JPH03174109A - Designing method and working device for aspherical lens - Google Patents

Designing method and working device for aspherical lens

Info

Publication number
JPH03174109A
JPH03174109A JP1313917A JP31391789A JPH03174109A JP H03174109 A JPH03174109 A JP H03174109A JP 1313917 A JP1313917 A JP 1313917A JP 31391789 A JP31391789 A JP 31391789A JP H03174109 A JPH03174109 A JP H03174109A
Authority
JP
Japan
Prior art keywords
point
ray
inclination
curved surface
intersection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1313917A
Other languages
Japanese (ja)
Other versions
JP2913191B2 (en
Inventor
Toyohiko Kashiwagi
柏木 豊彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1313917A priority Critical patent/JP2913191B2/en
Publication of JPH03174109A publication Critical patent/JPH03174109A/en
Application granted granted Critical
Publication of JP2913191B2 publication Critical patent/JP2913191B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)
  • Image Input (AREA)

Abstract

PURPOSE:To obtain the aspherical lens from which spherical aberrations are completely eliminated by determining the inclination of a curved surface in such a manner that the ray passing an arbitrary height from an optical axis passes a desired final pass point which is previously set after passing a lens. CONSTITUTION:The initial value of a first tracing ray R is set by an initial value setting means 11. The ray tracing is executed for this initial value by using a ray tracing means 12 and the pass point at the design curved surface is determined by an intersected point position determining means 15. In addition, the desired final pass point P0 at one point for the respective intersected points PT of the design curved surface is determined by a desired value setting means 13. The inclination T1 of the arbitrary curved surface at the intersected point PT is determined by a inclination setting means 14. The ray tracing at the inclination T1 of this curved surface is executed and the final pass point P1 of the ray is determined by a final pass point calculating means 16. The inclination T1 of the curved surface is determined as the desired inclination of the curved surface when the final pass point P1 and the desired final pass point P0 coincide. The lens from which the spherical aberrations are completely eliminated is easily produced in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は眼内レンズやコンタクトレンズなど眼の屈折矯
正手段としての非球面レンズ設計方法及び製造装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for designing an aspheric lens, such as an intraocular lens or a contact lens, as a refractive correction means for the eye, and a manufacturing apparatus.

〔従来の技術〕[Conventional technology]

従来の技術ではレンズの非球面性を球面からのずれの偶
数次の多項式で表現し、多項式の係数を変化させながら
光線追跡を行い、収差を計算して設計したり、あるいは
多項式の代わりに特殊な代数関数で非球面を表現し、係
数を変化させて、設′計をする方法が一般的であった。
In conventional technology, the asphericity of a lens is expressed as an even-order polynomial of the deviation from the spherical surface, ray tracing is performed while changing the coefficients of the polynomial, and aberrations are calculated and designed, or a special method is used instead of the polynomial. The most common method was to express the aspherical surface using an algebraic function and then design it by changing the coefficients.

しかしこれらの方法では、非球面の表現が代数関数で表
現可能な物に限定されてしまい、設計の自由度が限定さ
れてしまう0例えば光軸に回転対象な屈折曲面の場合、
光軸からの距離でその点の曲率半径が定まる。
However, with these methods, the expression of aspheric surfaces is limited to those that can be expressed by algebraic functions, and the degree of freedom in design is limited.For example, in the case of a refracting surface that is rotationally symmetrical about the optical axis,
The radius of curvature of that point is determined by the distance from the optical axis.

曲率半径を光軸からの距離の代数関数で表現した場合、
代数関数の形によって異なる2点の曲率半径が一定の関
係を持ってしまい、それらの点での曲率半径を独立に変
化させることはできなかった。
When the radius of curvature is expressed as an algebraic function of the distance from the optical axis,
The radii of curvature at two different points had a certain relationship depending on the shape of the algebraic function, and the radii of curvature at those points could not be changed independently.

このため一般に非球面の表現に代数関数をもちいる方法
では、設計の自由度が限定されてしまい、例えば球面収
差を完全に取り除いた眼内レンズやコンタクトレンズの
設計ができなかった。
For this reason, methods that use algebraic functions to express aspherical surfaces generally limit the degree of freedom in design, making it impossible, for example, to design intraocular lenses or contact lenses that completely eliminate spherical aberration.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

眼球光学系では黄斑部の中心窩での画質が視力に影響を
与えるので、眼内レンズやコンタクトンズの設計では、
球面収差をいかにコントロールするかが重要な課題の一
つとなる0本発明は球面収差を任意にコントロールする
ことにより、球面収差を完全に取り除いた眼内レンズや
コンタクトレンズ、あるいは球面収差を任意にコントロ
ールして、任意の焦点深度や解像力を持つレンズ設計方
法及び製造装置を提供することを目的とする。
In the ocular optical system, the image quality at the fovea of the macula affects visual acuity, so when designing intraocular lenses and contact lenses,
One of the important issues is how to control spherical aberration.The present invention provides an intraocular lens or contact lens that completely eliminates spherical aberration, or allows spherical aberration to be controlled arbitrarily. It is an object of the present invention to provide a lens designing method and manufacturing apparatus having arbitrary depth of focus and resolution.

〔課題を解決するための手段〕[Means to solve the problem]

本発明では設計すべき屈折面の形状を、代数関数を用い
て表現することをせずに、屈折曲面の光軸からのある高
さでの曲面の傾きを、その高さを遣る光線が所望の最終
通過点を通るように決め、高さとその点での曲面の傾き
から曲面全体の形状を設計する方法を用いる。即ち、 (1)本発明にかかる非球面レンズ設計法においては、 光線追跡法を用いたレンズ設計に於いて ある入射光線
に対して光線追跡を行い、その光線と特定の屈折曲面と
の交点の位置(光軸からの高さと光軸方向の位置)を求
めるステップと、その交点を通る追跡光線が最終屈折面
を屈折したのちに通るべき所望最終通過点POを決める
ステップと、交点での曲面の傾きT1を適当に定めるス
テップと、その光線のTlに対応した最終通過点P1を
光線追跡法を用いて求めるステップと、交点での傾きを
変えてT2とするステップと、T2に対応する最終通過
点P2を光線追跡法を用いて求めるステップと、Pl、
P2ともに特定の点POに一致しない場合に、先行する
2つの傾きと2つの対応する最終通過点とPOから内挿
あるいは外挿によって新しい傾きを求めるステップと、
それに対応する最終通過点を光線追跡法を用いて求める
ステップとを繰り返すことにより、傾きをつぎつぎ変化
させるステップと、 変化させられたある傾きに対応する最終通過点PがPO
に一致する場合、その傾きを交点での屈折曲面の傾きと
決定するステップと、 入射光線の高さあるいは角度を順次変えて、異なる交点
に対して上記と同様の過程を繰り返すステップと、こう
して求められた交点とその点での傾きとから特定の曲面
の形状を計算するステップとを持つことを特徴とする。
In the present invention, the shape of the refracting surface to be designed is not expressed using an algebraic function, but rather the inclination of the curved surface at a certain height from the optical axis of the refractive surface is determined, and the rays that use that height are determined as desired. A method is used in which the shape of the entire curved surface is designed from the height and the slope of the curved surface at that point. That is, (1) In the aspheric lens design method according to the present invention, in lens design using the ray tracing method, ray tracing is performed for a certain incident ray, and the intersection point of the ray and a specific refraction curved surface is determined. A step of determining the position (height from the optical axis and a position in the optical axis direction), a step of determining the desired final passing point PO where the tracing ray passing through the intersection point should pass after refracting the final refracting surface, and a step of determining the desired final passing point PO at the intersection point. a step of appropriately determining the slope T1 of the ray, a step of finding the final passing point P1 corresponding to Tl of the ray using the ray tracing method, a step of changing the slope at the intersection point to T2, and a step of determining the final passing point P1 corresponding to T2. determining the passing point P2 using a ray tracing method; Pl;
If neither P2 coincides with a specific point PO, finding a new slope by interpolation or extrapolation from the previous two slopes, two corresponding final passing points, and PO;
By repeating the step of finding the corresponding final passing point using the ray tracing method, the inclination is successively changed, and the final passing point P corresponding to the changed inclination is PO
If it agrees with , then the inclination is determined as the inclination of the refracting surface at the intersection point, and the step of repeating the same process as above for different intersection points by sequentially changing the height or angle of the incident ray. The present invention is characterized in that it includes a step of calculating the shape of a specific curved surface from the obtained intersection point and the slope at that point.

(2)また本発明にかかるレンズ設計製造装置において
は、 光線追跡法を用いたレンズ設計製造装置に於いて、 ある入射光線に対して光線追跡を行い、その光線と特定
の屈折曲面との交点の位置(光軸からの高さと光軸方向
の位置)を求める手段と、その交点を通る追跡光線が最
終屈折面を屈折したのちに通るべき所望最終通過点PO
を決める手段と、交点での曲面の傾きTIを適当に定め
る手段とその光線のT1に対応した最終通過点P1を光
線追跡法を用いて求める手段と、交点での傾きを変えて
T2とする手段と、T2に対応する最終通過点P2を光
線追跡法を用いて求める手段と、P1P2ともに特定の
点POに一致しない場合に、先行する2つの傾きと2つ
の対応する最終通過点とPOから内挿あるいは外挿によ
って新しい傾きを求める手段と、それに対応する最終通
過点を光線追跡法を用いて求める手段とを繰り返すこと
により、傾きをつぎつぎ変化させる手段と、変化させら
れたある傾きに対応する最終通過点PがPOに一致する
場合、その傾きを交点での屈折曲面の傾きと決定する手
段と、 入射光線の高さあるいは角度を順次変えて、異なる交点
に対して上記と同様の過程を繰り返す手段と、こうして
求められた交点とその点での傾きとから特定の曲面の形
状を計算する手段とを持ち計算された曲面形状を記憶装
置に記録する手段と記憶装置の情報にもとづいて数値制
御旋盤装置を用いてレンズ加工することを特徴とする。
(2) Furthermore, in the lens design and manufacturing apparatus according to the present invention, in the lens design and manufacturing apparatus using a ray tracing method, ray tracing is performed for a certain incident ray, and the intersection of the ray and a specific refraction curved surface is determined. means for determining the position (height from the optical axis and position in the optical axis direction), and the desired final passing point PO where the tracing ray passing through the intersection should pass after refracting the final refracting surface.
, a means for appropriately determining the inclination TI of the curved surface at the intersection point, a means for finding the final passing point P1 corresponding to T1 of the ray using a ray tracing method, and changing the inclination at the intersection point to T2. means for determining the final passing point P2 corresponding to T2 using a ray tracing method; A method for successively changing the slope by repeating the steps of finding a new slope by interpolation or extrapolation and finding the corresponding final passing point using the ray tracing method. When the final passing point P coincides with PO, the inclination is determined as the inclination of the refracting surface at the intersection point, and the same process as above is performed for different intersection points by sequentially changing the height or angle of the incident ray. and a means for calculating the shape of a specific curved surface from the intersection point and the slope at that point, and a means for recording the calculated curved surface shape in a storage device, based on the information in the storage device. The lens is machined using a numerically controlled lathe device.

〔作用〕[Effect]

本発明のレンズ設計法および製造法においては特定の屈
折面の光軸からの高さhでの曲面の傾きが、高さhを通
る光線が最終屈折面を通過したのち設計者が任意に指定
した特定の点Poを通るように決定される。入射光線の
高さあるいは角度が順次変化して異なる高さhでの曲面
の傾きが順次決定されて、曲面のそれぞれの高さhでの
傾きの値から全体の曲面の形が計算され設計される。即
ち、 本発明に係るレンズ設計法においては、光学系のある特
定の屈折曲面が設計曲面として選ばれ、7その曲面に対
して本発明による方法が適応される。
In the lens design method and manufacturing method of the present invention, the slope of the curved surface at a height h from the optical axis of a specific refracting surface is arbitrarily specified by the designer after a ray passing through the height h passes through the final refracting surface. is determined to pass through a specific point Po. The height or angle of the incident light ray is changed sequentially, and the slope of the curved surface at different heights h is determined sequentially, and the shape of the entire curved surface is calculated and designed from the slope value at each height h of the curved surface. Ru. That is, in the lens design method according to the present invention, a certain specific refractive curved surface of the optical system is selected as the designed curved surface, and the method according to the present invention is applied to that curved surface.

入射光線は通常近軸光線から計算され、光線の高さある
いは角度が、設計の目的により少しずつ増加して、入射
光線の各々に対して以下の計算が実施される。即ち、 光線追跡により入射光線が設計屈折曲面を通る交点(光
軸からの高さと光軸方向の距離)が求められる。この交
点での屈折曲面の傾きが本発明によって示された方法に
より次々と変化させられる。
The incident rays are usually calculated from paraxial rays, and the following calculations are performed for each incident ray, with the ray height or angle increasing in small increments depending on the design objective. That is, the intersection point (height from the optical axis and distance in the optical axis direction) where the incident ray passes through the designed refraction curved surface is determined by ray tracing. The inclination of the refractive surface at this point of intersection is successively varied by the method presented by the present invention.

つまり最初の2つの傾きは任意に決定され、3番目以降
は先行する2つの傾きと、光線追跡により求められた対
応する2つの最終通過点と、所望の最終通過点とから、
内挿あるいは外挿法により次の傾きが決定される。
In other words, the first two inclinations are arbitrarily determined, and the third and subsequent inclinations are determined from the two preceding inclinations, the two corresponding final passing points obtained by ray tracing, and the desired final passing point.
The next slope is determined by interpolation or extrapolation.

このようにして次々と交点での曲面の傾きが決定される
。対応する最終通過点が所望の通過点と一致すると、そ
のときの傾きが曲面の傾きとなる。
In this way, the slopes of the curved surfaces at the intersection points are determined one after another. When the corresponding final passing point coincides with the desired passing point, the slope at that time becomes the slope of the curved surface.

入射光線を次々に変化させて異なる高さhでの曲面の傾
きが決定されるにつれて、曲面の形も逐次的に決定され
る。入射光線を近軸光線がら始めて、角度を徐々に大き
くしていく設計方法では、曲面の光軸に近い部分から曲
面の傾きが決定されていく0曲面の形状が逐次決定され
ていく途中で入射光線と設計曲面との交点の光軸方向の
位置が設計にしたがって変化してくる。この変化はすで
に設計されている曲面形状と次の傾きを用いて計算され
る。このようにして設計された屈折曲面は屈折曲面の光
軸からの高さでの傾きが目的とする最終通過点を必ず通
るように設計されるので、種々の性質をもつレンズの設
計が可能である0例えば所望最終通過点を各高さに対し
て共通の一点に選べば球面収差を完全に取り除いたレン
ズが設計され、また所望最終通過点を2つの点に選べは
二重焦点を持つレンズが設計される。
As the slope of the curved surface at different heights h is determined by successively changing the incident light beam, the shape of the curved surface is also determined successively. In a design method in which the incident ray is started as a paraxial ray and the angle is gradually increased, the angle of the incident ray is gradually increased. The position of the intersection of the light beam and the designed curved surface in the optical axis direction changes according to the design. This change is calculated using the already designed curved surface shape and the following slope. A refractive surface designed in this way is designed so that the slope of the refractive surface from the optical axis always passes through the intended final passing point, making it possible to design lenses with various properties. For example, if the desired final passing point is chosen as one common point for each height, a lens that completely eliminates spherical aberration will be designed, and if the desired final passing point is chosen to be two points, a lens with bifocals will be designed. is designed.

〔実施例〕〔Example〕

以下本発明の実施例を眼球光学系の球面収差を完全に取
り除く眼内レンズに適応した場合について説明する。第
1図は本発明に係る方法のフローチャート、第2図は眼
内レンズが挿入された眼球の模式図とフローチャート中
で使用される記号を図示したものであり、第3図は本発
明の実施に使用する装置のブロック図である。第3図に
おいてはlは計算装置、2は記憶装置、3はデイスプレ
ィ装置、4はキーボード、5は記憶装置、6は数値制御
旋盤である。■の計算装置はCPUよりなり、図示しな
いメモリに書き込まれている制御プログラムに従いレン
ズ設計を行う、キーボードの選択により記憶装置の特定
のファイルが選択され10の続出手段により眼内レンズ
設計に必要な角膜の前面、後面、眼内レンズ前面、後面
の曲率半径、各屈折面間の距離、媒質の屈折率、どの屈
折面が設計の対象となるのかの情報、追跡光線の初期値
および追跡光線の初期値を変化させる場合光軸からの高
さが変化するのか、あるいは角度が変化するのか、変化
のピンチ、あるいは目的値設定のための情報などが読み
込まれる。13の目的値設定手段により設計曲面の各交
点に対する光線の所望最終通過点が求められる0本実施
例では球面収差を除いた眼内レンズを設計するので、所
望最終通過点は共通のある一点となる。12の光線追跡
手段を用いて追跡光線の最初の光線初期値に対して光線
追跡が行われ、設計曲面での通過点(光軸からの高さh
と光軸方向の位置)が、15の交点位置決定手段により
求められる。交点での屈折曲面の傾きが、14の傾き設
定手段により本発明による方法に基づき次々に変化させ
られ、変化した傾きについて光線追跡手段を用いて、最
終通過点が16の最終通過点計算手段により求められる
Hereinafter, a case will be described in which an embodiment of the present invention is applied to an intraocular lens that completely eliminates spherical aberration of an ocular optical system. FIG. 1 is a flowchart of the method according to the present invention, FIG. 2 is a schematic diagram of an eyeball with an intraocular lens inserted and symbols used in the flowchart, and FIG. 3 is a flowchart of the method according to the present invention. 1 is a block diagram of a device used for In FIG. 3, l is a computing device, 2 is a storage device, 3 is a display device, 4 is a keyboard, 5 is a storage device, and 6 is a numerically controlled lathe. The calculation device (2) is composed of a CPU and performs lens design according to a control program written in a memory (not shown).A specific file in the storage device is selected by selecting the keyboard, and the calculation device necessary for intraocular lens design is selected by the 10 successive means. The radius of curvature of the anterior and posterior surfaces of the cornea, the anterior and posterior surfaces of the intraocular lens, the distance between each refractive surface, the refractive index of the medium, information on which refractive surface is the target of the design, the initial value of the tracing ray, and the When changing the initial value, information such as whether the height from the optical axis changes, whether the angle changes, the pinch of change, or information for setting the target value is read. The desired final passing point of the ray for each intersection point of the designed curved surface is determined by the objective value setting means of No. 13. In this example, since an intraocular lens is designed with spherical aberration removed, the desired final passing point is a common point. Become. Ray tracing is performed on the first ray initial value of the tracing ray using the ray tracing means No. 12, and the passing point on the design curved surface (height h from the optical axis) is
and the position in the optical axis direction) are determined by the 15 intersection position determining means. The inclination of the refracting curved surface at the intersection point is successively changed by 14 inclination setting means based on the method according to the present invention, and the changed inclination is determined by using a ray tracing means, and the final passing point is determined by 16 final passing point calculation means. Desired.

この最終通過点が17の判定手段1により目的値と一致
しているかどうかが確認され、−敗するまで本発明によ
る方法に基づき、14の傾き設定手段が繰り返し適用さ
れ、傾きが次々に変化して最終通過点がそのつど計算さ
れる。またその際に光軸方向の距離が変化する場合はそ
の変化を交点位置決定手段により決定する。このように
して最終通過点が目的値設定手段により決められた値と
合致すると、そのときの屈折曲面の傾きが求める曲面の
傾きとなる。初期値を順次変えて異なる高さhでの傾き
が次々と求められ、18の曲面形状計算手段により順々
に曲面の形状が決定されていく。
It is checked whether this final passing point matches the target value by the determining means 1 of 17, and the slope setting means of 14 is repeatedly applied based on the method according to the present invention until failure occurs, and the slope changes one after another. The final passing point is calculated in each case. If the distance in the optical axis direction changes at that time, the change is determined by the intersection position determining means. When the final passing point matches the value determined by the target value setting means in this way, the inclination of the refraction curved surface at that time becomes the inclination of the curved surface to be determined. Inclinations at different heights h are successively determined by changing the initial value one after another, and the shape of the curved surface is determined one after another by the 18 curved surface shape calculation means.

この曲面形状は次の高さでの計算のちととなる。This curved shape will be calculated after the following height.

判定手段2では曲面の形状が寞全に定まったかどうかが
確認され、形状が完全に定まると曲面形状のデータが書
込手段により5の記憶装置に書き込まれ、そのデータを
もとに6の数値制御によりレンズが加工される。
The determining means 2 checks whether the shape of the curved surface is completely determined. When the shape is completely determined, the data of the curved surface shape is written into the storage device 5 by the writing means, and the numerical value 6 is written based on the data. The lens is processed under control.

〔発明の効果〕〔Effect of the invention〕

本発明によれば幾何光学の範囲内で、ある特定の共役点
に対して球面収差を完全に取り除いた眼内レンズが簡単
に設計加工できる。また局面の各高さhに対して所望最
終通過点を変化させれば望みの球面収差を持つ眼内レン
ズが設計加工可能である0例えば所望最終通過点を2つ
にすれば、2重焦点をもつ眼内レンズやコンタクトンズ
が可能となる。このようにして本発明によれば球面収差
のないはっきりと見える眼内レンズやコンタクトレンズ
が制作でき、また2重焦点や多焦点レンズの精密な設計
加工が可能となる。
According to the present invention, an intraocular lens that completely eliminates spherical aberration for a certain conjugate point can be easily designed and processed within the scope of geometrical optics. In addition, by changing the desired final passing point for each height h of the curve, it is possible to design and process an intraocular lens with the desired spherical aberration. It becomes possible to use intraocular lenses and contact lenses with In this way, according to the present invention, intraocular lenses and contact lenses that are clearly visible without spherical aberration can be produced, and bifocal and multifocal lenses can be precisely designed and processed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る方法のフローチャートを示したも
のである。第2図は眼内レンズ挿入眼の光学系を示した
ものである。PTは交点、hは屈折局面での高さ、Tは
その点での局面の傾き、POは所望最終通過点、PはT
に対応する最終通過点である。第3図は本発明の実施に
必要な装置のズロック図であり、1は計算装置、2は記
憶装置3はデイスプレィ装置、4はキーボード、5は記
憶装置、6はNC旋盤である。 11 閂 (I) 竿 圓 (2ン 第3図 自 発 手 続 補 正 書 平成 3年 2月15日 1、事件の表示 平l132ot年特許願* 313917号2、発明の
名称 3、補正をする者 事件との関係
FIG. 1 shows a flowchart of the method according to the invention. FIG. 2 shows the optical system of an eye with an intraocular lens inserted. PT is the intersection point, h is the height at the refraction surface, T is the slope of the surface at that point, PO is the desired final passing point, and P is T
This is the final passing point corresponding to . FIG. 3 is a block diagram of the equipment necessary for carrying out the present invention, in which 1 is a computing device, 2 is a storage device 3 is a display device, 4 is a keyboard, 5 is a storage device, and 6 is an NC lathe. 11 Bolt (I) Kanyuan (2) Figure 3 Voluntary procedure amendment dated February 15, 1991 1, Indication of the case, 1991 Patent application No. 313917 2, Title of the invention 3, Person making the amendment Case and connection of

Claims (1)

【特許請求の範囲】[Claims] (1)光線追跡法を用いたレンズ設計に於いてある入射
光線に対して光線追跡を行い、その光線と特定の屈折曲
面との交点の位置(光軸からの高さと光軸方向の位置)
を求めるステップと、その交点を通る追跡光線が最終屈
折面を屈折したのちに通るべき所望最終通過点P0を決
めるステップと、 交点での曲面の傾きT1を適当に定めるステップと、そ
の光線のT1に対応した最終通過点P1を光線追跡法を
用いて求めるステップと、交点での傾きを変えてT2と
するステップと、T2に対応する最終通過点P2を光線
追跡法を用いて求めるステップと、P1、P2ともに特
定の点P0に一致しない場合に、先行する2つの傾きと
2つの対応する最終通過点とP0から内挿あるいは外挿
によって新しい傾きを求めるステップと、それに対応す
る最終通過点を光線追跡法を用いて求めるステップとを
繰り返すことにより、傾きをつぎつぎ変化させるステッ
プと、 変化させられたある傾きに対応する最終通過点PがP0
に一致する場合、その傾きを交点での屈折曲面の傾きと
決定するステップと、 入射光線の高さあるいは角度を順次変えて、異なる交点
に対して上記と同様の過程を繰り返すステップと、こう
して求められた交点とその点での傾きとから特定の曲面
の形状を計算するステップとを持つことを特徴とするレ
ンズ曲面設計法(2)光線追跡法を用いたレンズ設計製
造装置に於いて、 ある入射光線に対して光線追跡を行い、その光線と特定
の屈折曲面との交点の位置(光軸からの高さと光軸方向
の位置)を求める手段と、その交点を通る追跡光線が最
終屈折面を屈折したのちに通るべき所望最終通過点P0
を決める手段と、交点での曲面の傾きT1を適当に定め
る手段とその光線のT1に対応した最終通過点P1を光
線追跡法を用いて求める手段と、交点での傾きを変えて
T2とする手段と、T2に対応する最終通過点P2を光
線追跡法を用いて求める手段と、P1P2ともに特定の
点P0に一致しない場合に、先行する2つの傾きと2つ
の対応する最終通過点とP0から内挿あるいは外挿によ
って新しい傾きを求める手段と、それに対応する最終通
過点を光線追跡法を用いて求める手段とを繰り返すこと
により、傾きをつぎつぎ変化させる手段と、 変化させられたある傾きに対応する最終通過点PがP0
に一致する場合、その傾きを交点での屈折曲面の傾きと
決定する手段と、 入射光線の高さあるいは角度を順次変えて、異なる交点
に対して上記と同様の過程を繰り返す手段と、こうして
求められた交点とその点での傾きとから特定の曲面の形
状を計算する手段とを持ち計算された曲面形状を記憶装
置に記録する手段と記憶装置の情報にもとづいて数値制
御旋盤装置を用いてレンズ加工することを特徴とするレ
ンズ設計製造装置
(1) In lens design using the ray tracing method, ray tracing is performed for a certain incident ray, and the position of the intersection between that ray and a specific refraction surface (height from the optical axis and position in the optical axis direction)
a step of determining the desired final passing point P0 through which the tracing ray passing through the intersection point should pass after being refracted by the final refracting surface; a step of appropriately determining the slope T1 of the curved surface at the intersection point; using a ray tracing method to obtain a final passing point P1 corresponding to T2; If both P1 and P2 do not match a specific point P0, a step of finding a new slope by interpolation or extrapolation from the previous two slopes, two corresponding final passing points, and P0, and calculating the corresponding final passing point. By repeating the steps of determining the slope using the ray tracing method, the final passing point P corresponding to the changed slope is P0.
If it agrees with , then the inclination is determined as the inclination of the refracting surface at the intersection point, and the step of repeating the same process as above for different intersection points by sequentially changing the height or angle of the incident ray. A lens curved surface design method (2) comprising a step of calculating the shape of a specific curved surface from the obtained intersection point and the inclination at that point. A method for ray tracing an incident ray and determining the position (height from the optical axis and position in the direction of the optical axis) of the point of intersection between the ray and a specific refracting surface, and a means for tracing the ray that passes through that intersection to the final refracting surface. Desired final passing point P0 to pass through after refracting
, a means for appropriately determining the inclination T1 of the curved surface at the intersection point, a means for finding the final passing point P1 corresponding to T1 of the ray using a ray tracing method, and a means for changing the inclination at the intersection point to T2. means for determining the final passing point P2 corresponding to T2 using a ray tracing method; A method for successively changing the slope by repeating the steps of finding a new slope by interpolation or extrapolation and finding the corresponding final passing point using the ray tracing method; The final passing point P is P0
If it agrees with , there is a means to determine the inclination as the inclination of the refracting surface at the intersection, a means to repeat the same process as above for different intersections by sequentially changing the height or angle of the incident ray, and a method for determining the inclination in this way. means for calculating the shape of a specific curved surface from the intersection point and the slope at that point, means for recording the calculated curved surface shape in a storage device, and a numerically controlled lathe device based on the information in the storage device. Lens design and manufacturing equipment characterized by lens processing
JP1313917A 1989-12-01 1989-12-01 Aspheric lens design method and processing equipment Expired - Lifetime JP2913191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1313917A JP2913191B2 (en) 1989-12-01 1989-12-01 Aspheric lens design method and processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1313917A JP2913191B2 (en) 1989-12-01 1989-12-01 Aspheric lens design method and processing equipment

Publications (2)

Publication Number Publication Date
JPH03174109A true JPH03174109A (en) 1991-07-29
JP2913191B2 JP2913191B2 (en) 1999-06-28

Family

ID=18047077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1313917A Expired - Lifetime JP2913191B2 (en) 1989-12-01 1989-12-01 Aspheric lens design method and processing equipment

Country Status (1)

Country Link
JP (1) JP2913191B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006120750A1 (en) * 2005-05-13 2006-11-16 Akira Yabe Optical system designing method using real number value surface number
WO2010064278A1 (en) * 2008-12-03 2010-06-10 Kashiwagi Toyohiko Ophthalmic lens design method, ophthalmic lens, and refraction correcting operation device
EP2428831A1 (en) 2010-09-13 2012-03-14 Koito Manufacturing Co., Ltd. Lens and manufacturing method of lens

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4536907B2 (en) * 2000-11-01 2010-09-01 株式会社メニコン Ophthalmic lens design method and ophthalmic lens obtained using the same
DE60134204D1 (en) 2000-11-01 2008-07-10 Menicon Co Ltd Method of designing an ophthalmic lens
JP3860041B2 (en) 2002-01-23 2006-12-20 株式会社メニコン Contact lens and contact lens design method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006120750A1 (en) * 2005-05-13 2006-11-16 Akira Yabe Optical system designing method using real number value surface number
US7852571B2 (en) 2005-05-13 2010-12-14 Akira Yabe Optical system design method using real number surface number
WO2010064278A1 (en) * 2008-12-03 2010-06-10 Kashiwagi Toyohiko Ophthalmic lens design method, ophthalmic lens, and refraction correcting operation device
EP2428831A1 (en) 2010-09-13 2012-03-14 Koito Manufacturing Co., Ltd. Lens and manufacturing method of lens
CN102402002A (en) * 2010-09-13 2012-04-04 株式会社小糸制作所 Lens and manufacturing method of lens
US9423611B2 (en) 2010-09-13 2016-08-23 Koito Manufacturing Co., Ltd. Lens and method of forming shape of lens based on calculated normal direction of light incident points on virtual light incident surface

Also Published As

Publication number Publication date
JP2913191B2 (en) 1999-06-28

Similar Documents

Publication Publication Date Title
US5191366A (en) Aspherical lens, method of producing the lens and apparatus for producing the lens
CA2047507C (en) Lens design method and resulting aspheric lens
US6082856A (en) Methods for designing and making contact lenses having aberration control and contact lenses made thereby
US5220359A (en) Lens design method and resulting aspheric lens
US7717563B2 (en) Contact lenses
US6089711A (en) Radial gradient contact lenses
JP4551489B2 (en) Manufacturing method of diffractive lens
JP4777247B2 (en) Ophthalmic lens with optimal power profile
JP4954419B2 (en) Glasses manufacturing method
CN1833190B (en) Use distance vision and the optometry of near vision astigmatism to determine the method for eyeglass
KR100566600B1 (en) Contact lens
WO1992006400A1 (en) Aspheric ophthalmic accommodating lens design for intraocular lens and contact lens
JP2007503011A5 (en)
CN104080422A (en) Apodized hybrid diffractive-refractive IOL for pseudo-accommodation
CN102326115B (en) Method for determining aspherization layer for ophthalmic lens
CA2569990C (en) Optimization of contact lenses to reduce aberrations and methods for their design
CN1146744C (en) Differential thickness contact lens using plurality of fundamental curves, making method thereof
RU2501053C2 (en) Process of simplifying lens structure
JPH03174109A (en) Designing method and working device for aspherical lens
EP3999901B1 (en) Bifocal spectacle lens, computer implemented method for creating a numerical representation of same, computer program, data processing system, and non-volatile computer readable storage medium
EP1151345B1 (en) methods of manufacturing a contact lens
CN116235097B (en) Computer-implemented method of determining a numerical representation of an ophthalmic lens
CA2248624C (en) Contact lens
US20040017544A1 (en) Contact lenses and methods for their design
Sullivan Physical and psychophysical analysis of progressive addition lens embodiments