴射終了時期を決定するための斜めリード
、101・・・噴射始めを決定するためのリード。
Fig. 1-1 is a cross-sectional configuration diagram along the central axis of the inner cam type pump developed by the inventors, and Fig. 1-2 is
AA cross-sectional view of Figure 1, 1st. -Figure 3 is B- of Figure 1-1
B sectional view, Figure 1-4 is a schematic perspective view that clearly shows the main parts of Figure 11, Figure 2-1 is C-C in Figure 1-1.
A sectional view, FIG. 2-2 is a developed view showing the inner circumferential surface of the ring-shaped member 7, and FIGS. 3 to 5 are explanations of the operation. Fig. 6-1 is a cross-sectional perspective view of the ring-shaped member 7 that constitutes the main part of the present invention, Fig. 6-2 is a developed view showing the inner peripheral surface of the ring-shaped member 7, and Fig. 7 is an explanatory diagram of the operation. It is. 4...Fuel distribution rotating member (motion member), 7...Ring-shaped member, 71, 72.73, 74...Overflow port. 100... Diagonal lead for determining injection end time, 101... Lead for determining injection start.

Claims (1)

【特許請求の範囲】 ポンプ室の燃料を加圧して圧送する燃料噴射ポンプであ
って、 機関によって駆動されて周期的な運動を行う連動部材と
、 この運動部材の外周に配されたリング状部材とを備え、 前記運動部材の外周面には、前記ポンプ室に連通する溢
流ポートが開口し、 前記リング状部材の内周面には、低圧側に連通する低圧
ポートが開口し、この低圧ポートは前記運動部材の運動
行程中に前記溢流ポートと連通し、前記溢流ポートと前
記低圧ポートのいづれか一方は噴射量調整のため傾斜溝
として形成され、前記溢流ポートと前記低圧ポートとが
連通することで前記ポンプ室の高圧が低圧側へ溢流して
燃料の圧送が終了するポンプにおいて、 前記傾斜溝が形成された部材には、前記溢流ポートと前
記低圧ポートとの相対距離に関係なく、前記リング状部
材が前記溢流ポートを閉じることで前記圧力室の加圧燃
料の圧送開始タイミングを規定する直線溝が形成されて
いることを特徴とする燃料噴射装置。
[Scope of Claims] A fuel injection pump that pressurizes and pumps fuel in a pump chamber, comprising: an interlocking member that is driven by an engine and moves periodically; and a ring-shaped member disposed around the outer circumference of the moving member. An overflow port communicating with the pump chamber is opened on the outer peripheral surface of the moving member, and a low pressure port communicating with the low pressure side is opened on the inner peripheral surface of the ring-shaped member, and the low pressure The port communicates with the overflow port during the movement stroke of the moving member, one of the overflow port and the low pressure port is formed as an inclined groove for adjusting the injection amount, and the overflow port and the low pressure port communicate with each other. In the pump in which the high pressure in the pump chamber overflows to the low pressure side and the pumping of fuel ends when Regardless, the fuel injection device is characterized in that the ring-shaped member closes the overflow port, thereby forming a straight groove that defines the timing for starting pumping of the pressurized fuel in the pressure chamber.
JP2311945A 1990-11-16 1990-11-16 Fuel injector Expired - Lifetime JP2555773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2311945A JP2555773B2 (en) 1990-11-16 1990-11-16 Fuel injector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2311945A JP2555773B2 (en) 1990-11-16 1990-11-16 Fuel injector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57228567A Division JPS59119056A (en) 1982-12-26 1982-12-26 Fuel injection quantity controller

Publications (2)

Publication Number Publication Date
JPH03175143A true JPH03175143A (en) 1991-07-30
JP2555773B2 JP2555773B2 (en) 1996-11-20

Family

ID=18023330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2311945A Expired - Lifetime JP2555773B2 (en) 1990-11-16 1990-11-16 Fuel injector

Country Status (1)

Country Link
JP (1) JP2555773B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531308A (en) * 1978-08-28 1980-03-05 Pioneer Electronic Corp Manufacture of cone-type boron-diffused diaphragm
JPS59119056A (en) * 1982-12-26 1984-07-10 Nippon Denso Co Ltd Fuel injection quantity controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531308A (en) * 1978-08-28 1980-03-05 Pioneer Electronic Corp Manufacture of cone-type boron-diffused diaphragm
JPS59119056A (en) * 1982-12-26 1984-07-10 Nippon Denso Co Ltd Fuel injection quantity controller

Also Published As

Publication number Publication date
JP2555773B2 (en) 1996-11-20

Similar Documents

Publication Publication Date Title
US4432327A (en) Timing control for fuel injection pump
JP2534347B2 (en) Fuel injection pump for internal combustion engine with pre-injection and main injection
JP2612159B2 (en) Fuel injection pump for internal combustion engines
JPS59119056A (en) Fuel injection quantity controller
US5040511A (en) Fuel injection device for internal combustion engines, in particular unit fuel injector
JPH0364709B2 (en)
US4564341A (en) Fuel injection pump for an internal combustion engine
EP0073410B1 (en) Distribution type fuel injection pump
US4604980A (en) Fuel injection pump
JPH03175143A (en) Fuel injection device
US5513965A (en) Distributor-type fuel injection pump
US6041760A (en) Fuel injection pump with an injection adjuster piston used to adjust the onset of injection
JPS59110835A (en) Fuel injection amount control device in distributing type fuel injection pump
US6546916B2 (en) Fuel injection pump timing mechanism
KR0171552B1 (en) Fuel injection system
JPH0114416B2 (en)
JPH01211663A (en) Fuel injection pump
US5580223A (en) Fuel injection pump for internal combustion engines
JPS6079152A (en) Fuel injection quantity controller
JPS6128754A (en) Fuel injection pump
JPH088277Y2 (en) Electronically controlled fuel injection device
GB2274312A (en) Fuel injection pumps for internal combustion engines
JPH08232686A (en) Method and device for controlling fuel injection pump
JPS60192840A (en) Fuel injection timing controller for distribution fuel injection pump
JPH051636A (en) Fuel injection pump for use in internal combustion engine