JPH031740A - Data transmission circuit - Google Patents
Data transmission circuitInfo
- Publication number
- JPH031740A JPH031740A JP1137155A JP13715589A JPH031740A JP H031740 A JPH031740 A JP H031740A JP 1137155 A JP1137155 A JP 1137155A JP 13715589 A JP13715589 A JP 13715589A JP H031740 A JPH031740 A JP H031740A
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- circuit
- signal
- transmission
- pair
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 46
- 238000005070 sampling Methods 0.000 claims abstract description 11
- 239000003990 capacitor Substances 0.000 claims abstract description 8
- 239000013078 crystal Substances 0.000 abstract description 7
- 230000008859 change Effects 0.000 abstract description 5
- 238000004965 Hartree-Fock calculation Methods 0.000 abstract 5
- 238000010586 diagram Methods 0.000 description 8
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 229910017741 MH2O Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Landscapes
- Filters That Use Time-Delay Elements (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、ベアケーブルまたは配電線を伝送路として
相互に結合された一対の伝送装置間でデータ伝送゛を回
り周波数変移変調方式(以下FSX方式と略称する)の
データ伝送回路、ことに伝送装置の回路構成に関する。Detailed Description of the Invention [Field of Industrial Application] This invention uses a frequency shift keying method (hereinafter referred to as FSX) to transmit data between a pair of transmission devices that are interconnected using bare cables or distribution lines as transmission paths. This invention relates to data transmission circuits (abbreviated as ``systems''), and particularly to circuit configurations of transmission devices.
第5図はデータ伝送回路の一般的な構成を示すブロック
図、第6図はFSK方式の原理を示すタイムチャートで
ある。第1図において、IA、IBは異なる場所A、B
に配されたデータ伝送装置であ、9、CPUとしてのマ
イクロプロセッサ3Aまたは3Bによシ制御される送信
画に4Aまたは4B、および受信回路5Aまたは5Bを
備え、ペアケーブルまたは配に線を伝送線2として伝送
装置iA、iBが相互に結合されて一双方向通信が行わ
れる。FIG. 5 is a block diagram showing the general configuration of a data transmission circuit, and FIG. 6 is a time chart showing the principle of the FSK system. In Figure 1, IA and IB are different locations A and B.
A data transmission device arranged in The transmission devices iA and iB are connected to each other as line 2 to perform one-way communication.
F’SK方式のデータ伝送回路では第6図に示すように
、例えば伝送装置ii側のCPtJ3Aでデータを論理
レベル1に対応したデータ信号H2および論理レベル0
に対応したデータ信号りに符号化し、これを送信回路4
Aで、H信号は周波数f2sL信号は周波数fl で振
幅Vが互いに等しく、かつfl)f2なる条件を満たす
多重化した周波数のF’SK信号に多重化し、伝送線2
を介して伝送装置1B側の受信回路5Bに伝送する。こ
の信号を受けた受信回路5Bは、FSK信号信号局波数
成分子1とf! と全労離し、復調回路によって受信側
復調データ信号に復調した信号をCPU3Bに向けて出
力する。−!た、復調回路の機能はCPU6Bに設けて
よく、かつ伝送装置1B側からの送信についても同様で
ある。In the F'SK type data transmission circuit, as shown in FIG.
The transmission circuit 4 encodes the data signal corresponding to the
At A, the H signal has a frequency f2sThe L signal has a frequency fl and the amplitude V is equal to each other, and is multiplexed into an F'SK signal of a multiplexed frequency that satisfies the condition fl)f2, and the transmission line 2
The received signal is transmitted to the receiving circuit 5B on the transmission device 1B side via the transmitter 1B. Receiving circuit 5B receiving this signal receives FSK signal station wave number component element 1 and f! The signal is demodulated into a demodulated data signal on the receiving side by the demodulation circuit and outputted to the CPU 3B. -! Further, the function of the demodulation circuit may be provided in the CPU 6B, and the same applies to transmission from the transmission device 1B side.
ところで従来装置ではその受信回路が、FSX信号中の
周波数成分子1とfxft分離するのに、fl+f2
にそれぞれ同調したLCフィルタまたはアクティブフィ
ルタ2組が設けられ、どちらのフィルタに電圧があるか
を復調回路を介してCPUが判別するよう構成したもの
が知られている。By the way, in the conventional device, the receiving circuit separates frequency component 1 in the FSX signal by fxft, but fl+f2
There is a known configuration in which two sets of LC filters or active filters are provided which are respectively tuned to each other, and a CPU determines which filter has a voltage via a demodulation circuit.
〔発明が解決しようとする課題〕
従来装置で用いられる2組のLCフィルタまたはアクテ
ィブフィルタは23℃程度の常温で周波数で1−または
f2にそれぞれ同調するよう調整される。しかしながら
、これらのフィルタ回路にはり、C,R素子が用いられ
ており、それぞれの温度特性が互いに異なるために1フ
イルタが使用される一20℃から+70℃にわたる広い
温度範囲で同調周波数をflまたはf2に正確に保つこ
とが困難であり、フィルタの周波数選択性Qおよび利得
Hが周囲温度の変動に伴なって変化するという問題があ
る。このような変化は、本来互いに等しい振幅v2持つ
べき周波数分離された二つの受信信号のレベルに大きな
差を生じさせることにな飢振幅Vの大きさによって0レ
ベル信号、ルベル信号のいずれが受信されたかを判断す
るCPUに誤判断を生じさせるという問題をもたらす。[Problems to be Solved by the Invention] The two sets of LC filters or active filters used in the conventional device are adjusted to tune to the frequency 1- or f2, respectively, at room temperature of about 23°C. However, these filter circuits use C and R elements, and each filter has different temperature characteristics, so one filter is used. There is a problem in that it is difficult to accurately maintain f2, and the frequency selectivity Q and gain H of the filter change as the ambient temperature changes. Such a change causes a large difference in the level of two frequency-separated received signals that should originally have the same amplitude v2.Depending on the magnitude of the amplitude V2, whether a 0-level signal or a level signal is received is determined. This poses a problem in that the CPU, which judges whether the data is accurate or not, makes an erroneous judgment.
この発明の目的は、受信回路の回路構成の改良により、
周囲温度の変化に基づく同調周波数のずれ全防ぎ、受信
データ信号の誤判断を回避することにある。An object of the present invention is to improve the circuit configuration of a receiving circuit.
The objective is to completely prevent shifts in the tuning frequency due to changes in ambient temperature and to avoid misjudgment of received data signals.
上記課題全解決するために、この発明によれば、伝送線
を介して結合された一対の伝送装置がそれぞれマイクロ
プロセッサによp制御される送信回路および受信回路を
備え、論理0,1に符号化されたデータ信号をこれに対
応する二つの周波数信号に変えて伝送する周波数変移変
調方式のデータ伝送回路において、前記送信回路が1個
のクリスタル発憑器と、その出力周波数を前記0.ルベ
ルに対応する二つの周波数信号−分周する一対のカウン
タ回路とを備えるとともに、この一対のカウンタ回路が
発する標本化クロックによシ制御されて伝送信号を前記
二つの周波数の受信信号にそれぞれ分離する一対のスイ
ッチドキャパシタフィルタ全前記受信回路側に備えてな
るものとする。In order to solve all of the above-mentioned problems, according to the present invention, a pair of transmission devices coupled via a transmission line is provided with a transmission circuit and a reception circuit each controlled by a microprocessor, and a logic 0, 1 is coded. In a data transmission circuit using a frequency shift keying method, which converts a converted data signal into two corresponding frequency signals and transmits the same, the transmitting circuit includes one crystal oscillator and its output frequency is set to 0. It is equipped with a pair of counter circuits that divide two frequency signals corresponding to the frequency, and is controlled by a sampling clock generated by the pair of counter circuits to separate the transmitted signal into received signals of the two frequencies. A pair of switched capacitor filters are provided on the receiving circuit side.
上記手段は、スイッチドキャパシタフィルタ(以下SC
F’と略称する)が、コンデンサとアナログスイッチの
組み合わせによって等測的に抵抗と見なせる回路からな
シ、この等価抵抗と別に設けたコンデンサによりアクテ
ィブRCフィルタを形成するものでちゃ、その周波数選
択性QはSCF’に供給される同調用の標本化クロック
の周期によって決まシ、標本化クロックの周波数全同調
周波数f1またはf2の50倍または100倍程度に正
確に保つ仁とによシ、周囲温度が一50℃から+80℃
にわたる広い範囲で変化しても周波数選択性Ql約1%
以下の変化に保持できる性能を有することに着目して構
成したものであシ、送信時にはクリスタル発振器が発す
る正確なりロックを、CPUによシ分周比が制御される
一対のプログラマブルカウンタによって周波数f1およ
びf2 なるFSK信号の周波数を作υ出し、送信回路
から伝送線にF’SK信号を乗せるとともに、受信時に
はとのFSK信号の受信回路に設けた2 ff、(1の
SCFの標本化クロックを、前記プログラマブルカウン
タの分周比を変えて作シ出すことによ少、受信FSKS
分信号中周波数成分子1 + f2に対する選択性Qを
広い温度範囲にわたって1%以下の誤差範囲に保って周
波数分離できる受信回路を得ることができ、したがって
データ信号の送受信積度の高いデータ伝送回路が得られ
る。The above means is a switched capacitor filter (hereinafter referred to as SC).
(abbreviated as F') is not a circuit that can be equivalently regarded as a resistance by combining a capacitor and an analog switch, but it is a circuit that forms an active RC filter by this equivalent resistance and a separate capacitor, and its frequency selectivity Q is determined by the period of the sampling clock for tuning supplied to SCF', and the frequency of the sampling clock must be kept accurately at about 50 or 100 times the total tuning frequency f1 or f2, and the ambient temperature. -50℃ to +80℃
Frequency selectivity Ql is about 1% even if it changes over a wide range.
It was constructed with a focus on having performance that can be maintained under the following changes.During transmission, the accurate lock generated by the crystal oscillator is controlled by a pair of programmable counters whose frequency division ratio is controlled by the CPU. and f2, and put the F'SK signal on the transmission line from the transmitting circuit, and at the time of reception, the SCF sampling clock of 2ff, (1) is set in the receiving circuit of the FSK signal. , by changing the frequency division ratio of the programmable counter, the received FSKS is reduced.
It is possible to obtain a receiving circuit that can perform frequency separation by keeping the selectivity Q for the intermediate signal frequency component element 1 + f2 within an error range of 1% or less over a wide temperature range, and therefore a data transmission circuit with high transmission and reception efficiency of data signals. is obtained.
以下この発明を実施例に基づいて説明する。 The present invention will be explained below based on examples.
第1図はこの発明の実施例回路を′示すブロック図であ
シ、伝送線2を介して結合される二つの伝送装置の一方
を示したものである。ただし、二つの伝送装置はその回
路構成が互いに等しいので、以下送信回路および受信回
路の説明を図の送信回路と受信回路に代表させて行う。FIG. 1 is a block diagram showing a circuit according to an embodiment of the present invention, and shows one of two transmission devices connected via a transmission line 2. In FIG. However, since the circuit configurations of the two transmission devices are the same, the transmitting circuit and the receiving circuit will be explained below using the transmitting circuit and the receiving circuit shown in the figure as a representative.
図において、4はCPU3によって制御される送信回路
、5はCPUKよ勺信号処理される受信回路である。送
信回路4は、12.24MH2OりOyり11Sを出力
するクリスタル発振器11.クロック118とCPUか
らの分周比設定信号323,338をそれぞれ受けて周
波数f、およびfl なる信号128.133’にそれ
ぞれ出力するプログラマブルカウンタ12および16と
、CPUからのゲート信号358または36St−それ
ぞれ受けてオンとなり信号12Sまたは13Sを通過さ
せる一対のANDゲート15および16、ORゲート1
7を介して信号12Sおよび13St−逐次受け、これ
を正弦波に整形しFSK信号18Sとして出力する送信
変調部18.およびFSX信号18Se伝送線としての
配電線2の電圧で変調して伝送F’SK信号4Sとして
出力する送信結合部19とで構成される。In the figure, 4 is a transmitting circuit controlled by the CPU 3, and 5 is a receiving circuit that processes signals from the CPUK. The transmitting circuit 4 includes a crystal oscillator 11 that outputs 12.24 MH2O and 11S. Programmable counters 12 and 16 receive the clock 118 and division ratio setting signals 323 and 338 from the CPU and output signals 128 and 133' with frequencies f and fl, respectively, and gate signals 358 and 36St from the CPU, respectively. A pair of AND gates 15 and 16, which are turned on in response to the signal and pass the signal 12S or 13S, and an OR gate 1
A transmission modulation section 18.7 sequentially receives signals 12S and 13St- via signals 12S and 13St, shapes them into a sine wave, and outputs them as an FSK signal 18S. and a transmission coupling unit 19 that modulates the FSX signal 18Se signal with the voltage of the distribution line 2 as a transmission line and outputs it as a transmission F'SK signal 4S.
一方、受信回路5は、配電線2の電圧で変調された送信
FSK信号4Sを受けて受信PSK信号218に復調か
つインピーダンス整合する受信結合部21と、受信F′
SK信号21Sを周波数flおよびf2なる二つの受信
信号228および238に分離する一対のスイッチドキ
ャパシタフィルタ゛(SCF’)22および23とで構
成され、CPU3が受信信号228および233の受信
をその振幅Vによって判断して論理0および1に対応し
た復調データ信号に変換することによシデータの伝送が
行われる。On the other hand, the receiving circuit 5 includes a receiving coupling section 21 that receives the transmitted FSK signal 4S modulated by the voltage of the power distribution line 2, demodulates it into a received PSK signal 218, and matches the impedance thereof,
It is composed of a pair of switched capacitor filters (SCF') 22 and 23 that separate the SK signal 21S into two received signals 228 and 238 having frequencies fl and f2, and the CPU 3 receives the received signals 228 and 233 based on the amplitude V. The data is transmitted by converting the signal into a demodulated data signal corresponding to logical 0 and 1 based on the determination.
第2図は送信回路の要部の動作説明図、第3図は受信回
路の要部の動作説明図、第4図は送信回路および受信回
路のタイムチャートであシ、以下前述の実施例回路の動
作について説明する。第2図において、クリスタル発振
器11が発する12゜24 MHz のクロック118
はCPUからの信号328によって分局比1700に設
定されたプログラマプルカラ/り12によって周波数f
!が12.24MHz÷1700=7200Hz の周
波数信号123と、信号33Sによって分局比1800
に設定されたカウンタ13によって周波数f1が12.
24MHz÷1800=6800Hzの周波数信号13
8とに多重化され、周波数信号12S(l−t、AND
ゲート15に1周波数倍号138はANDゲート16に
それぞれ入力される。ANDゲート16は第4図に示す
符号化されたデータ信号のHレベルに対応するゲート信
号368によシ1ビットIc相応する期間オンとなり、
周波数f。Fig. 2 is an explanatory diagram of the operation of the main part of the transmitting circuit, Fig. 3 is an explanatory diagram of the operation of the main part of the receiving circuit, and Fig. 4 is a time chart of the transmitting circuit and the receiving circuit. The operation will be explained. In FIG. 2, a 12°24 MHz clock 118 generated by a crystal oscillator 11
is the frequency f by the programmable color/res 12 set to a division ratio of 1700 by the signal 328 from the CPU.
! is 12.24MHz÷1700=7200Hz frequency signal 123 and signal 33S, the division ratio is 1800.
The frequency f1 is set to 12.
24MHz÷1800=6800Hz frequency signal 13
8 and a frequency signal 12S (lt, AND
The one frequency multiple 138 of the gate 15 is input to the AND gate 16, respectively. The AND gate 16 is turned on for a period corresponding to one bit Ic by a gate signal 368 corresponding to the H level of the encoded data signal shown in FIG.
Frequency f.
=6800H2(7)周波数信号138t−出力し、A
NDゲート15はデータ信号のLレベルに対応するゲー
ト信号358によシラビットに相応する期間オンとなシ
、周波数fx=7200H2の周波数信号12Sを出力
する。二つの周波数信号12Sおよび133は第1図に
示すようにORゲート17を介して送信変調部18に送
られ、第4図に示すよう。Kデータ信号のLレベル、H
レベルを多頁周波数ft=7200Hz$よびf*=6
80QHzに変調した正弦波の受信側F’SK信号18
Sとなり、送イg結合部19で伝送線としての配電線2
の商用周波数電圧により変調された伝送F’SK信号に
変換され、配置線2を介して実際には離れた場所に配さ
れた受信回路5に伝送され、受信回路5の受信結合部2
1によシ商用周波数成分が除去されて受信側F’SK信
号218に:復調する。=6800H2 (7) Frequency signal 138t-output, A
The ND gate 15 is kept on for a period corresponding to the sylla bit by a gate signal 358 corresponding to the L level of the data signal, and outputs a frequency signal 12S with a frequency fx=7200H2. The two frequency signals 12S and 133 are sent to the transmission modulator 18 via the OR gate 17 as shown in FIG. 1, and as shown in FIG. K data signal L level, H
Multi-page frequency ft=7200Hz$ and f*=6
Receiving side F'SK signal 18 of sine wave modulated at 80QHz
S, and the distribution line 2 as a transmission line is connected at the transmission Ig coupling part 19.
It is converted into a transmission F'SK signal modulated by the commercial frequency voltage of , and is transmitted to the reception circuit 5 which is actually located at a remote location via the arrangement line 2, and is transmitted to the reception coupling section 2 of the reception circuit 5.
1, the commercial frequency component is removed and the receiving side F'SK signal 218 is demodulated.
受信回路5の一対のSCF’22および23は、第3図
に示すように送信回路4の一対のプログラマブルカウン
タ12および13が発する標本化クロック428,43
3によりそれぞれの同調周波数f1およびf2が制御さ
れる。すなわち、FSXの同調周波数を一50℃から+
80℃にわたる広い温度範囲でその周波数選択性Qを1
%以下の誤差範囲に保持するためKは、同調周波数Ex
tたはf2の50倍から100培に相応する標本化ク
ロック428,438’&必要とする。そこで、プログ
ラマブルカウンタ12の分周比全送信時の1700から
その50分の1に相応する分周比64に設定し、カウン
タ13の分周比を36に設定することによシ、フィルタ
22および23のアナログスイッチをそれぞれの同調周
波数f1= 720QHzおよびfz =6800Hz
(D%=50倍に相応する周波数360 KHzおよ
び34 Q KHzの、原本化クロック423,438
で制御することができ、第4図に示すように、SCF’
23からは同調周波数fz=6800Hz 成分のみ大
きな振幅Vを有する利得Hの高いf2同調受受信号23
Sが得られ、SCF’22からは同調周波数f1==7
200 Hz酸成分みが大きな振幅vl有する利得Hの
高いf1同調受受信号228が得られる。The pair of SCF's 22 and 23 in the receiving circuit 5 receives sampling clocks 428 and 43 generated by the pair of programmable counters 12 and 13 in the transmitting circuit 4, as shown in FIG.
3 controls the respective tuning frequencies f1 and f2. In other words, the tuning frequency of FSX is changed from -50℃ to +
Its frequency selectivity Q is 1 over a wide temperature range of 80℃.
To keep the error within %, K is the tuning frequency Ex
Sampling clocks 428, 438' and corresponding to 50 to 100 times t or f2 are required. Therefore, by setting the frequency division ratio of the programmable counter 12 to 64, which corresponds to 1/50th of the frequency division ratio of 1700 at the time of full transmission, and setting the frequency division ratio of the counter 13 to 36, the filters 22 and 23 can be Analog switch with respective tuning frequency f1 = 720QHz and fz = 6800Hz
(The original clock 423,438 with a frequency of 360 KHz and 34 Q KHz corresponding to D% = 50 times
As shown in Figure 4, SCF'
From 23 onwards, only the tuning frequency fz=6800Hz component has a large amplitude V, and the f2 tuned reception/reception signal 23 has a high gain H.
S is obtained, and from SCF'22 the tuning frequency f1==7
A high f1 tuned reception/reception signal 228 with a high gain H in which only the 200 Hz acid component has a large amplitude vl is obtained.
したがって、CPU3で二つの受信信号238および2
2S’eその振幅Vによって弁別して復調を行うことに
より、第4図の最上段に示す符号化されたデータ信号と
相似な図示しない受信データ信号を得ることができる。Therefore, the CPU 3 receives the two received signals 238 and 2.
2S'e By performing demodulation with discrimination based on the amplitude V, a received data signal (not shown) similar to the encoded data signal shown in the top row of FIG. 4 can be obtained.
この発明は前述のように、受信回路に一対のSCF′を
設けて受信FSX信号の周波数分離を行うとともに、S
CFの標本化クロックを送信回路のクリスタル発振器お
よびプログラマブルカウンタを利用して得るよう構成し
た。その結果、コンデンサとアナログスイッチとの組み
合わせで等測的に抵抗として機能するSCFが温度依存
性の大きい抵抗やインダクタンス素子を含まず、したが
ってLCフィルタやアクティブフィルタを用いた従来装
置に比べて広い流度範囲にわたって周波数選択性の変化
の少いフィルタが得られるとともに、SCF”の周波数
選択性を正確に保つに必要な標本化クロックを送信回路
の一つのクリスタル発振器および一対のプログラマブル
カウンタを利用してSCF’の同調周波数の50倍から
100倍程度に容易かつ正確に保つことができるので、
−50℃から+80℃にわたる広い堪能範囲で周波数選
択性の変化が1%以下に低減された周波数選択性の高い
l;’SK方式のデータ伝送回路を回路構成を複雑化す
ることなく提供できるとともに、周波数選択性および利
得Hの改善によって受信信号の周波数弁別性能が向上す
るので、論理0.ルベル忙符号化されたデータ信号の誤
判断を防止できる利点が得られる。As described above, this invention provides a pair of SCF's in the receiving circuit to perform frequency separation of the received FSX signal, and also performs frequency separation of the received FSX signal.
The CF sampling clock was configured to be obtained using a crystal oscillator and a programmable counter in the transmitting circuit. As a result, the SCF, which functions isometrically as a resistor in combination with a capacitor and an analog switch, does not contain any highly temperature-dependent resistance or inductance elements, and therefore has a wider current flow than conventional devices using LC filters or active filters. By using one crystal oscillator and a pair of programmable counters in the transmitter circuit, the sampling clock necessary to maintain the frequency selectivity of the SCF accurately is obtained. Since the tuning frequency can be easily and accurately maintained at about 50 to 100 times the tuning frequency of SCF',
It is possible to provide a highly selective SK type data transmission circuit with a change in frequency selectivity reduced to 1% or less over a wide performance range from -50°C to +80°C without complicating the circuit configuration. , the frequency discrimination performance of the received signal is improved by improving the frequency selectivity and the gain H, so that the logic 0. This provides the advantage of preventing erroneous judgments of data signals encoded by the Lebel code.
また、scFの同調周波数をプログラマブルカウンタの
分周比の設定によシ容易に決めることができるので、従
来装置におけるフィルタ回路の微調整が不要−なり、し
たがって調整時間の短縮による省時間効果および省力化
効果が得られる。In addition, since the tuning frequency of the scF can be easily determined by setting the frequency division ratio of the programmable counter, there is no need for fine adjustment of the filter circuit in conventional equipment, resulting in time-saving and labor-saving effects by shortening the adjustment time. effect.
第1図は仁の発明の実施例回路を示すブロック図、第2
図は実施例送信回路の要部の動作説明図、第3図は実施
′例受信回路の要部の動作説明図、第4図は実施例回路
における要部のタイムチャート、第5図はデータ伝送回
路の一般的構成を示すブロック図、第6図はFSK方式
の原理を示すタイムチャートである。
iA、1B・・・データ伝送装置、2・・・伝送線、3
A、3B・・・マイクロプロセッサ(CPU)、4 A
。Figure 1 is a block diagram showing an embodiment of Jin's invention;
Figure 3 is an explanatory diagram of the operation of the main parts of the embodiment transmitting circuit, Figure 3 is a diagram explaining the operation of the main parts of the embodiment reception circuit, Figure 4 is a time chart of the main parts of the embodiment circuit, and Figure 5 is the data FIG. 6 is a block diagram showing the general configuration of the transmission circuit, and a time chart showing the principle of the FSK system. iA, 1B...Data transmission device, 2...Transmission line, 3
A, 3B... Microprocessor (CPU), 4 A
.
Claims (1)
れマイクロプロセッサにより制御される送信回路および
受信回路を備え、論理0,1に符号化されたデータ信号
をこれに対応する二つの周波数信号に変えて伝送する周
波数変調方式のデータ伝送回路において、前記送信回路
が1個のクリスタル発振器と、その出力周波数を前記0
,1レベルに対応する二つの周波数信号に分周する一対
のカウンタ回路とを備えるとともに、この一対のカウン
タ回路が発する標本化クロックにより制御されて伝送信
号を前記二つの周波数の受信信号にそれぞれ分離する一
対のスイッチドキャパシタフィルタを前記受信回路側に
備えてなることを特徴とするデータ伝送回路。1) A pair of transmission devices connected via a transmission line each include a transmitting circuit and a receiving circuit controlled by a microprocessor, and transmit data signals encoded as logic 0 and 1 to two corresponding frequency signals. In a frequency modulation type data transmission circuit that transmits data by changing to
, a pair of counter circuits that divide the frequency into two frequency signals corresponding to one level, and the transmission signal is controlled by a sampling clock generated by the pair of counter circuits to separate the transmission signal into reception signals of the two frequencies. 1. A data transmission circuit comprising: a pair of switched capacitor filters on the receiving circuit side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1137155A JPH031740A (en) | 1989-05-30 | 1989-05-30 | Data transmission circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1137155A JPH031740A (en) | 1989-05-30 | 1989-05-30 | Data transmission circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH031740A true JPH031740A (en) | 1991-01-08 |
Family
ID=15192107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1137155A Pending JPH031740A (en) | 1989-05-30 | 1989-05-30 | Data transmission circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH031740A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5780851A (en) * | 1980-11-07 | 1982-05-20 | Seiko Epson Corp | Fsk demodulating circut |
JPS5830260A (en) * | 1981-08-17 | 1983-02-22 | Seiko Epson Corp | Fsk demodulating circuit |
JPS61234152A (en) * | 1985-04-09 | 1986-10-18 | Toshiba Corp | Frequency shift keying modulator |
JPS61273009A (en) * | 1985-05-28 | 1986-12-03 | Fujitsu Ltd | Filter circuit |
-
1989
- 1989-05-30 JP JP1137155A patent/JPH031740A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5780851A (en) * | 1980-11-07 | 1982-05-20 | Seiko Epson Corp | Fsk demodulating circut |
JPS5830260A (en) * | 1981-08-17 | 1983-02-22 | Seiko Epson Corp | Fsk demodulating circuit |
JPS61234152A (en) * | 1985-04-09 | 1986-10-18 | Toshiba Corp | Frequency shift keying modulator |
JPS61273009A (en) * | 1985-05-28 | 1986-12-03 | Fujitsu Ltd | Filter circuit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4161697A (en) | Automatically clarifying radio receiver | |
US5163159A (en) | Dual mode automatic frequency control | |
US3967202A (en) | Data transmission system including an RF transponder for generating a broad spectrum of intelligence bearing sidebands | |
DK165536B (en) | RECEIVER FOR DIRECT MODULATED FM DATA SIGNALS | |
CA2074169A1 (en) | Method of and apparatus for controlling modulation of digital signals in frequency modulated transmissions | |
US4651104A (en) | Frequency converter with automatic frequency control | |
US6922402B1 (en) | Mutual frequency locking across a link | |
EP0392647B1 (en) | Current loop arrangements with FSK | |
JPH031740A (en) | Data transmission circuit | |
US4922509A (en) | Method of implementing programmable matched filters, and corresponding filters and filter banks | |
CA1213017A (en) | Method for transmitting digital signals | |
US2947860A (en) | Sideband selection | |
US6148182A (en) | Technique to facilitate the independent bi-directional data transmission on a single amplitude modulated carrier | |
JPH0389633A (en) | Receiver circuit | |
US6501337B1 (en) | Method and apparatus for correcting the effect of dielectric absorption in an open-loop modulator circuit | |
US2702343A (en) | Piezoelectric crystal filter for exalted carrier and discriminator circuits | |
US3878464A (en) | Modulator for tone and binary signals | |
US5036288A (en) | Circuit arrangement for clock recovery | |
US4536871A (en) | Signal detector apparatus | |
JPS60148242A (en) | Modulator and demodulator | |
JPS59183543A (en) | Time division multi-direction communication system | |
KR960010490B1 (en) | Sate monitoring rf modem circuit of multi-channel method for catv | |
US1768287A (en) | Ibbaitee | |
KR920006267Y1 (en) | Catv apparatus | |
Doland | Deep space FM system, a concept |