JPH03174481A - Acid-resistant guard wax - Google Patents

Acid-resistant guard wax

Info

Publication number
JPH03174481A
JPH03174481A JP24420790A JP24420790A JPH03174481A JP H03174481 A JPH03174481 A JP H03174481A JP 24420790 A JP24420790 A JP 24420790A JP 24420790 A JP24420790 A JP 24420790A JP H03174481 A JPH03174481 A JP H03174481A
Authority
JP
Japan
Prior art keywords
acid
wax
guard
coating
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24420790A
Other languages
Japanese (ja)
Inventor
Makoto Aizawa
誠 相澤
Takakazu Yamane
貴和 山根
Yoshio Tanimoto
谷本 義雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Publication of JPH03174481A publication Critical patent/JPH03174481A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an acid-resistant guard wax excellent in the function for protecting a coating from acid rain and good in workability in coating by dispersing a specific amount of an acid-neutralizing agent in a wax base material. CONSTITUTION:0.5-20wt.% acid-neutralizing agent is dispersed in a wax base material to produce an acid-resistant guard wax. As specific examples of the acid-neutralizing agent, an alkalin agent such as sodium hydrogencarbonate, sodium carbonate and sodium stearate, or buffering agent which has a buffer action on an acid, such as potassium dihydrogenphosphote and disodium hydrogenphosphate can be mentioned. Occurrence of color change, crack, blotch, etc., of coatings by acid rain can be effectively prevented by applying the obtained acid-resistant guard wax to a coating of a car produced at a factory for protection until the car is delivered to a customer.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車等の塗膜上に塗布する耐酸性のガード
ワックスに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an acid-resistant guard wax that is applied to coatings on automobiles, etc.

(従来の技術) 工場で生産された自動車は、例えば顧客に納車するまで
の間、工場内の完成車プール場にプールされる場合があ
る。その様な場合、その自動車には、雨や空気中の鉄粉
等から塗膜を保護するためガードワックスが塗布される
(Prior Art) Automobiles produced at a factory may be pooled in a finished car pool within the factory, for example, until they are delivered to a customer. In such cases, guard wax is applied to the car to protect the paint film from rain and iron particles in the air.

従来使用されているガードワックスは、ポリエチレン系
ワックスに微量の酸化防止剤、紫外線吸収剤を添加した
もので、lOμ卯前後前後い有機被膜である程度酸性の
液に対しガード性を有するものである。
The conventionally used guard wax is a polyethylene wax with trace amounts of antioxidants and ultraviolet absorbers added, and has an organic coating of around 10 μm that has a certain degree of guarding ability against acidic liquids.

下記衣1に上記従来使用されているガードワックスの成
分組成を示す。
The component composition of the conventionally used guard wax is shown in Clothing 1 below.

(発明が解決しようとする課題) しかしながら、上記従来のガードワックスの酸性液に対
するガード性は低く、その様な従来のガードワックスを
塗布しているにも拘らず、最近の酸性雨によって完成車
プール場の多くの自動車に被害が生じる、つまり酸性雨
がガードワックス膜を浸透し、塗膜を加水分解して汚染
する、つまり変色させたり、クラックを生じさせたり、
あるいはシミ、水辺を付けるというような事態が発生し
ている。
(Problem to be Solved by the Invention) However, the above-mentioned conventional guard wax has poor guarding properties against acidic liquids, and despite the application of such conventional guard wax, recent acid rain has caused finished cars to pool in pools. Many cars in the field are damaged by the acid rain, which penetrates the guard wax film and hydrolyzes and contaminates the paint film, causing discoloration and cracking.
Or, situations such as stains and water spots have occurred.

本発明の目的は、上記事情に鑑み、薄膜であっても耐酸
性の強いガードワックスを提供することにある。
In view of the above circumstances, an object of the present invention is to provide a guard wax that has strong acid resistance even if it is a thin film.

(課題を解決するための手段) 本発明に係る耐酸性ガードワックスは、上記目的を達成
するため、ワックス基材中に酸中和剤が0.5〜20.
0重量%(ガードワックス全体に対する重量%)添加分
散されていることを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the acid-resistant guard wax according to the present invention has an acid neutralizing agent in the wax base material of 0.5 to 20%.
It is characterized in that it is added and dispersed in an amount of 0% by weight (based on the entire guard wax).

上記酸中和剤としては、酸を中和するアルカリ剤や少な
くとも酸に対する緩衝作用を有する緩衝剤を用いること
ができる。
As the acid neutralizer, an alkaline agent that neutralizes the acid or a buffer agent that has at least a buffering effect against the acid can be used.

上記アルカリ剤としては、例えばNaHCO3(炭酸水
素ナトリウム)やNa2CO1(炭酸ナトリウム)ある
いはC17H3,COONa  (ステアリン酸ナトリ
ウム)を好適に用いることができる。
As the alkali agent, for example, NaHCO3 (sodium hydrogen carbonate), Na2CO1 (sodium carbonate), or C17H3, COONa (sodium stearate) can be suitably used.

特に、C1tH35COONaは温水にのみ溶出するア
ルカリ剤であり、NaHCO3等の常温の水に溶出する
アルカリ剤と併用する態様で好適に用いられる。
In particular, C1tH35COONa is an alkaline agent that dissolves only in warm water, and is preferably used in combination with an alkaline agent that dissolves in water at room temperature, such as NaHCO3.

上記緩衝剤としては、例えばKH2PO,(リン酸二水
素カリウム)とNa2 HP 04  (リン酸水素二
ナトリウム)とを混合して成る緩衝値がPH667〜8
.0のものを好適に用いることができる。
As the above-mentioned buffer, for example, a buffer value obtained by mixing KH2PO, (potassium dihydrogen phosphate) and Na2HP 04 (disodium hydrogen phosphate) has a pH of 667 to 8.
.. 0 can be suitably used.

特に、上記KH2PO4とNa2HPO4とを4:6 
(KH2PO4/Na 2 HPOa−4/6)でン昆
合した緩衝値がp)18.98の緩衝剤を好適に用いる
ことができる。
In particular, the above KH2PO4 and Na2HPO4 were mixed at 4:6.
A buffer having a combined buffer value of (KH2PO4/Na2HPOa-4/6) p) 18.98 can be suitably used.

上記アルカリ剤および緩衝剤はいずれも粉末であり、粒
径が1〜lOμ卯のものが好適に用いられる。
Both the alkaline agent and the buffer are powders, and those having a particle size of 1 to 10 μm are preferably used.

(作  用) 上記構成の耐酸性ガードワックスは、ガードワックス中
に酸中和剤(酸を中和するアルカリ剤や酸に対する緩衝
作用を有する緩衝剤)が添加分散されており、塗膜をア
タックする酸性液はそれらによって中和(緩衝も含む)
され、無害なものとなる。
(Function) The acid-resistant guard wax with the above structure has an acid neutralizer (an alkaline agent that neutralizes acids or a buffer that has a buffering effect against acids) added and dispersed in the guard wax, which attacks the paint film. They neutralize (including buffering) acidic solutions that
and becomes harmless.

そして、上記ガードワックスにおいては、その酸中和剤
が0.5〜20重量%添加分散されているので、以下に
述べる実験データかられかるように、ガードワックスの
塗布作業性等を悪化させることなく pH2程度の濃い
酸性液に対しても十分なガード性を有し、塗膜を酸性雨
等から十分に保護することができる。
In addition, since the acid neutralizer is added and dispersed in the above guard wax in an amount of 0.5 to 20% by weight, it does not deteriorate the workability of applying the guard wax, etc., as shown from the experimental data described below. It has sufficient guarding properties even against highly acidic liquids with a pH of about 2, and can sufficiently protect paint films from acid rain, etc.

(実 施 例) 以下、図面を参照しながら本発明の実施例について詳細
に説明する。
(Embodiments) Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

酸中和剤としてNa2CO3を用いた場合本発明者は、
前記した従来品のガードワックスに上記した酸中和剤の
1つである炭酸ナトリウム(Na z CO3)を0.
OJ 、0.5.20重量%(Na2CO3を含むワッ
クス全体に対する重量%)それぞれ添加分散させて4種
類のガードワックスを作成し、それらを用いて耐酸性効
果を確認する実験を行なった。
When using Na2CO3 as an acid neutralizer, the inventors
0.0% of sodium carbonate (Na z CO3), which is one of the acid neutralizers mentioned above, is added to the conventional guard wax described above.
Four types of guard waxes were prepared by adding and dispersing OJ and 0.5.20% by weight (% by weight based on the entire wax containing Na2CO3), and experiments were conducted using them to confirm the acid resistance effect.

実験結果を表2に示す。The experimental results are shown in Table 2.

上記ガードワックスの耐酸性効果試験においては、上記
表2かられかる様に、上記したNa2CO3の添加量が
0%、0.3%、0.5%、20%のそれぞれのガード
ワックスを用い、ガードワックス膜厚が5μ卯と10μ
卯との場合について、それぞれPH2,3,4の酸性液
を付着させて塗膜の状態を調べた。
In the acid resistance effect test of the guard waxes, as shown in Table 2 above, guard waxes with the above-mentioned Na2CO3 addition amounts of 0%, 0.3%, 0.5%, and 20% were used. Guard wax film thickness is 5μ and 10μ
In the case of rabbits, acidic solutions of pH 2, 3, and 4 were applied to the rabbits, respectively, and the state of the coating films was examined.

また、上記各実験は勾配式オーブンを使用して温度30
℃〜80℃の範囲について行ない、加熱時間は2時間、
酸性液の付着量はo、tccとした。
In addition, each of the above experiments was conducted at a temperature of 30°C using a gradient oven.
The temperature was between ℃ and 80℃, and the heating time was 2 hours.
The adhesion amount of the acidic liquid was set to o, tcc.

なおガードワックスは酸性雨のみでなく他のものに対す
る保護性(例えば耐鉄粉性)を考慮して5μ卵〜lOμ
卯が標準使用膜厚として設定されているため、その上限
と下限とで試験を行なうべく、膜厚5μ汎とlOμ汎と
を試験対象として設定した。
Note that the guard wax should be used in a range of 5 μm to 10 μm, considering its protection against not only acid rain but also other things (for example, iron powder resistance).
Since rabbit is set as the standard film thickness to be used, film thicknesses of 5μ and 10μ were set as test targets in order to conduct tests at the upper and lower limits.

また、添加したNa2CO3は、以下に説明する理由に
より、膜厚が5μ班の場合は粒径が5μ肌より小のもの
を、膜厚がlOμ卯の場合は粒径が10μmより小のも
のを用いた。
In addition, for the reasons explained below, the added Na2CO3 should have a particle size smaller than 5μm when the film thickness is 5μm, and a particle size smaller than 10μm when the film thickness is 10μm. Using.

一般に、耐酸性効果はガードワックスの膜厚。Generally, the acid resistance effect depends on the film thickness of the guard wax.

酸の濃度、温度等によって異なる。従って、より厳しい
条件の下で、つまり膜厚は上記標準使用範囲の下限であ
る5μ卯、温度は80℃、酸の濃度は酸性雨の濃縮状態
が大体pH2までであるからpH2という状態の下で、
塗膜に補修不可能な汚染が生じなければ耐酸性ガードワ
ックスとして使用に耐え得ると言うことができる。
Varies depending on acid concentration, temperature, etc. Therefore, under more severe conditions, i.e., the film thickness is 5 μm, which is the lower limit of the above standard usage range, the temperature is 80°C, and the acid concentration is at pH 2 because the concentrated state of acid rain is approximately pH 2. in,
It can be said that it can withstand use as an acid-resistant guard wax if no irreparable staining occurs on the coating film.

かかる観点から上記表2の結果を検討すると、Na2C
O3の含有量が0.5%以上の場合は全てOK(塗装膜
に補修不可能な汚染なし)であり、従ってNa2CO3
を0.5%以上含有すれば耐酸性ガードワックスとして
使用に耐え得ることが認められる。なお、表2中NGの
下に記載されている温度は、その温度範囲において塗膜
に補修不可能な汚染が生じたことを意味する。
Examining the results in Table 2 above from this perspective, it is found that Na2C
If the O3 content is 0.5% or more, everything is OK (no irreparable contamination on the paint film), and therefore Na2CO3
It is recognized that if it contains 0.5% or more, it can withstand use as an acid-resistant guard wax. In addition, the temperature listed under NG in Table 2 means that irreparable staining occurred on the coating film within that temperature range.

第1図は、上記実験におけるガードワックスの膜厚が5
μ卯、酸性液がpH2であってNa2CO3の含有量が
0%、0.5%、20%の場合の、塗膜の汚染状態と塗
膜の表面温度との関係を示す図であり、この図からもN
a2CO3の含有量が0.5%以上であれば耐酸性ガー
ドワックスとして十分使用に耐え得ることが認められる
。なお、第1図中のΔ(シミ、水辺)は放置もしくは加
熱により消失するものであり、この汚染は補修可能であ
るので耐酸性ガードワックスとしての実用的価値を阻害
するものではない。
Figure 1 shows that the film thickness of guard wax in the above experiment was 5.
This is a diagram showing the relationship between the contamination state of the paint film and the surface temperature of the paint film when the pH of the acidic solution is 2 and the content of Na2CO3 is 0%, 0.5%, and 20%. From the figure, N
It is recognized that if the content of a2CO3 is 0.5% or more, it can be sufficiently used as an acid-resistant guard wax. Note that Δ (stain, waterside) in FIG. 1 disappears when left or heated, and since this stain can be repaired, it does not impair its practical value as an acid-resistant guard wax.

一方、上記NazCO3は粉末であり、これをあまり多
く添加するとガードワックスの粘度が上昇し、塗布作業
性が悪くなって均一なガードワックス膜を形成すること
が困難となる。
On the other hand, the above-mentioned NazCO3 is a powder, and if too much of it is added, the viscosity of the guard wax increases, the coating workability deteriorates, and it becomes difficult to form a uniform guard wax film.

第2図はNa2CO3の添加量(Na 2 CO3を含
むワックス全体に対する重量%)と粘度との関係を示す
図であり、この図かられかるようにNaHCO3の添加
量が増加すると粘度も増加し、添加量が20%を越える
と斜線を施した塗布作業性悪化(均一なガードワックス
膜の形成困難)領域に入る。従って、上記Na2CO3
は、この塗布作業性の面から、添加量は20%以下であ
ることが必要である。
Figure 2 is a diagram showing the relationship between the amount of Na2CO3 added (% by weight relative to the entire wax containing Na2CO3) and viscosity.As can be seen from this figure, as the amount of NaHCO3 added increases, the viscosity also increases. When the amount added exceeds 20%, it falls into the shaded region where coating workability deteriorates (difficult to form a uniform guard wax film). Therefore, the above Na2CO3
From the viewpoint of coating workability, the amount added must be 20% or less.

次に、上記添加するNazCO3粉末の大きさについて
述べる。
Next, the size of the NazCO3 powder to be added will be described.

添加するNa2CO3粉末の粒径は、ガードワックス膜
の膜厚以下であることが好ましい。従って、該膜厚が上
述の様に5μ卯〜lOμmと設定されている場合には、
粒径は膜厚に応じて高々5μ卯〜lOμ卯までであるこ
とが好ましい。
The particle size of the Na2CO3 powder to be added is preferably equal to or less than the thickness of the guard wax film. Therefore, when the film thickness is set to 5 μm to 10 μm as described above,
The particle size is preferably at most 5 μm to 10 μm depending on the film thickness.

第3図に示す様に、塗膜2上のガードワックス膜4の膜
厚よりも酸中和剤6であるNazCO3粉末の粒径が大
であると、該NazCO3粉末によってガードワックス
膜4が切断され、そこから酸が侵入し、塗膜2にピンホ
ール状の汚染が発生する。また、粒径が大きいと塗布ガ
ンが目づまりしたり分散が悪くなる。
As shown in FIG. 3, when the particle size of the NazCO3 powder that is the acid neutralizer 6 is larger than the thickness of the guard wax film 4 on the coating film 2, the guard wax film 4 is cut by the NazCO3 powder. The acid enters from there, and pinhole-like contamination occurs in the coating film 2. Moreover, if the particle size is large, the coating gun may become clogged or dispersion becomes poor.

一方s Na z C03粉末6の粒径がガードワック
ス膜4の膜厚よりも小である場合には、第4図に示す状
態となり、この状態では分散が良好でガードワックス膜
表面に均一な中和剤層が形成され、また塗布作業性も良
好である。なお、粒径の下限は特にないか、取扱い性の
上から1μ卯以上であることが望ましい。
On the other hand, when the particle size of the s Na z C03 powder 6 is smaller than the thickness of the guard wax film 4, the state shown in FIG. A Japanese additive layer is formed, and coating workability is also good. There is no particular lower limit to the particle size, or it is preferably 1 μm or more in view of ease of handling.

酸中和剤としてNazCO3以外のものを用いた場合 以上酸中和剤としてその1例であるNa2CO3粉末を
用いた場合について説明したが、例えばそれが上記した
NaHCO3粉末であっても、あるいは緩衝剤であるK
M2PO,粉末とNa2HPO4粉末とを混合したもの
であっても、さらにはその他の酸中和剤であっても耐酸
性効果については上記表2および図1と同様となり、塗
布作業性については図2と同様となり、粒径については
勿論Na2CO3粉末の場合と同様であり、従って、本
発明で用い得る酸中和剤は、Na2CO3粉末に限らず
、添加量が0.5〜20重量%であることが必要であり
、かつ粒径はガードワックス膜厚よりも小であることが
望ましい。
Cases in which something other than NazCO3 is used as an acid neutralizer The above example uses Na2CO3 powder as an acid neutralizer, but even if it is the above-mentioned NaHCO3 powder, or a buffer K is
Even if it is a mixture of M2PO, powder and Na2HPO4 powder, or even other acid neutralizing agents, the acid resistance effect will be the same as shown in Table 2 and Figure 1 above, and the coating workability will be as shown in Figure 2. The particle size is, of course, the same as that of Na2CO3 powder. Therefore, the acid neutralizer that can be used in the present invention is not limited to Na2CO3 powder, and the amount added should be 0.5 to 20% by weight. It is desirable that the particle size is smaller than the thickness of the guard wax film.

また、酸中和剤として緩衝剤を使用する場合には、耐酸
性と塗膜への影響を考慮すると、上記した様なKH2P
O4とNa2HPO,とを混合したものであって緩衝値
が6.7〜8.0の範囲のものを好適に使用することが
できる。
In addition, when using a buffer as an acid neutralizer, considering the acid resistance and the effect on the paint film, KH2P as mentioned above should be used.
A mixture of O4 and Na2HPO with a buffer value in the range of 6.7 to 8.0 can be preferably used.

酸中和剤としてNaHCO3等のアルカリ剤とC上述の
Na2CO3やNaHCOsは、それら単独で添加分散
しても良いが他の適当なアルカリ剤と一緒に添加分散し
ても良く、例えば同様にアルカリ剤であるC I7H3
5COONa  (ステアリン酸ナトリウム)と−緒に
添加分散することができる。
As an acid neutralizer, an alkaline agent such as NaHCO3 and C. The above-mentioned Na2CO3 and NaHCOs may be added and dispersed alone, or may be added and dispersed together with another suitable alkali agent. is C I7H3
It can be added and dispersed together with 5COONa (sodium stearate).

上記NazCO3やNaHCO3は常温の水に溶出する
性質を有し、その結果降雨の際ワックス基材中から雨水
中に溶出し雨水中の酸に対し中和作用をなす。従って、
酸性雨に対する中和剤として非常に好適なものではある
が、その反面ある程度の降雨にさらされた後はワックス
基材中から殆ど溶出してしまい、ワックスの耐酸性効果
が無く。
The above-mentioned NazCO3 and NaHCO3 have the property of being eluted in water at room temperature, and as a result, when it rains, they are eluted from the wax base material into the rainwater and have a neutralizing effect on the acids in the rainwater. Therefore,
Although it is very suitable as a neutralizing agent against acid rain, on the other hand, after being exposed to a certain amount of rain, most of it is eluted from the wax base material, and the wax has no acid-resistant effect.

なってしまうこととなる。It will become.

しかるに、上記C+7HisCOONaは常温の水には
溶解せず温水にのみ溶解(熱水100 ”C中に10重
量%溶解、60℃付近から溶は始めて100℃で飽和)
するものである。よって、このCI7H35COONa
をワックス基材中に添加した場合には、該C+tI(s
、cOONaは通常の雨水(降雨中の常温雨水)には溶
出せず、雨が止んで塗膜上に残った雨水が太陽熱によっ
て温度上昇し濃縮されかけた場合にその雨水に溶出して
酸中和効果を発揮する。
However, the above C+7HisCOONa does not dissolve in water at room temperature, but only in hot water (dissolves 10% by weight in hot water of 100"C, begins to dissolve at around 60°C and becomes saturated at 100°C).
It is something to do. Therefore, this CI7H35COONa
When added to the wax base material, the C+tI(s
, cOONa does not elute in normal rainwater (normal temperature rainwater during rain), but when the rainwater that remains on the paint film after the rain stops and becomes concentrated due to the temperature rise due to solar heat, it elutes into the rainwater and dissolves in acid. Demonstrates a harmonious effect.

従って、上記の様なNa2CO3等の常温の水に溶出す
るアルカリ剤と上記CI7H35COONaとをワック
ス基材中に一緒に添加分散すれば、通常の雨水に対して
はNa2CO3等が、残存雨水に対してはC+7H3,
COONaが酸中和効果を発揮し、ワックス全体として
の耐酸性効果を向上させることができ、しかもC+7H
3,COONaは通常の雨水には溶出しないので比較的
長期にわたってワッスクス基材中に残存し、よってワッ
クス全体としての耐酸性効果をNa2CO3等の常温の
水に溶出するアルカリ剤単独使用の場合に比して長期維
持することができる。
Therefore, if an alkaline agent such as the above Na2CO3 that dissolves in water at room temperature and the above CI7H35COONa are added and dispersed together in a wax base material, Na2CO3 etc. will be effective against normal rainwater, but will be effective against residual rainwater. is C+7H3,
COONa exhibits an acid neutralizing effect and can improve the acid resistance effect of the wax as a whole.
3. COONa does not dissolve in normal rainwater, so it remains in the wax base material for a relatively long period of time. Therefore, the acid resistance effect of the wax as a whole is compared to the case of using only an alkaline agent such as Na2CO3 that dissolves in water at room temperature. It can be maintained for a long time.

上記NB2CO3等の常温の水に溶出するアルカリ剤と
Cl7H35C00Naとを併用する場合は、それぞれ
を例えば下記表3の割合でワックス基材中に添加分散す
るのが良い。なお、下記表3中の数値はいずれもワック
ス全体に対する重量%を示すものである。
When using an alkaline agent such as the above-mentioned NB2CO3 which dissolves in water at room temperature and Cl7H35C00Na, it is preferable to add and disperse each of them into the wax base material in the proportions shown in Table 3 below. Note that all the values in Table 3 below indicate weight % based on the total wax.

表   3 下記表4はC1□H3sCOONaをワックス全体に対
し2.0 、3.0重量%添加した場合のガードワック
スの耐酸性効果確認試験の結果を示すものである。なお
、この試験においてはガードワックスの膜厚は10μ肌
、ステアリン酸ナトリウムの粒径も1(]μ扉であり、
その他は表2における試験条件と同様である。
Table 3 Table 4 below shows the results of a test to confirm the acid resistance effect of guard wax when 2.0 and 3.0% by weight of C1□H3sCOONa was added to the entire wax. In addition, in this test, the film thickness of the guard wax was 10μ, and the particle size of sodium stearate was 1(]μ.
Other test conditions were the same as those in Table 2.

表   4 ガードワックスの耐酸性効果 ○:汚染なし △:補修可能な汚染あり 上記表4から分かる様に、CI7H3SCOONaは2
.0および3.0重量%添加した場合十分な耐酸性効果
を発揮する。従って、C1□H3,COONaを併用す
る場合は、該C17H3,cooNaは耐酸性効果が確
保できる範囲で添加すれば良いと共にその添加量があま
り大きくなく粘度の増大による塗布作業性の低下が生じ
るので、上記表3に示す様な割合で併用するのが好まし
い。
Table 4 Acid resistance effect of guard wax ○: No contamination △: Repairable contamination As seen from Table 4 above, CI7H3SCOONa is 2
.. When added in amounts of 0 and 3.0% by weight, sufficient acid resistance effects are exhibited. Therefore, when C1□H3 and COONa are used together, it is sufficient to add C17H3 and cooNa within the range that can ensure the acid resistance effect, and the amount of addition is not too large, resulting in a decrease in coating workability due to increased viscosity. , is preferably used in combination as shown in Table 3 above.

なおC1□H3sCOONaと緩衝剤とを併用すると、
CI7H35COONaの酸中和作用が緩衝剤によって
緩衝される。従って、CI7H3SCOONaは、アル
カリ剤との併用は可能であるが、緩衝剤との併用は意味
のないものである。
In addition, when C1□H3sCOONa and a buffer are used together,
The acid neutralizing effect of CI7H35COONa is buffered by a buffer. Therefore, CI7H3SCOONa can be used in combination with an alkaline agent, but it is meaningless to use it in combination with a buffer.

(発明の効果) 以上説明した様に、本発明に係る耐酸性ガードワックス
は、酸中和剤を0.5〜20重量%添加分散して成るの
で、ガードワックスの塗布作業性を悪化させることなく
酸性雨から塗膜を十分に保護することができる。
(Effects of the Invention) As explained above, since the acid-resistant guard wax according to the present invention is made by adding and dispersing an acid neutralizer in an amount of 0.5 to 20% by weight, the workability of applying the guard wax may be deteriorated. It is possible to sufficiently protect the paint film from acid rain.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は酸中和剤の添加量と温度とを変化させた場合の
塗膜の汚染状態を示す図、 第2図は酸中和剤の添加量とガードワックスの粘度との
関係を示す図、 第3,4図はガードワックス膜部分の断面図である。 4・・・ガードワックス   6・・・酸中和剤第 図 Z履縁部嗅(’C) 第2図 0 +5 2゜ 5 NG2CO3の*1at 1%)
Figure 1 shows the contamination state of the paint film when the amount of acid neutralizer added and temperature are changed. Figure 2 shows the relationship between the amount of acid neutralizer added and the viscosity of guard wax. Figures 3 and 4 are cross-sectional views of the guard wax film portion. 4...Guard Wax 6...Acid Neutralizer Diagram Z Footprint ('C) Diagram 2 0 +5 2゜5 *1at 1% of NG2CO3)

Claims (1)

【特許請求の範囲】[Claims] ワックス基材中に酸中和剤が0.5〜20.0重量%添
加分散されていることを特徴とする耐酸性ガードワック
ス。
An acid-resistant guard wax characterized in that an acid neutralizer is added and dispersed in a wax base material in an amount of 0.5 to 20.0% by weight.
JP24420790A 1989-09-29 1990-09-14 Acid-resistant guard wax Pending JPH03174481A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-254554 1989-09-29
JP25455489 1989-09-29

Publications (1)

Publication Number Publication Date
JPH03174481A true JPH03174481A (en) 1991-07-29

Family

ID=17266655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24420790A Pending JPH03174481A (en) 1989-09-29 1990-09-14 Acid-resistant guard wax

Country Status (1)

Country Link
JP (1) JPH03174481A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999023860A1 (en) * 1997-11-04 1999-05-14 Alliedsignal Inc. Method for dissipating heat away from a heat sensitive device using bicarbonate compositions
WO2000026320A3 (en) * 1998-11-04 2001-12-20 Allied Signal Inc Method for dissipating heat away from a heat sensitive device using bicarbonate compositions

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999023860A1 (en) * 1997-11-04 1999-05-14 Alliedsignal Inc. Method for dissipating heat away from a heat sensitive device using bicarbonate compositions
US5932839A (en) * 1997-11-04 1999-08-03 Ren; Jane Method for dissipating heat away from a heat sensitive device using bicarbonate compositions
US6143978A (en) * 1997-11-04 2000-11-07 Alliedsignal Inc. Enclosure for dissipating heat away from a heat sensitive device using bicarbonate compositions
WO2000026320A3 (en) * 1998-11-04 2001-12-20 Allied Signal Inc Method for dissipating heat away from a heat sensitive device using bicarbonate compositions

Similar Documents

Publication Publication Date Title
EP1809714B1 (en) Method for coating metal surfaces
US4702861A (en) Flame retardant materials
US5739191A (en) Protective coating and method of using such coating
DE3000731A1 (en) PROTECTIVE COATING PREPARATION AND METHOD FOR CATHODICALLY PROTECTING A METAL SUBSTRATE AGAINST CORROSION USING THIS PROTECTIVE COATING PREPARATION
JPH04504135A (en) Foaming flame retardant paint material
KR100669629B1 (en) Process for hydrophilic treatment of aluminum materials and primers therefor and hydrophilic coatings
EP3199604B1 (en) Rust-inhibiting paint composition and application for same
JP6604445B2 (en) Surface-treated steel sheet
EP0562660B1 (en) Formulation to protect from the corrosion metal-coating mirrors and procedure for the production thereof
DE3042630A1 (en) GLASS COMPOSITION, METHOD FOR PRODUCING AND USE AS ANTI-CORROSION COATING OF METAL SURFACES
JPH03174481A (en) Acid-resistant guard wax
EP0297186A1 (en) Paint compositions
EP0548413B1 (en) Anti-corrosive formulation for metal-coating of mirrors and similar and procedure for the production thereof
JP3140612B2 (en) Inorganic coating composition
US5009935A (en) Protecting metallic layers on substrates
EP2808422B1 (en) Electrically conductive protective coating aerospace components and their preparation
US3776747A (en) High temperature resistant coating
JPH03195781A (en) Guard wax film structure
JP7142498B2 (en) Surface treatment agent for metal material, metal material with surface treatment film, and method for producing the same
CN104987794B (en) A kind of multiple-effect coating and its compound method
KR20200049013A (en) Anti-corrosion coating layer
JPH03195780A (en) Guard wax
JP2668474B2 (en) Aluminum surface protection coating
EP4342952A1 (en) Coating composition
RU1625249C (en) Method of obtaining polymeric protection coating