JPH0317500B2 - - Google Patents

Info

Publication number
JPH0317500B2
JPH0317500B2 JP62156179A JP15617987A JPH0317500B2 JP H0317500 B2 JPH0317500 B2 JP H0317500B2 JP 62156179 A JP62156179 A JP 62156179A JP 15617987 A JP15617987 A JP 15617987A JP H0317500 B2 JPH0317500 B2 JP H0317500B2
Authority
JP
Japan
Prior art keywords
vibration
patient
breathing
residual capacity
chest wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62156179A
Other languages
Japanese (ja)
Other versions
JPS63318953A (en
Inventor
Atsushi Katagiri
Akito Kimura
Nobuaki Moryasu
Midori Ozawa
Tomoko Yamada
Ikuo Pponma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minato Medical Science Co Ltd
Original Assignee
Minato Medical Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minato Medical Science Co Ltd filed Critical Minato Medical Science Co Ltd
Priority to JP15617987A priority Critical patent/JPS63318953A/en
Publication of JPS63318953A publication Critical patent/JPS63318953A/en
Publication of JPH0317500B2 publication Critical patent/JPH0317500B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Percussion Or Vibration Massage (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は胸壁を機械的振動によつて、手術そ
の他により低下した機能的残気量を増加させる装
置に関する。尚機能的残気量とは安静的の肺内気
量であり、これが或る量以下に低下すると、生命
維持上問題になるという呼吸機能上重要なパラメ
ータである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a device for increasing the functional residual capacity that has decreased due to surgery or other reasons by mechanically vibrating the chest wall. Note that the functional residual capacity is the static intrapulmonary capacity, and is an important parameter in terms of respiratory function, as if it decreases below a certain level, it becomes a problem in terms of life support.

従来の技術 従来から喘息発作時に、治療目的の為に呼息筋
と吸息筋を正常な呼吸リズムに同期させて、交互
に振動刺激することにより、喘息発作を抑制して
正常な呼吸に戻すということが試みられている。
しかしこのような装置では吸気時に多少機能的残
気量が増加しても、それに続く呼気時に呼息筋を
刺激することにより吸気時の刺激効果がキヤンセ
ルされるため、もとの機能的残気量が低い状態に
戻り、機能的残気量の増加とは全く関係がない。
一方 手術が呼吸機能に与える影響の要因は、出血、
補液を伴う急激な循環動態の変動、とう痛や局所
および全身の固定に伴う呼吸運動の制限などがあ
る。さらに直接的な影響として胸部や上腹部臓器
に対する手術の場合のように胸部、横隔膜に対す
る手術侵製や肺の切除のように手術侵製が直接呼
吸器系に加わるような場合もある。
Conventional technology Conventionally, for therapeutic purposes, the respiratory and inspiratory muscles are synchronized with the normal breathing rhythm and vibratory stimulation is applied alternately during an asthma attack to suppress the asthma attack and restore normal breathing. That is what is being attempted.
However, with such devices, even if the functional residual capacity increases somewhat during inspiration, the stimulation effect during inspiration is canceled by stimulating the expiratory muscles during the subsequent expiration, so the original functional residual capacity increases. The volume returns to a low state and has no relation to an increase in functional residual capacity.
On the other hand, the factors that affect the respiratory function of surgery are bleeding,
There are rapid changes in hemodynamics associated with fluid replacement, pain, and restriction of respiratory movements associated with local and systemic immobilization. Furthermore, as a direct effect, there are cases where surgical invasion is directly applied to the respiratory system, such as surgical invasion of the chest or diaphragm, such as in the case of surgery on the chest or upper abdominal organs, or surgical invasion, such as resection of the lung.

胸腔または腹腔に直接加わる外科的侵製は横隔
膜運動の制限をもたらし肺気量に影響を及ぼす。
その結果機能的残気量FRCの減少が招来され末
しよう気道の虚脱および微小無気肺が起こつて肺
気量全般の低下とそれに伴う呼気のメカニクスの
変動が招来される。又全身麻粋や筋弛緩薬の導入
により機能的残気量FRCが減少する。この結果
重力依存の肺領域では胸腔内圧が大気圧よりも高
くなり、末しよう気道の狭小化や閉塞を招く。1
開心術後は一時期循環系が安定し、麻酔の影響が
消退するまで呼吸にかかる負荷を機械に肩代りさ
せ悪循環に呼吸不全の発生を未然に防いでいる。
また手術後患者では手術中から引き続き経口気管
内挿管チユーブを留置しておき、これを用いて人
工呼吸管理を行うことが多い。しかし、経口気管
内挿管は患者の不快感が強いうえ、チユーブが咽
頭部で屈曲しやすい欠点がある。さらに意識があ
り苦痛を自覚できる状態での長期の気管内挿管発
声不能、食事摂取障害その他四肢の運動抑制など
は極めて強い苦痛を患者に与えることになる。
Surgical invasion directly into the thoracic or abdominal cavities results in restriction of diaphragm movement and affects lung volumes.
As a result, the functional residual capacity (FRC) decreases, resulting in eventual airway collapse and microatelectasis, leading to a decrease in overall lung volume and associated changes in exhalation mechanics. In addition, functional residual capacity FRC decreases with the introduction of general anesthesia and muscle relaxants. As a result, intrathoracic pressure becomes higher than atmospheric pressure in the gravity-dependent lung region, leading to narrowing and obstruction of the distal airways. 1
After open-heart surgery, the circulatory system stabilizes for a period of time, and a machine takes over the burden of breathing until the effects of anesthesia subside, thereby preventing a vicious cycle of respiratory failure.
In addition, in post-operative patients, an orotracheal intubation tube is often left in place during the surgery and used to manage artificial respiration. However, oral endotracheal intubation causes severe patient discomfort and has the disadvantage that the tube tends to bend in the pharynx. Furthermore, long-term endotracheal intubation while the patient is conscious and able to perceive pain, resulting in inability to speak, difficulty in eating, and inhibition of limb movement can cause extremely severe pain to the patient.

他に手術後急性期における呼吸ウイーニング
(人工呼吸管からの離脱)の補助として横隔膜ペ
ーシングがある。これは換気を駆動する横隔膜を
電気刺激する方法の一つであり、長期陽圧人工呼
吸時における感染や圧障害の予防と社会復帰や家
庭復帰にある。しかし電極の開発の遅れ、植込み
手枝の煩雑さなどで安全面にも問題があつた。
Another option is diaphragm pacing as an aid to respiratory weaning (weaning from the artificial breathing tube) in the acute period after surgery. This is a method of electrically stimulating the diaphragm, which drives ventilation, and is used to prevent infection and pressure disorders during long-term positive pressure ventilation, and to help patients return to society and home. However, there were safety issues, such as delays in the development of electrodes and the complexity of implanting limbs.

発明が解決しようとする問題点 しかして人の呼吸運動では呼吸系のさまざまな
受容器からの情報が中枢に入り、中枢部よりのコ
ントロールにより呼吸のリズムが生じている。そ
の他脊髄よりの運動神経反射によつても行われて
いる。すなわち人の呼吸は意識、無意識にかかわ
らず、各種の呼吸器系の受容器がセンサとなつて
呼吸運動の適正化を行つている。ぜん息発作にみ
られるように、この受容器は一旦刺激を受けて興
奮すると、呼吸のリズムがくずれ非常に息苦しい
感覚を覚え、あえぎ呼吸状態になる。
Problems to be Solved by the Invention During human respiratory movements, information from various receptors in the respiratory system enters the central region, and the rhythm of breathing is generated by control from the central region. It is also carried out by motor nerve reflexes from the spinal cord. In other words, various receptors in the respiratory system act as sensors to optimize breathing movements, whether consciously or unconsciously. As seen in asthma attacks, once these receptors are stimulated and excited, the rhythm of breathing is disrupted and the patient feels extremely suffocated, leading to a state of gasping for breath.

過敏な受容器はこれらの反射でさらに刺激を受
け興奮し続けることになる。吸息を行う助間筋は
第2、第3肋間にあり、呼息を行う助間筋は第7
〜第9肋間にあるが、この両方の肋間筋内の筋紡
鍾は共に大きく興奮している。筋紡鍾の興奮は求
心性神経を経由して脊髄に伝わり、脊髄内のα運
動ニユーロンにより運動神経に興奮が伝わり興奮
している。筋紡鍾を持つ筋の収縮を高める。すな
わち筋紡鍾の興奮は脊髄からの反射により筋収縮
をひき起こすことになり、連続した筋収縮が起こ
り呼吸がしずらくなる。つまり息苦しさの原因は
中枢での呼吸リズムに合わない呼吸息筋の収縮に
伴う興奮が中枢に伝わり、制御系に従わない反応
が起こつていることを検知した中枢の反応が意識
レベルでは息苦しく感しるわけである。筋紡鍾は
振動受容器といわれ、筋の収縮伸展に伴う動きに
よつて興奮する。この特性を利用して胸壁の特定
部位に機械的な振動刺激を吸気及び呼気に連動さ
せると換気を増加させることが判つている。この
振動刺激に対する反応は四の筋で認められた振動
反射(Tonic Vibration Refl−ex:TVR)と同
様な反応であると考えられている。すなわち、振
動刺激を受けた部位で、感覚性求心線維(Ia)の
求心活動が高まり、反射性の脊髄のα運動ニユー
ロンを興奮させ呼吸筋の筋力を増大させることに
より換気が増大すると考えられる。
Sensitive receptors are further stimulated by these reflexes and continue to be excited. The intercostal muscles responsible for inhalation are located between the 2nd and 3rd intercostals, and the intercostal muscles responsible for exhalation are located in the 7th intercostal space.
- Located in the 9th intercostal space, the muscle spindles within both of these intercostal muscles are greatly excited. The excitement of muscle spindles is transmitted to the spinal cord via afferent nerves, and the α-motor neuron in the spinal cord transmits the excitement to the motor nerves, causing excitement. Increases the contraction of muscles with muscle spindles. In other words, the excitation of muscle spindles causes muscle contraction by reflex from the spinal cord, causing continuous muscle contraction and making breathing difficult. In other words, the cause of breathlessness is that the excitement associated with the contraction of the breathing muscles that does not match the breathing rhythm in the central nervous system is transmitted to the central nervous system, and the central reaction that detects that a reaction that does not follow the control system is occurring causes a feeling of shortness of breath at a conscious level. That's why. Muscle spindles are called vibration receptors and are excited by movements associated with muscle contraction and extension. It has been found that ventilation can be increased by utilizing this characteristic to synchronize mechanical vibration stimulation with inhalation and exhalation to specific parts of the chest wall. The response to this vibration stimulation is thought to be similar to the tonic vibration reflex (TVR) observed in the four muscles. In other words, it is thought that the afferent activity of sensory afferent fibers (Ia) increases at the site of vibrational stimulation, excites the reflex α-motor neuron of the spinal cord, and increases the muscular strength of the respiratory muscles, thereby increasing ventilation.

問題点を解決するための手段 そこで本発明人は、この振動刺激を呼気のみに
呼息筋である第2、第3肋間筋の筋紡鍾に与え、
胸壁振動(Chest Well Vibration:CWV)を作
動させる実験を行つた結果一回換気量(VT)の
みでなく機能的残気量(FRC)が増加すること
が判明した。また実験の結果振動刺激の振動周数
は100Hz前後が適していることがわかつた。第5
図はBewedict−Roth型(いわゆるベル式)スパ
イロメータにぐる胸壁振動CWV時の一回換気量
VTの増加及び機能的残気量FRCレベルの上昇を
示している。また一回換気量VT及び機能的残気
量、FRCレベルの上昇に再現性があることがわ
かる。なお、ベースラインの勾配は再呼吸による
酸素の消費のためベル式スパイロメータの内筒の
ボリユームが減少してゆくことを示している。一
回換気量VT増加のメカニズムは弾性に富み、細
かい伸展によく追随する筋紡鍾の一次終末部が胸
壁振動CWVにより刺激されその興奮が感覚性求
心線維Iaの活動を高め脊髄レベルで反射性にα運
動ニユーロンを興奮させて吸気肋間筋の収縮を起
こしたことによると考えられる。機能的残気量
FRCの増加の原因は吸気相に胸壁振動CWVによ
る吸気肋間筋の活動増加が起こるだけでなく、吸
気時に吸気筋の弛緩が完全に起こらず、吸気筋の
活動増加が呼気相にも延長することによると考え
られる。次に胸壁振動CWVによる横隔神経の興
奮が考えられる。
Means for Solving the Problems The inventor of the present invention applied this vibration stimulation to the muscle spindles of the second and third intercostal muscles, which are expiratory muscles, only during exhalation.
As a result of an experiment in which chest wall vibration (CWV) was activated, it was found that not only tidal volume (VT) but also functional residual capacity (FRC) increased. In addition, as a result of experiments, it was found that a vibration frequency of around 100Hz is suitable for the vibration stimulation. Fifth
The figure shows the tidal volume during chest wall vibration CWV using a Bewedict-Roth type (so-called Bell type) spirometer.
It shows an increase in VT and an increase in functional residual capacity FRC level. It can also be seen that the increases in tidal volume VT, functional residual capacity, and FRC level are reproducible. Note that the slope of the baseline indicates that the volume of the inner cylinder of the Bell spirometer decreases due to oxygen consumption due to rebreathing. The mechanism of increasing tidal volume VT is highly elastic; the primary terminals of muscle spindles that follow fine extensions are stimulated by chest wall vibration CWV, and this excitement increases the activity of sensory afferent fibers Ia, causing reflexes at the spinal cord level. This is thought to be due to the stimulation of the α-motor neuron, causing contraction of the inspiratory intercostal muscles. functional residual capacity
The reason for the increase in FRC is not only that the activity of the inspiratory intercostal muscles increases due to chest wall vibration CWV during the inspiratory phase, but also that the relaxation of the inspiratory muscles does not occur completely during inspiration, and the increased activity of the inspiratory muscles extends into the expiratory phase. This is thought to be due to the following. Next, excitation of the phrenic nerve due to chest wall vibration CWV is considered.

この理由として安静呼吸をさせ胸壁振動をかけ
患者の6人にX線透視下で横隔膜の動きを観察し
た。その結果呼気時の横隔膜の動きが振動体1.3
cmに対して2.6cmと著明に増加した。
For this reason, we observed the movement of the diaphragm under X-ray fluoroscopy in six patients who were made to breathe quietly and subjected to chest wall vibration. As a result, the movement of the diaphragm during exhalation is a vibration body of 1.3
cm, it increased markedly by 2.6 cm.

これは横隔膜の活動を増加しており、これまで
知られていなかつた上位肋間筋よりの興奮性肋間
−横隔膜反射が人で存在することを強く示唆する
ものと考えられる。また実験における患者の体位
で、坐位と仰臥位では仰臥位で一回換気量VTの
増加は少ないが機能的残気量FRCの増加が顕著
であつた。
This increases the activity of the diaphragm, and is thought to strongly suggest the existence of a hitherto unknown excitatory intercostal-diaphragmatic reflex from the upper intercostal muscles in humans. In addition, in the sitting and supine positions of the patients in the experiment, the increase in tidal volume VT was small in the supine position, but the increase in functional residual capacity FRC was significant.

かくて、この発明は患者の呼吸変化が求める呼
吸流量トランスジユーサの如き呼吸認識装置と、
該患者の呼吸変化を電気信号に変換するための流
量計と刺激用の振動波を発生するための発振器と
前記電気信号に励振用として重畳せる発振器の振
動波を与えて機械的振動波に変換するための加振
器とを備え前記加振器の振動を吸気時に患者の第
2、第3肋間胸骨両側に与えるようにしたことを
特徴とする機能的残気量増加装置を提供するもの
である。
Thus, the present invention provides a respiratory recognition device such as a respiratory flow transducer, which is determined by changes in a patient's breathing;
A flow meter for converting respiratory changes of the patient into electrical signals, an oscillator for generating vibration waves for stimulation, and a vibration wave of the oscillator that can be superimposed on the electrical signal for excitation and converted into a mechanical vibration wave. The present invention provides a functional residual capacity increasing device, comprising: a vibrator for increasing the amount of residual capacity, and the vibration of the vibrator is applied to both sides of the sternum between the second and third intercostals of the patient during inspiration. be.

作 用 従来より上腹部手術などのあとでは横隔膜の機
能低下その他の原因で肺活量の著減に加え機能的
残気量FRCの低下が起り、これが無気肺、肺炎
などの肺合併症の原因であると考えられていたが
この発明による装置を用いて一回換気量VT機能
的残気量RFCを増加させることができたので、
手術後の肺合併症を減小せしめることができる。
Effects Conventionally, after upper abdominal surgery, etc., a significant decrease in vital capacity and a decrease in functional residual capacity (FRC) occur due to decreased diaphragm function and other causes, and this is the cause of pulmonary complications such as atelectasis and pneumonia. Since it was possible to increase the tidal volume VT functional residual capacity RFC using the device according to this invention, it was believed that
Post-operative pulmonary complications can be reduced.

実施例 第1図はこの発明による実施例装置の構成ブロ
ツク図である。図で1は呼吸流量トランスジユー
サで患者の呼吸変化を求めるもので患者の顔面に
装着する。尚この場合患者の呼吸を認識できれば
よいので、患者の鼻腔口に超小型のサーシスタを
つけ呼吸変化を求めることもできる。その他患者
の胸壁の電気インピーダンス変化患者腹部の呼吸
による動きを求める等種々の認識装置が用いられ
る。次に2は流量計で呼吸流量トランスジユーサ
ー1の呼吸流量を電気信号にするためのものであ
り、この流量計2内で吸気、呼気の変化を極性の
異なる方形波に変換している。
Embodiment FIG. 1 is a block diagram of an embodiment of the present invention. In the figure, numeral 1 is a respiratory flow rate transducer that measures changes in a patient's breathing and is attached to the patient's face. In this case, since it is sufficient to recognize the patient's breathing, it is also possible to attach an ultra-small sursistor to the patient's nasal cavity and mouth to determine changes in breathing. Various other recognition devices are used, such as determining changes in the electrical impedance of the patient's chest wall and movement of the patient's abdomen due to respiration. Next, a flowmeter 2 converts the respiratory flow rate of the respiratory flow rate transducer 1 into an electrical signal, and within this flowmeter 2 changes in inhalation and exhalation are converted into square waves of different polarities.

尚呼気吸気の極性については特定する必要がな
いが、この発明の実施例では呼気を+、吸気を−
の極性とし、その吸気時に加振器を振動させるの
である。又3は刺激用の振動波を発生するめの発
振器であり、発振器3の発振出力に呼吸流量の電
気信号を重畳して加振器4に与えるもので、加振
器4には小型モータを用い加振器3による振動波
で励振せしめられ、呼吸流量に起因する電気信号
により100Hz前後の機械的振動波に変換している。
第2図はこの加振器4を2個夫々患者5の第2、
第3肋間胸骨両側にあてるようにしてとりつけた
正面図で、6は患者5に加振器4を取付けるため
のバンドであるが、バンド6の代りに加振器4に
粘着性をもたせて直接患者5の皮膚に装着するこ
ともできる。第3図は加振器4を示し図Aは側断
面図、図Bは斜面図である。図で7は小型モータ
8の軸にとりつけている振動子であり、9はケー
ス、10は発振器3から発せられる励振波の信号
を小型モータ8に伝えるためのコードである。
It is not necessary to specify the polarity of exhalation and inhalation, but in the embodiment of this invention, exhalation is + and inhalation is -.
The polarity is set to , and the exciter is made to vibrate when the air is inhaled. Further, 3 is an oscillator for generating vibration waves for stimulation, which superimposes an electrical signal of the respiratory flow rate on the oscillation output of the oscillator 3 and supplies it to the exciter 4. The exciter 4 uses a small motor. It is excited by a vibration wave from the exciter 3, and converted into a mechanical vibration wave of around 100Hz by an electrical signal caused by the respiratory flow rate.
FIG.
This is a front view of the device attached to both sides of the sternum in the third intercostal space, and 6 is a band for attaching the vibrator 4 to the patient 5, but instead of the band 6, the vibrator 4 is attached with adhesive. It can also be attached to the patient's 5 skin. FIG. 3 shows the vibrator 4, FIG. A is a side sectional view, and FIG. B is a perspective view. In the figure, 7 is a vibrator attached to the shaft of the small motor 8, 9 is a case, and 10 is a cord for transmitting the excitation wave signal emitted from the oscillator 3 to the small motor 8.

かくてトランスジユーサ1で呼吸の変化、特に
吸気を確認し、流量計2に与えて電気信号とし、
発振器3に与えて小型モータ8を励振する振動波
に重畳し、加振器4に与えて振動子7を振動せし
めて患者5の第2、第3肋間胸骨両側に胸壁振動
として与えるもので、一回換気量(VT)のみで
なく機能的残気量FRCを増加させることができ
る。第4図は加振器4を駆動するタイミングチヤ
ートで、Aは患者5の呼吸流量変化を示す線図、
Bは流量計2の出力線図で、Cは加振器4の動作
状態を示す線図である。呼気は+極性、吸気は−
極性で、かくて患者の吸気時に胸骨両側第2、第
3肋間に振動刺激を与えることができる。
In this way, the transducer 1 confirms changes in breathing, especially intake, and sends it to the flowmeter 2 as an electrical signal.
It is superimposed on the vibration wave that is applied to the oscillator 3 to excite the small motor 8, and is applied to the exciter 4 to vibrate the vibrator 7, which is applied as chest wall vibration to both sides of the sternum between the second and third intercostals of the patient 5. It is possible to increase not only tidal volume (VT) but also functional residual capacity FRC. FIG. 4 is a timing chart for driving the vibrator 4, and A is a diagram showing changes in respiratory flow rate of the patient 5.
B is an output diagram of the flowmeter 2, and C is a diagram showing the operating state of the vibrator 4. Exhalation is + polarity, inspiration is -
It is polar, thus allowing vibration stimulation to be applied to the second and third intercostals on both sides of the sternum during patient inspiration.

尚この発明では機械的振動刺激を与えたが、筋
紡鍾につながる求心性神経への電気刺激による方
法も考えられる。又小型モータに振動子をとりつ
けた加振器を用いたが、他に100Hz前後の振動を
発するものであれば適宜使用できる。呼吸に連動
させた胸壁振動は正常人及び四肢麻痺の患者で換
気を増加させることが判明している。これは筋紡
鍾にその求心路を発する緊張性振動反射
(Tomic Vibration Reflex:TVR)と考えられ
ている。
In this invention, mechanical vibration stimulation was applied, but a method using electrical stimulation to afferent nerves connected to muscle spindles may also be considered. Although a vibrator with a vibrator attached to a small motor was used, any other device that generates vibrations of around 100 Hz can be used as appropriate. Breath-coupled chest wall vibration has been shown to increase ventilation in normal subjects and in patients with quadriplegia. This is thought to be a tonic vibration reflex (TVR) that sends its afferent routes to muscle spindles.

この発明人は健康成人に吸気時にのみ第2、第
3肋間胸骨両側に胸壁振動を与えることにより、
振動刺激中一回換気量(VT)のみでなく、機能
的残気量(FRC)も増加することができた。機
能的残気量FRCの増加は胸壁振動による吸気筋
の活動増加が吸気のみでなく、呼気相にも延長す
ることによると考えられる。この方法による一回
換気量VT、機能的残気量FRCの増加は上腹部手
術などの条件下ではIncentive Spir−ometryと
して利用できる。
The inventor has developed the following method by applying chest wall vibration to both sides of the sternum between the second and third intercostals to healthy adults only during inspiration.
Not only tidal volume (VT) but also functional residual capacity (FRC) could be increased during vibration stimulation. The increase in functional residual capacity FRC is thought to be due to the increase in inspiratory muscle activity caused by chest wall vibration extending not only to the inspiration phase but also to the expiration phase. Increases in tidal volume VT and functional residual capacity FRC using this method can be used as incentive spir-ometry under conditions such as upper abdominal surgery.

発明の効果 従来では呼吸管理において機能的残気量FRC
を増加させるために呼気終末陽圧(Positive
End Expiratory Pvessure:PEEP)や持続陽圧
呼吸(Continnous Positive Airway
Pressuve:CPAP)が施行されてきたが、より簡
便で患者の負担の少ない方法並びに装置としてこ
の発明では胸壁振動CWVによる臨床応用が可能
となつた。
Effects of the invention Conventionally, functional residual capacity FRC was used in respiratory management.
Positive end-expiratory pressure (Positive
End Expiratory Pvessure (PEEP) and Continuous Positive Airway
Pressuve (CPAP) has been performed, but this invention has made it possible to clinically apply chest wall vibration CWV as a simpler method and device with less burden on the patient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による実施例装置の構成ブロ
ツク図、第2図は患者の胸壁に加振器4を装着し
た正面図、第3図は加振器の構造図で、Aは側断
面図、Bは斜視図、第4図は加振器駆動のタイミ
ングチヤート、第5図はいわゆるベル式スパイロ
メータによる胸壁振動時のVTの増加及びFRCレ
ベルの上昇を示す線図である。 図で1は呼吸流量トランスジユーサ、2は流量
計、3は発振器、4は加振器、5は患者、6はバ
ンド、7は振動子、8は小型モータ、9はケー
ス、10はコード。
Fig. 1 is a block diagram of the configuration of an embodiment of the device according to the present invention, Fig. 2 is a front view of the vibrator 4 attached to the patient's chest wall, Fig. 3 is a structural diagram of the vibrator, and A is a side sectional view. , B is a perspective view, FIG. 4 is a timing chart of the vibration exciter drive, and FIG. 5 is a diagram showing the increase in VT and FRC level during chest wall vibration using a so-called Bell spirometer. In the figure, 1 is a respiratory flow transducer, 2 is a flow meter, 3 is an oscillator, 4 is an exciter, 5 is a patient, 6 is a band, 7 is a vibrator, 8 is a small motor, 9 is a case, and 10 is a cord .

Claims (1)

【特許請求の範囲】[Claims] 1 患者の呼吸変化を求める呼吸流量トランスジ
ユーサの如き呼吸認識装置と、該患者の呼吸変化
を電気信号に変換するための流量計と、刺激用の
振動波を与えて機械的振動波に変換するための発
振器と、前記電気信号に励振用として重畳せる発
振器の振動波を与えて機械的振動波に変換し、吸
気時に患者の第2、第3助間胸骨の両側に胸壁振
動として与えるようにした加振器とを備えること
を特徴とする胸壁振動による機能的残気量増加装
置。
1. A breathing recognition device such as a respiratory flow rate transducer that detects changes in a patient's breathing, a flowmeter that converts the patient's breathing changes into electrical signals, and a vibration wave for stimulation that is converted into a mechanical vibration wave. and a vibration wave of the oscillator that can be superimposed on the electric signal for excitation, converting it into a mechanical vibration wave, and applying it as chest wall vibration to both sides of the patient's second and third sternum during inspiration. A device for increasing functional residual capacity by chest wall vibration, characterized in that it is equipped with a vibration exciter made of
JP15617987A 1987-06-23 1987-06-23 Method and apparatus for increasing functional residual gas amount due to vibration of chest wall Granted JPS63318953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15617987A JPS63318953A (en) 1987-06-23 1987-06-23 Method and apparatus for increasing functional residual gas amount due to vibration of chest wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15617987A JPS63318953A (en) 1987-06-23 1987-06-23 Method and apparatus for increasing functional residual gas amount due to vibration of chest wall

Publications (2)

Publication Number Publication Date
JPS63318953A JPS63318953A (en) 1988-12-27
JPH0317500B2 true JPH0317500B2 (en) 1991-03-08

Family

ID=15622081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15617987A Granted JPS63318953A (en) 1987-06-23 1987-06-23 Method and apparatus for increasing functional residual gas amount due to vibration of chest wall

Country Status (1)

Country Link
JP (1) JPS63318953A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60168465A (en) * 1984-02-13 1985-08-31 ミナト医科学株式会社 Asthma fit control method and apparatus
JPS6052828B2 (en) * 1977-11-28 1985-11-21 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン shaving equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052828U (en) * 1983-09-20 1985-04-13 林原 健 Zensoku treatment vibration device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052828B2 (en) * 1977-11-28 1985-11-21 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン shaving equipment
JPS60168465A (en) * 1984-02-13 1985-08-31 ミナト医科学株式会社 Asthma fit control method and apparatus

Also Published As

Publication number Publication date
JPS63318953A (en) 1988-12-27

Similar Documents

Publication Publication Date Title
Brown et al. Respiratory dysfunction and management in spinal cord injury
Homnick Mechanical insufflation-exsufflation for airway mucus clearance
KR101551157B1 (en) Swallowing assistance device
KR20060009014A (en) Systems and procedures for treating cardiac arrest
JP2002517283A (en) Stimulation device and method for increasing venous blood return during cardiopulmonary resuscitation
JP7061064B6 (en) Devices and Methods for Controlling Nitric Oxide Level Enrichment
US20230105270A1 (en) Ventilation arrangement and treatment method
US9687415B2 (en) Extrathoracic augmentation of the respiratory pump
CA2943270C (en) Respiration sensors for recording of triggered respiratory signals in neurostimulators
JP2010214024A (en) Respiratory exercise support device
Braun Intermittent mechanical ventilation
Ninane et al. Changes in abdominal muscle length during breathing in supine dogs
JPH0317500B2 (en)
George et al. Ventilatory saving by external chest wall compression or oral high-frequency oscillation in normal subjects and those with chronic airflow obstruction
JPS60168465A (en) Asthma fit control method and apparatus
WO2023181707A1 (en) Respiratory support system
WO2023230868A1 (en) Method for controlling ventilation apparatus, ventilation system and ventilation apparatus
US20210346238A1 (en) Devices and methods for treating a breathing-related sleep disorder, methods of use and control processes for such a device
US20220008288A1 (en) Cardiopulmonary resuscitation (cpr) using chest compressions synchronised with alternating pressure mechanical ventilation
WO2023172124A1 (en) A portable apparatus to deliver percussion and vibrations to a pulmonary region of a patient
JP2023143622A (en) Respiration support system
Chatwin Airway clearance methods and nebulised therapy in acute NIV
Resuscitators Exam Note
IPV PHYSIOTHERAPY INTERVENTIONS
UA5870U (en) Method for treating syndrome of obstructive sleep apnea

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees