JPH0317389B2 - - Google Patents

Info

Publication number
JPH0317389B2
JPH0317389B2 JP60073469A JP7346985A JPH0317389B2 JP H0317389 B2 JPH0317389 B2 JP H0317389B2 JP 60073469 A JP60073469 A JP 60073469A JP 7346985 A JP7346985 A JP 7346985A JP H0317389 B2 JPH0317389 B2 JP H0317389B2
Authority
JP
Japan
Prior art keywords
mirror
laser beam
optical axis
laser
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60073469A
Other languages
Japanese (ja)
Other versions
JPS61232690A (en
Inventor
Yasuto Nai
Masao Hishii
Masaaki Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP7346985A priority Critical patent/JPS61232690A/en
Publication of JPS61232690A publication Critical patent/JPS61232690A/en
Publication of JPH0317389B2 publication Critical patent/JPH0317389B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/0818Unstable resonators

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、レーザガスの流れる方向が光軸と
直交しているレーザ共振器の改良に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an improvement in a laser resonator in which the direction in which laser gas flows is perpendicular to the optical axis.

〔従来の技術〕[Conventional technology]

第4図は従来のレーザ共振器の構成を示す説明
図である。図において、1は凹面ミラー、2は凸
面ミラー、3は設定光軸で、凹面ミラー1および
凸面ミラー2のそれぞれの球面の中心を結ぶ線に
相当する。4は取り出しミラー、4aはこの取り
出しミラー4に設けた取り出しミラー穴であり、
設定光軸3方向から見た形状が真円になるように
形成されている。5は共振器内のレーザビーム、
6は取り出しミラー4より取り出されたレーザビ
ームで、図中の点線で示すように取り出しミラー
穴4a部を欠いた円形リング状つまりドーナツ状
になつている。7はレーザビーム規制用アパーチ
ヤー、8の矢印はレーザガスの流れる方向を示し
ており、レーザガスは設定光軸3と直交する方向
に流れている。
FIG. 4 is an explanatory diagram showing the configuration of a conventional laser resonator. In the figure, 1 is a concave mirror, 2 is a convex mirror, and 3 is a set optical axis, which corresponds to a line connecting the centers of the spherical surfaces of concave mirror 1 and convex mirror 2, respectively. 4 is a take-out mirror, 4a is a take-out mirror hole provided in this take-out mirror 4,
It is formed so that the shape viewed from the three directions of the set optical axis is a perfect circle. 5 is a laser beam inside the resonator,
Reference numeral 6 denotes a laser beam taken out from the take-out mirror 4, which has a circular ring shape, that is, a donut shape, with the take-out mirror hole 4a missing, as shown by the dotted line in the figure. Reference numeral 7 indicates an aperture for regulating the laser beam, and an arrow 8 indicates the direction in which the laser gas flows, and the laser gas flows in a direction perpendicular to the set optical axis 3.

上記のような構成の従来のレーザ共振器におい
ては、凹面ミラー1と凸面ミラー2とによつて決
まる設定光軸3を中心として、レーザビーム5が
凹面ミラー1、凸面ミラー2間を往復しながら、
設定光軸3から順次に外に向つて対称に広がつて
ゆくことになる。この広がつたビーム5は取り出
しミラー4によつて共振器外へドーナツ状ビーム
6として取り出される。
In the conventional laser resonator configured as described above, the laser beam 5 is reciprocated between the concave mirror 1 and the convex mirror 2 with the set optical axis 3 determined by the concave mirror 1 and the convex mirror 2 as the center. ,
It will spread symmetrically outward from the set optical axis 3 one after another. This spread beam 5 is taken out of the resonator as a donut-shaped beam 6 by an extraction mirror 4.

第5図は上記ドーナツ状のレーザビーム6の特
性を示す図で、aはビーム軸に直角の断面におけ
るレーザビーム6の形状を示し、ドーナツ形の内
径は取り出しミラー穴4の穴径と等しく、外径は
凹面ミラー1と凸面ミラー2とのそれぞれの曲率
半径および両ミラー1,2間の距離で決まるビー
ム拡大率と取り出しミラー穴4の穴径との積にな
つている。b図はこのドーナツ状のレーザビーム
6の利得が、レーザガスの流れる方向8に対して
図のG1およびG2で示すように下流側と上流側と
が異なつていることを示している。
FIG. 5 is a diagram showing the characteristics of the donut-shaped laser beam 6, where a shows the shape of the laser beam 6 in a cross section perpendicular to the beam axis, and the inner diameter of the donut shape is equal to the hole diameter of the extraction mirror hole 4. The outer diameter is the product of the beam expansion ratio determined by the radius of curvature of the concave mirror 1 and the convex mirror 2 and the distance between the mirrors 1 and 2, and the diameter of the extraction mirror hole 4. Figure b shows that the gain of this doughnut-shaped laser beam 6 is different on the downstream side and upstream side, as shown by G1 and G2 in the figure, with respect to the direction 8 in which the laser gas flows.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の3軸直交式レー装置では、
第5図bで示されたように、レーザガスの流れる
方向8に対して利得分布が異なるので、レーザビ
ーム6の強度が流れの方向に対して上流側が強
く、下流側が弱くなり、一様な強度分布が得られ
ないという問題があつた。
In the conventional three-axis orthogonal Ray device as mentioned above,
As shown in FIG. 5b, the gain distribution differs with respect to the direction 8 in which the laser gas flows, so the intensity of the laser beam 6 is stronger on the upstream side and weaker on the downstream side with respect to the flow direction, resulting in a uniform intensity. There was a problem that the distribution could not be obtained.

この発明は上記のような問題点を解消するため
になされたもので、一様な強度分布が得られるレ
ーザ共振器を提供することを目的とする。
The present invention was made to solve the above-mentioned problems, and an object of the present invention is to provide a laser resonator that can obtain a uniform intensity distribution.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るレーザ共振器は、光軸方向から
見て円形の穴を有するレーザビーム取り出しミラ
ーおよびレーザビーム規制用アパーチヤーの取り
付け位置が、それぞれ穴径の中心を設定光軸に対
して、設定光軸と直交する方向に流れるガス流の
下流方向へ変位させるようにしたものである。
In the laser resonator according to the present invention, the mounting position of the laser beam extraction mirror and the laser beam regulating aperture having a circular hole when viewed from the optical axis direction is such that the center of the hole diameter is set relative to the set optical axis. The gas flow is displaced in the downstream direction of the gas flow in the direction perpendicular to the axis.

〔作用〕[Effect]

この発明においては、光軸方向から見て円形の
穴を有するレーザビーム取り出しミラーおよびレ
ーザビーム規制用アパーチヤーの穴の中心を設定
光軸に対してガス流の下流側に変位させることに
よつて、利得分布の低い下流側でのレーザビーム
の往復回数を上流側より多くして、利得分布の低
さを補償するものである。
In this invention, by displacing the center of the hole of the laser beam extraction mirror and the laser beam regulating aperture having a circular hole when viewed from the optical axis direction to the downstream side of the gas flow with respect to the set optical axis, This is to compensate for the low gain distribution by increasing the number of round trips of the laser beam on the downstream side where the gain distribution is low compared to the upstream side.

〔実施例〕〔Example〕

第1図はこの発明の一実施例のレーザ共振器の
構成を示す図であり、1〜8の符号は従来例を示
した第4図の同符号と同一または相当部分を示
す。
FIG. 1 is a diagram showing the configuration of a laser resonator according to an embodiment of the present invention, and the symbols 1 to 8 indicate the same or corresponding parts as the same symbols in FIG. 4 showing the conventional example.

取り出したミラー4はこの穴の中心を設定光軸
3よりガス流8の下流方向にδだけ変位させて取
り付けられ、アパーチヤー7はこの変位量δとビ
ーム拡大率Mとの積M・δだけ一方向に変位させ
てある。
The taken-out mirror 4 is installed with the center of this hole displaced by δ from the set optical axis 3 in the downstream direction of the gas flow 8, and the aperture 7 is fixed by the product M·δ of this displacement δ and the beam expansion factor M. It is displaced in the direction.

上記のように構成したこの発明によるレーザ共
振器においては、レーザビーム5は凹面ミラー1
と凸面ミラー2との間を往復しながら、設定光軸
3から外側に広がつてゆく。この時、取り出しミ
ラー4の穴の中心が設定光軸3からδだけガス流
8の下流方向に変位しているため、ガス流8の上
流側と下流側とでは凹面ミラー1と凸面ミラー2
間の往復回数が異なつてくる。第2図はこのガス
流8の上流側と下流側におけるレーザビーム5の
往復回数の相異を説明する図であり、レーザビー
ム5aは、ガス流8の下流側を往復し、レーザビ
ーム5bは上流側を往復して、それぞれが取り出
しミラー4に反射してドーナツ上のレーザビーム
6a,6bとなつて共振器外へ発射するようにな
つている。
In the laser resonator according to the present invention configured as described above, the laser beam 5 is transmitted through the concave mirror 1.
The light beam spreads outward from the set optical axis 3 while reciprocating between the light beam and the convex mirror 2. At this time, since the center of the hole in the take-out mirror 4 is displaced from the set optical axis 3 by δ in the downstream direction of the gas flow 8, the concave mirror 1 and the convex mirror 2 are located on the upstream and downstream sides of the gas flow 8.
The number of round trips will vary. FIG. 2 is a diagram explaining the difference in the number of reciprocations of the laser beam 5 on the upstream and downstream sides of the gas flow 8. The laser beam 5a reciprocates on the downstream side of the gas flow 8, and the laser beam 5b reciprocates on the downstream side of the gas flow 8. The laser beams reciprocate on the upstream side, are reflected by the take-out mirror 4, become donut-shaped laser beams 6a and 6b, and are emitted outside the resonator.

上記のようにガス流8の下流側のレーザビーム
5aのほうが上流側よりも往復回数が多いので、
この回数の多い分だけ増幅の度合が大きくなり、
利得分布の平滑化ができる。
As mentioned above, the laser beam 5a on the downstream side of the gas flow 8 makes more reciprocations than on the upstream side, so
The greater the number of times, the greater the degree of amplification.
Gain distribution can be smoothed.

第3図はこの利得分布の平滑化によつて得られ
たドーナツ状のレーザビームを示す図で、b図に
示すように利得分布の平滑化によつてビームの強
さG3はガス流8の上流側と下流側ともに等しく
なる。ただし、この上流側と下流側のリング幅
W1とW2とは、W1<W2の関係が生ずるが実用上
では問題はない。
Figure 3 is a diagram showing a donut-shaped laser beam obtained by smoothing this gain distribution.As shown in Figure b, by smoothing the gain distribution, the beam intensity G3 is Both the upstream and downstream sides of are equal. However, this upstream and downstream ring width
Although W 1 and W 2 have a relationship of W 1 <W 2 , there is no problem in practical use.

なお、上記実施例では、設定光軸3から取り出
しミラー4の穴の中心を変位させるように取り付
け位置を移動させた場合について説明したが、取
り出しミラー4の外径と穴とを所定の偏心量を有
するようにしてもよく、全く同様にアパーチヤー
7についても外径と穴とを偏心させたものを使用
してもよく、上記実施例と同様の効果を奏する。
In the above embodiment, the mounting position is moved so as to displace the center of the hole in the take-out mirror 4 from the set optical axis 3. Similarly, the aperture 7 may have an eccentric outer diameter and hole, and the same effect as in the above embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、設定光軸方向
から見て円形の穴を有するレーザビーム取り出し
ミラーおよびレーザビーム規制用アパーチヤーの
穴の中心を、設定光軸に対して、設定光軸と直交
する方向に流れるガス流の下流側に変位させて、
凹面ミラーと凸面ミラーとの間のガス流の上流側
と下流側のレーザビームの往復回数が相違するよ
うに構成したので、近視野において利得分布が均
一の円形リング状レーザビームを得ることができ
る効果がある。
As explained above, the present invention is arranged such that the center of the hole of the laser beam extraction mirror having a circular hole when viewed from the direction of the set optical axis and the center of the hole of the laser beam regulating aperture is set in a direction perpendicular to the set optical axis. Displaced to the downstream side of the gas flow flowing through the
Since the structure is configured so that the number of round trips of the laser beam on the upstream and downstream sides of the gas flow between the concave mirror and the convex mirror is different, it is possible to obtain a circular ring-shaped laser beam with a uniform gain distribution in the near field. effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例によるレーザ共振
器の構成図、第2図は第1図の構成によるレーザ
ビームの往復状態を示す説明図、第3図は第1図
の構成によつて得られるドーナツ状のレーザビー
ムの特性説明図、第4図は従来のレーザ共振器の
構成図、第5図は従来のレーザ共振器によつて得
られるドーナツ状のレーザビームの特性説明図で
ある。 図において、1は凹面ミラー、2は凸面ミラ
ー、3は設定光軸、4は取り出しミラー、5およ
び6はレーザビーム、7はアパーチヤー、8はガ
ス流である。なお、図中同一符号は同一または相
当部分を示す。
FIG. 1 is a configuration diagram of a laser resonator according to an embodiment of the present invention, FIG. 2 is an explanatory diagram showing the reciprocating state of a laser beam according to the configuration of FIG. 1, and FIG. FIG. 4 is a configuration diagram of a conventional laser resonator, and FIG. 5 is a diagram explanatory of characteristics of a donut-shaped laser beam obtained by a conventional laser resonator. . In the figure, 1 is a concave mirror, 2 is a convex mirror, 3 is a set optical axis, 4 is an extraction mirror, 5 and 6 are laser beams, 7 is an aperture, and 8 is a gas flow. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 凹面ミラーおよび凸面ミラーの両球心を結ぶ
あらかじめ設定された光軸に対して、前記光軸の
方向から見て円形の穴を有するレーザビーム取り
出しミラーおよびレーザビーム規制用アパーチヤ
ーのそれぞれの穴の中心を、前記光軸と直交する
方向に流れるガス流の下流側に変位させたことを
特徴とするレーザ共振器。 2 アパーチヤーの穴の中心の変位量が取り出し
ミラーの変位とビーム拡大率との積であることを
特徴とする特許請求の範囲第1項記載のレーザ共
振器。
[Claims] 1. A laser beam extraction mirror and a laser beam regulating mirror having a circular hole when viewed from the direction of the optical axis with respect to a preset optical axis connecting both spherical centers of a concave mirror and a convex mirror. A laser resonator characterized in that the center of each hole of the aperture is displaced to the downstream side of a gas flow flowing in a direction perpendicular to the optical axis. 2. The laser resonator according to claim 1, wherein the amount of displacement of the center of the aperture hole is the product of the displacement of the extraction mirror and the beam expansion factor.
JP7346985A 1985-04-09 1985-04-09 Laser resonator Granted JPS61232690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7346985A JPS61232690A (en) 1985-04-09 1985-04-09 Laser resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7346985A JPS61232690A (en) 1985-04-09 1985-04-09 Laser resonator

Publications (2)

Publication Number Publication Date
JPS61232690A JPS61232690A (en) 1986-10-16
JPH0317389B2 true JPH0317389B2 (en) 1991-03-07

Family

ID=13519161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7346985A Granted JPS61232690A (en) 1985-04-09 1985-04-09 Laser resonator

Country Status (1)

Country Link
JP (1) JPS61232690A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57106187A (en) * 1980-11-12 1982-07-01 Atomic Energy Authority Uk Laser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57106187A (en) * 1980-11-12 1982-07-01 Atomic Energy Authority Uk Laser

Also Published As

Publication number Publication date
JPS61232690A (en) 1986-10-16

Similar Documents

Publication Publication Date Title
US6201229B1 (en) Light intensity converter
JP2003533709A (en) Self-leveling penta laser beam device
JP3487386B2 (en) Light source device with double reflector to eliminate shadow of lamp
JPS5933993B2 (en) unstable ring laser resonator
JPH0212982A (en) Laser having multipath-resonator
JPS635727B2 (en)
US5327449A (en) Laser resonator
JPH0317389B2 (en)
JPS6342427B2 (en)
US4685780A (en) Reflection type optical device
US4096447A (en) Unstable resonator laser system
JPH0637402A (en) Semiconductor-laser optical reflector element
JPH0462568B2 (en)
JPH0980330A (en) Multibeam scanning optical system
JP3479197B2 (en) Laser device
JPH0527195A (en) Scanning optical system
JPS60165616A (en) Beam converter
JPH0439647B2 (en)
JPH0418475B2 (en)
JPS6116706Y2 (en)
JPH022189A (en) Gas laser device
JPS61226985A (en) Gas laser oscillator
JPS62154402U (en)
JPH0317282Y2 (en)
GB2308667A (en) Exposure equipment for a semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term