JPH03173571A - Hollow yarn type plasma separating film - Google Patents

Hollow yarn type plasma separating film

Info

Publication number
JPH03173571A
JPH03173571A JP1314096A JP31409689A JPH03173571A JP H03173571 A JPH03173571 A JP H03173571A JP 1314096 A JP1314096 A JP 1314096A JP 31409689 A JP31409689 A JP 31409689A JP H03173571 A JPH03173571 A JP H03173571A
Authority
JP
Japan
Prior art keywords
plasma
hollow fiber
membrane
hollow yarn
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1314096A
Other languages
Japanese (ja)
Other versions
JP2844758B2 (en
Inventor
Toshiyuki Yagi
敏幸 八木
Hitoshi Ono
仁 大野
Isamu Yamamoto
勇 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP1314096A priority Critical patent/JP2844758B2/en
Publication of JPH03173571A publication Critical patent/JPH03173571A/en
Application granted granted Critical
Publication of JP2844758B2 publication Critical patent/JP2844758B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Abstract

PURPOSE:To obtain excellent living body adaptability and high plasma permeating performance by using a hollow yarn type plasma separating film formed of one or two kinds or more of specified polycarbonates. CONSTITUTION:A hollow yarn plasma separating film used in the separation of plasma from blood is formed of one, or two or more of polycarbonates represented by the formula (I), (II), or (II). The average pore diameter present in the surface and inner part of the hollow yarn film is 0.075-0.3mum, the mercury press-fit quantity ratio (K) determined by the mercury press-fit method represented by the formula (IV) is 0.05 or less, and the porosity is 0.4 to 0.8. In the formulae, R1 and R2 are selected from the radials of H, CH3, C2H5, C3H7, C6H12 and C6H5, X from H, F, Cl and Br, and Y from O, SO2 and CO2.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、血液中より血球成分を含まない血漿を分離す
る中空糸型血漿分離膜に関するものであり、更に詳しく
は、健常者からの成分採血(ドナープラズマフェレーシ
ス)や自己免疫疾患等の患者に適用される血漿交換療法
等に用いる事のできる、生体適合性に優れた中空糸型血
漿分離膜に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a hollow fiber plasma separation membrane that separates plasma that does not contain blood cell components from blood. The present invention relates to a hollow fiber plasma separation membrane with excellent biocompatibility that can be used for blood collection (donor plasmapheresis) and plasma exchange therapy applied to patients with autoimmune diseases.

(従来の技術) 近年の分析技術の向上は、生体の異物に対する反応を分
子レベルにまで拡張して調べることが可能となった。こ
れにより、生体適合性、特に、血液との生体適合性につ
いて詳しく検討が進められている。特に、人工腎臓用血
液透析膜において、その研究が進められ、血液と接触し
た際の反応に関して詳しく検討されている。これによれ
ば、生体の反応は、生体にとっての異物である膜との接
触が引金となり、血液中の蛋白質、細胞と膜との相豆作
用により、種々の反応が起こる。この反応は、■血液凝
固系と■免疫系の反応に大きく分けることが出来る。し
かし、血漿分離では、抗凝固剤を使用して、■の凝固系
の反応を阻止し、また比較的短時間(30分から2時間
)であるため、■の免疫系の反応のうちでも短期の反応
である補体の活性化が問題となる。補体系の反応は、免
疫系反応の最初期に、異物を認識して、これを攻撃する
ものであり、本来は、体内に侵入した細菌類に対する防
御システムとして働くものである。しかしながら、この
補体の活性化は、一方でアナフイラトキシンショックな
どを引き起こし、生体にとって好ましくない影響も与え
るため、血漿分離膜としては、補体の活性化の低いもの
が望まれている。補体の活性化は、膜表面の物理的、化
学的特性により大きな影響をうける。補体の活性化を起
こしにくい材料の特性としては、疎水性の表面特性を持
ち、OH基、NH基、SH基等の極性基がないこと、等
が知られている。この様な材料としては、ポリカーボネ
ート、ポリエチレン、ポリ塩化ビニル、ポリエーテルス
ルホン等が知られている。しかしながら、膜素材のみで
は、完全に補体活性の低い血漿分離膜とすることは出来
ない。
(Prior Art) Recent improvements in analysis technology have made it possible to expand and investigate the response of living organisms to foreign substances to the molecular level. As a result, detailed studies are underway on biocompatibility, particularly biocompatibility with blood. In particular, research is progressing on hemodialysis membranes for artificial kidneys, and the reaction when they come into contact with blood has been studied in detail. According to this, reactions in living organisms are triggered by contact with membranes that are foreign to the living body, and various reactions occur due to the interaction between proteins and cells in the blood and membranes. This reaction can be broadly divided into 1) blood coagulation system reaction and 2) immune system reaction. However, in plasma separation, anticoagulants are used to block the coagulation system reaction (■), and the reaction is relatively short (30 minutes to 2 hours), so it is one of the short-term reactions of the immune system (■). The problem is the activation of complement, which is a reaction. The complement system reaction recognizes and attacks foreign substances at the earliest stage of the immune system reaction, and originally functions as a defense system against bacteria that have invaded the body. However, this activation of complement causes anaphylatoxin shock and other unfavorable effects on the living body, so a membrane with low complement activation is desired as a plasma separation membrane. Complement activation is greatly influenced by the physical and chemical properties of the membrane surface. It is known that materials that are less susceptible to complement activation include hydrophobic surface characteristics and the absence of polar groups such as OH groups, NH groups, and SH groups. Known examples of such materials include polycarbonate, polyethylene, polyvinyl chloride, polyether sulfone, and the like. However, it is not possible to obtain a plasma separation membrane with completely low complement activity using membrane materials alone.

すなわち、膜の微細構造が補体の活性化に影響を与える
のである。血漿が血漿分離膜の細孔内を通過する時、血
漿中の補体系蛋白質と膜素材が接触するが、このときの
接触面積が大きければ、大きいほど、補体の活性化の機
会が増え、いかに補体の活性化の低い材料であっても、
濾過された血漿中の補体が活性化されてしまうという問
題があった。
In other words, the fine structure of the membrane influences complement activation. When plasma passes through the pores of a plasma separation membrane, the complement system proteins in the plasma come into contact with the membrane material, and the larger the contact area at this time, the greater the opportunity for complement activation. No matter how low complement activation the material is,
There was a problem that complement in the filtered plasma was activated.

また、ポリカーボネート膜に関しては、食品工業や医薬
品工業等の工業用水の濾過処理用平膜に関する技術(特
公昭53−15549号)があるD\°゛ I中空糸膜として血漿分離に用いた技術はない。
Regarding polycarbonate membranes, there is a technology (Japanese Patent Publication No. 53-15549) related to flat membranes for filtration of industrial water in the food industry, pharmaceutical industry, etc. The technology used for plasma separation as a D\°゛I hollow fiber membrane is do not have.

また、ポリエーテルポリカーボネートからつくられた中
空糸膜を血漿分離に用いる技術もある(特開昭57−5
2481号公報、特開昭59−22559号公報)が補
体活性抑制効果が十分でない。ポリカーボネート膜に関
しては食品工業や医薬品工業の工業用水の濾過処理用平
膜に関する技術(特公昭53−15549号公報)があ
るが中空糸膜として血漿分離に応用した技術はみられな
い。
There is also a technology that uses hollow fiber membranes made from polyether polycarbonate for plasma separation (Japanese Patent Laid-Open No. 57-5
No. 2481, JP-A No. 59-22559) do not have sufficient complement activation suppressing effects. Regarding polycarbonate membranes, there is a technology for flat membranes for filtration of industrial water in the food and pharmaceutical industries (Japanese Patent Publication No. 15549/1983), but no technology has been found for applying hollow fiber membranes to plasma separation.

(発明が解決しようとする課題) 一本発明は、生体適合性、特に補体の活性化の1 少な11かつ適正な血漿分離速度をもつ中空糸型血漿分
離膜を提供しようとするものであり、従来の血漿分離族
では、血液中より濾過分離した血漿系型血漿分離膜を提
供しようとするものである。
(Problems to be Solved by the Invention) One object of the present invention is to provide a hollow fiber plasma separation membrane that is biocompatible, in particular has low complement activation, and has an appropriate plasma separation rate. In the conventional plasma separation group, an attempt is made to provide a plasma-based plasma separation membrane that separates blood from blood by filtration.

(課題を解決するための手段) 前記課題を解決するため、鋭意研究の結果、本発明を完
成するに至った。すなわち、血液から血漿を分離する下
記一般式(I)、(n)または(III)を有するポリ
カーボネートの1種又は2種以上で構成される中空糸型
血漿分離膜であって、該中空糸膜の表面及び内部に存在
する細孔半径が0.075〜0.31Uであり、′、−
戸す千寺下記(IV)式で示される水銀圧入法で求めら
れる水銀圧入量比(K)が0.05以下でかつ空孔率が
0.4以上、0.8以下であることを特徴とする中空糸
型血漿分離膜。
(Means for Solving the Problems) In order to solve the above problems, as a result of intensive research, the present invention has been completed. That is, a hollow fiber plasma separation membrane composed of one or more polycarbonates having the following general formula (I), (n), or (III) that separates plasma from blood, the hollow fiber membrane The pore radius existing on the surface and inside of is 0.075-0.31U,', -
Tosusenji The mercury intrusion amount ratio (K) determined by the mercury intrusion method shown by the following formula (IV) is 0.05 or less, and the porosity is 0.4 or more and 0.8 or less. Hollow fiber plasma separation membrane.

じSO2,CO□の中から選ばれる      Jであ
る。
J is selected from the same SO2 and CO□.

本願発明のポリカーボネートは前記一般式(I)、(n
)又は(III)で示されるもので、R,、R2がCH
3,XがHであるポリカーボネートが好ましい。分子量
は15000〜40000で15000以下では中空糸
膜への紡糸成形がむつ(III) 本願発明の中空糸膜は多孔質であって、膜内面や表面に
存在する平均細孔半径は0.075〜0− 3 /jJ
s好ましくは0.1〜0.25uである。
The polycarbonate of the present invention has the general formula (I), (n
) or (III), in which R,, R2 is CH
3. Polycarbonates in which X is H are preferred. The molecular weight is 15,000 to 40,000, and if it is less than 15,000, it is difficult to spin into a hollow fiber membrane (III) The hollow fiber membrane of the present invention is porous, and the average pore radius existing on the inner surface and surface of the membrane is 0.075 to 0-3 /jJ
s is preferably 0.1 to 0.25u.

下であることの意味は、 血漿蛋 漿との接触面積を増大させ、さらにこの細孔中では、血
漿蛋白質が流れに<<、蛋白質の吸着等により、相互作
用を起こしやすく、補体が活性化されやすい。即ち、生
体適合性の面からも、細孔半径0.051U以下の領域
を少なくシ、全細孔容積に対して、0.05以下の比率
とすることが必要である。空孔率は膜の濾過特性の目安
であり、空孔率0.4以下では濾過速度が小さく実際上
使用することが出来ない。また0、8以上の空孔率では
、膜強度が弱くなり、リーク等の発生が問題となる。素
材としては、生体適合性に優れ、孔径分布をコントロー
ルするのに適した相分離法により、紡糸製膜が可能なポ
リカーボネートが適している。
The meaning of being below is that it increases the contact area with plasma proteins, and in these pores, plasma proteins are more likely to interact with each other due to flow, protein adsorption, etc., and complement is activated. easy to become That is, from the viewpoint of biocompatibility, it is necessary to minimize the area with a pore radius of 0.051 U or less, and to make the ratio of the pore volume to the total pore volume 0.05 or less. The porosity is a measure of the filtration characteristics of a membrane, and if the porosity is less than 0.4, the filtration rate is too low to be used in practice. Further, if the porosity is 0.8 or more, the membrane strength becomes weak and problems such as leakage occur. As a material, polycarbonate is suitable because it has excellent biocompatibility and can be spun into a membrane using a phase separation method suitable for controlling pore size distribution.

中空糸膜の孔径分布の測定、法は、水銀圧入法で行った
。サンプルは、グリセリン等の膜細孔保持剤が付着して
いる場合は、水洗により付着物を除去し、凍結乾燥、も
しくは真空乾燥等により水分を除去し、絶乾する。一定
重量のサンプルを取り、水銀圧入により、細孔系分布の
測定を行う。この圧力と水銀の圧入量をプロットし、孔
径分布を求めた。このときの圧力と孔半径は次式の関係
を用いた。
The pore size distribution of the hollow fiber membrane was measured using the mercury intrusion method. If a membrane pore retaining agent such as glycerin is attached to the sample, the attached material is removed by washing with water, water is removed by freeze drying or vacuum drying, and the sample is completely dried. A sample of a certain weight is taken and the pore system distribution is measured by mercury intrusion. This pressure and the amount of mercury injected were plotted to determine the pore size distribution. The relationship between the pressure and hole radius at this time was expressed by the following equation.

R=2TCO8θ/P P:圧力(kg / c! ) T:水銀の表面張力(480dyn/C11i)θ:水
銀の接触角(140℃) R:細孔半径(c−) 測定した圧力範囲は、1 kg / cii!から20
00kg/dであり、0.05−以下の細孔体積と全細
孔体積の比率は、圧力150 kg/ ctftから圧
力2000kg / c+ltまでの水銀圧入量を、全
水銀圧入量で割ったものとした。空孔率は、全水銀圧入
量とサンプル重量より次式で計算した。
R=2TCO8θ/P P: Pressure (kg/c!) T: Surface tension of mercury (480dyn/C11i) θ: Contact angle of mercury (140°C) R: Pore radius (c-) The measured pressure range is: 1 kg/cii! From 20
00 kg/d, and the ratio of the pore volume of 0.05- or less to the total pore volume is the amount of mercury injected from a pressure of 150 kg/ctft to a pressure of 2000 kg/c+lt divided by the total amount of mercury injected. did. The porosity was calculated using the following formula from the total mercury intrusion amount and the sample weight.

ε=v/(v+w/p) ε:空孔率(−)v:全水銀圧入量(cIll)W:サ
ンプル重量(g) p:ポリマー密度(g/ad) この様な細孔分布特性をもつ膜を紡糸製膜するためには
、ポリマーが凝固する際に、均一なポリマー粒子を形成
するような、紡糸原液(ドープ)と凝固条件にするZ・
要がある。ドープ組成で、ポリカーボネート(PC)i
i11度は、18%から25%の間である必要がある。
ε=v/(v+w/p) ε: Porosity (-) v: Total mercury intrusion amount (cIll) W: Sample weight (g) p: Polymer density (g/ad) Such pore distribution characteristics In order to form a membrane by spinning, the spinning stock solution (dope) and coagulation conditions must be set so that uniform polymer particles are formed when the polymer coagulates.
There is a point. With doped composition, polycarbonate (PC) i
i11 degrees should be between 18% and 25%.

すなわち、PCにおいては、ドープ粘度が著しく低いた
め、PC7!C16%以下では、中空糸の強度が弱く、
中空糸膜として紡糸製膜出来ない。また、15%から1
8%の間は、微小な細孔が形成されやすく、本発明の用
件を満たさない。一方、25%を超えると、濾過速度が
著しく小さく、血漿分離膜としての実用に耐えない。溶
媒はPCとの溶解性がよい、良溶媒と、やや溶解性の低
い、貧溶媒の混合溶媒系を用いる。混合溶媒系に用いる
溶媒は、非プロトン極性溶媒で、沸点が150℃以上の
ものを用いるのがよい。この様な溶媒の例として、良溶
媒としては、N−メチル−2ピロリドン(NMP)、ジ
メチルアセトアミド(DMAC)等、また、貧溶媒とし
ては、2−ピロリドン(2−PN) 、γ−ブチロラク
トン(GBL) 、N、N−ジメチルホルムアミド(D
MF)なとがある。これらの溶媒の、溶解度パラメータ
か10 (cal/(i )”2〜! 12 (cal
/CIfl)”2好ましくは11 (cal/cIll
)””から12 (cal/cil)”2の間になるよ
うに混合して用いる。この溶解度パラメータにする理由
は、10以下では、PCとの溶解性かよいが、ポリマー
粒子の形成がなく多孔質化せず、膜性能が出ない。また
、12以上では、溶解性が悪くなり、また溶解しても凝
固したポリマーの強度が非常に弱(、紡糸製膜できない
。混合溶媒系での溶解度パラメーターの値は、溶媒1の
溶解度パラメーターをδ□、溶媒2の溶解度パラメータ
ーを62とし、溶媒1の体積分率をφ1、溶媒2の体積
分率をφ2としたとき、混合溶媒の溶解度パラメーター
δmixは δmlX  =  φ1・δ1+φ2・δ2として計算
できる。なお、体積分率は、モル分率X(−)と分子容
V(c1il/1DQ)から求めた。
That is, in PC, since the dope viscosity is extremely low, PC7! If C is less than 16%, the strength of the hollow fiber is weak;
It cannot be spun into a hollow fiber membrane. Also, from 15% to 1
Between 8% and 8%, minute pores are likely to be formed and the requirements of the present invention are not met. On the other hand, if it exceeds 25%, the filtration rate will be extremely low and it will not be practical as a plasma separation membrane. The solvent used is a mixed solvent system consisting of a good solvent that has good solubility with PC and a poor solvent that has somewhat low solubility. The solvent used in the mixed solvent system is preferably an aprotic polar solvent with a boiling point of 150° C. or higher. Examples of such solvents include good solvents such as N-methyl-2-pyrrolidone (NMP) and dimethylacetamide (DMAC), and poor solvents such as 2-pyrrolidone (2-PN) and γ-butyrolactone ( GBL), N,N-dimethylformamide (D
MF) There is. The solubility parameters of these solvents are 10 (cal/(i)”2~! 12 (cal
/CIfl)”2 preferably 11 (cal/cIll
)'' to 12 (cal/cil)''2.The reason for this solubility parameter is that if it is less than 10, it will have good solubility with PC, but there will be no formation of polymer particles and porous If it is 12 or more, the solubility will be poor, and even if it is dissolved, the strength of the coagulated polymer will be very weak (spinning film cannot be formed.Solubility in mixed solvent system The value of the parameter is the solubility parameter of the mixed solvent δmix, where the solubility parameter of solvent 1 is δ□, the solubility parameter of solvent 2 is 62, the volume fraction of solvent 1 is φ1, and the volume fraction of solvent 2 is φ2. can be calculated as δmlX = φ1·δ1+φ2·δ2.The volume fraction was determined from the molar fraction X(−) and the molecular volume V(c1il/1DQ).

φ、=x、−V、/Σx、−V。φ,=x,−V,/Σx,−V.

溶解度パラメーター値は、Barton、 A、 F、
 M、。
Solubility parameter values were determined by Barton, A.F.
M.

Chetical Reviews −Lj−(8) 
731 (1975)のデータを用いた。更に紡糸製膜
時の凝固条件として、このドープを凝固性の芯液と共に
、二重管ノズルより吐出し、空中走行させたのち、凝固
浴で凝固させるが、このときのノズル温度(T1)と、
凝固浴温度(T2)のあいだに、0≦(T 1−T2)
≦50(’CLおよび、T2≦50(”C)の関係を満
たし、且つ凝固性の芯液中の水の濃度と凝固浴中の水の
濃度がともに、50%以下である必要がある。こうする
ことにより、ゆっくりとじたより、ポリマー粒子の形成
が進み、本発明の用件を満たす中空糸膜とすることが出
来る。
Chemical Reviews -Lj-(8)
731 (1975) was used. Furthermore, as a coagulation condition during spinning and film formation, this dope is discharged from a double pipe nozzle together with a coagulable core liquid, allowed to travel in the air, and then coagulated in a coagulation bath. ,
During the coagulation bath temperature (T2), 0≦(T1-T2)
It is necessary to satisfy the relationships of ≦50 ('CL) and T2≦50 (''C), and the concentration of water in the coagulable core liquid and the concentration of water in the coagulation bath must both be 50% or less. By doing so, the formation of polymer particles is progressed by slow twisting, and a hollow fiber membrane that satisfies the requirements of the present invention can be obtained.

(実施例) 中空糸型血漿分離膜の製造方法及び評価測定法中空糸型
血漿分離膜は、先に記した様な方法で凝固させたのち、
水洗し、オートクレーブにより、121℃の熱水処理を
行い、さらに、50%のグリセリン水溶液に浸漬後、乾
燥し、中空糸型血漿分離膜を得た。中空糸の内径は、2
80pJ1膜厚は140pxpとした。この血漿分離膜
の性能評価法はI通常のウレタン樹脂接着法により、モ
ジュール化し、長さ20cm1有効膜面積0.2ぜの血
漿分離モジュールを形成する。抗凝固剤としてACD液
を添加した新鮮牛血液を用い、牛血液を50m(!/w
inで供給しながら、血漿分離性能を評価し、その方法
は、たとえば人工臓器、14.1902〜1910、(
1985) 、日赤、伴野丞計、池田博之、らの報告等
で教示されている一般的な評価法を用いた。
(Example) Manufacturing method and evaluation measurement method of hollow fiber plasma separation membrane After coagulating the hollow fiber plasma separation membrane by the method described above,
The membrane was washed with water, subjected to hot water treatment at 121° C. in an autoclave, and further immersed in a 50% aqueous glycerin solution and dried to obtain a hollow fiber plasma separation membrane. The inner diameter of the hollow fiber is 2
The 80pJ1 film thickness was 140pxp. The method for evaluating the performance of this plasma separation membrane is to modularize it using a conventional urethane resin adhesion method to form a plasma separation module with a length of 20 cm and an effective membrane area of 0.2 cm. Using fresh bovine blood to which ACD solution was added as an anticoagulant, 50 m (!/w) of bovine blood was used.
The plasma separation performance is evaluated while being supplied in the blood, and the method is described, for example, in Artificial Organs, 14.1902-1910, (
1985), the Japan Red Cross, Jokei Banno, Hiroyuki Ikeda, et al., a general evaluation method was used.

評価項目は、最大血漿濾過速度Q f wax及び、血
漿蛋白質の篩い係数S Ctotal−pr。te+□
とした。
The evaluation items were the maximum plasma filtration rate Q f wax and the plasma protein sieving coefficient S Ctotal-pr. te+□
And so.

なお、5Cto□1−9r。te+。は、以下の式で定
義されるものである。
In addition, 5Cto□1-9r. te+. is defined by the following formula.

S Ctotal−protein =(分離血漿中の
総蛋白濃度)/(供給血液中の総蛋白濃度) また、生体適合性の評価は、新鮮人血液に抗凝固剤とし
てACD液を添加したものを用い、モジュールの膜面積
を0.0211Il′と小さ(して、生血評価の10分
の1のスケールで行った。濾過血漿中の、補体の活性化
は、補体成分の一つであるC3の、活性化体であるC 
3aの濃度を測定することで行った。C3,1度は、ラ
ジオイムノアッセイ法により測定した。
S Ctotal-protein = (total protein concentration in separated plasma) / (total protein concentration in supplied blood) Biocompatibility was evaluated using fresh human blood with ACD solution added as an anticoagulant. The membrane area of the module was as small as 0.0211Il' (1/10 scale of live blood evaluation). Activation of complement in filtered plasma is due to the activation of C3, one of the complement components. , activated form C
This was done by measuring the concentration of 3a. C3,1 degree was measured by radioimmunoassay method.

実施例1 ポリカーボネート樹脂(一般式(I)におけるR、、R
2がCH3,XがH;三菱化成ツバレックス、分子量的
22,000)22重量部を、N−メチル−2−ピロリ
ドン(NMP)(溶解度パラメータI L 、  2 
(cat/c1il)””) 70 、 2重量部、と
γ−ブチロラクトン(GBL)(溶解度パラメータ12
.9 (cal/c1i1)””) 7.8重量部の混
合溶媒(溶解度パラメータ11 、4 (cal/c1
il)””)に溶解し、60℃に温度コントロールして
、水/NMP/GBL=50/4515の組成を持つ凝
固性の芯液と共に二重管ノズルより吐出して、空中走行
を2 Cmさせた後、10℃に温度コントロールした、
水/NMP/GBL=35158.5/6.5なる組成
を持つ凝固浴中で凝固させ、前記水洗、オートクレーブ
処理(121℃)グリセリン処理を行い、第1表に示す
中空糸膜を得た。モジュール化後、評価を行った。
Example 1 Polycarbonate resin (R, , R in general formula (I)
2 is CH3,
(cat/c1il)"") 70, 2 parts by weight, and γ-butyrolactone (GBL) (solubility parameter 12
.. 9 (cal/c1i1)"") 7.8 parts by weight of mixed solvent (solubility parameters 11, 4 (cal/c1
il) ""), temperature controlled at 60°C, and discharged from a double pipe nozzle together with a coagulable core liquid having a composition of water/NMP/GBL = 50/4515, and the air travel was 2 Cm. After that, the temperature was controlled at 10℃.
It was coagulated in a coagulation bath having a composition of water/NMP/GBL=35158.5/6.5, and subjected to the water washing, autoclave treatment (121° C.) and glycerin treatment to obtain the hollow fiber membrane shown in Table 1. After modularization, evaluation was performed.

実施例2 実施例1と同じポリカーボネート樹脂(三菱化成ツバレ
ックス、M w 、約30,000)20重量部を、N
MP72重量部とN、N−ジメチルホルムアミド(DM
FH溶解度ハラメータ12.1(callod )””
) 8重量部の混合溶媒(溶解度ハラメータ11 、 
3 (cat/c1il)””)に溶解し、e o ’
cに温度コントロールして、水/NMP/DMF=40
154/8の組成を持つ凝固性の芯液と共に二重管ノズ
ルより吐出して、空中走行を2cmさせた後、10℃に
温度コントロールした、水/ N MP/DMF=35
158.5/8.5なる組成を持つ凝固浴中で凝固させ
、前記の処理を行い、モジュール化後、評価を行った。
Example 2 20 parts by weight of the same polycarbonate resin (Mitsubishi Kasei Tubarex, Mw, approximately 30,000) as in Example 1 was added to N
72 parts by weight of MP and N,N-dimethylformamide (DM
FH solubility harameter 12.1 (callod)””
) 8 parts by weight of mixed solvent (Solubility Harameter 11,
3 (cat/c1il)""), e o'
Water/NMP/DMF=40 with temperature control at c.
Water/N MP/DMF = 35 was discharged from a double pipe nozzle together with a coagulable core liquid having a composition of 154/8, and after traveling in the air for 2 cm, the temperature was controlled at 10 ° C.
It was coagulated in a coagulation bath having a composition of 158.5/8.5, subjected to the above treatment, and after being made into a module, it was evaluated.

実施例3 実施例1と同じポリカーボネート樹脂(三菱化成ツバレ
ックス、分子量的22,000)30重量部を、NMP
63重量部と、GBL7重量邪の混合溶媒に溶解し、実
施例1と同様にして評価を行った。
Example 3 30 parts by weight of the same polycarbonate resin (Mitsubishi Kasei Tuvalex, molecular weight 22,000) as in Example 1 was added to NMP.
It was dissolved in a mixed solvent of 63 parts by weight and 7 parts by weight of GBL, and evaluated in the same manner as in Example 1.

比較例1 実施例1と同じポリカーボネート樹脂(三菱化成ツバレ
ックス、Mw、約30,000)15重1部を、NMP
72重量部と、DMF8重量部の混合溶媒に溶解し、実
施例1と同様にして評価を行った0 比較例2 市販のセルローストリアセテート中空糸膜を同様に評価
し、比較した。
Comparative Example 1 One part of the same 15 weight polycarbonate resin (Mitsubishi Kasei Tuvalex, Mw, approximately 30,000) as in Example 1 was added to NMP.
Comparative Example 2 A commercially available cellulose triacetate hollow fiber membrane was similarly evaluated and compared.

第1表に示すように、本発明の中空糸型血漿分離膜は、
C3,の活性化が小さ(、生体適合性に優れており、性
能面でも、高い血漿濾過速度と血漿蛋白質透過性能を持
っていた。
As shown in Table 1, the hollow fiber plasma separation membrane of the present invention is
The activation of C3 was small (it had excellent biocompatibility, and in terms of performance, it had a high plasma filtration rate and plasma protein permeation performance.

以下余白 (発明の効果) 本発明により、 生体適合性に優れ、 高い血漿源 過性能を持つ中空糸型血漿分離膜を提供することができ
る。
Margins below (Effects of the Invention) According to the present invention, it is possible to provide a hollow fiber plasma separation membrane having excellent biocompatibility and high plasma source permeability.

Claims (1)

【特許請求の範囲】 血液から血漿を分離する下記一般式( I )、(II)あ
るいは(III)を有するポリカーボネートの1種又は2
種以上で構成される中空糸型血漿分離膜であって、該中
空糸膜の表面及び内部に存在する平均細孔半径が0.0
75〜0.3μmであり、下記(IV)式で示され る水銀圧入法で求められる水銀圧入量比(K)が0.0
5以下でかつ空孔率が0.4以上、0.8以下であるこ
とを特徴とする中空糸型血漿分離膜。 ▲数式、化学式、表等があります▼( I ) ▲数式、化学式、表等があります▼(II) ▲数式、化学式、表等があります▼(III) [ここでR_1、R_2はH、CH_3、C_2H_5
、C_3H_7、C_6H_1_2、C_6H_5の基
の中から、XはH、F、Cl、Brの中から、YはO、
SO_2、CO_2の中から選ばれる。] K=圧力150〜2000kg/cm^2の水銀圧入量
/圧力1〜2000kg/cm^2の水銀圧入量(IV)
[Claims] One or two polycarbonates having the following general formula (I), (II) or (III) for separating plasma from blood.
A hollow fiber plasma separation membrane composed of at least 1 species, wherein the average pore radius existing on the surface and inside of the hollow fiber membrane is 0.0.
75 to 0.3 μm, and the mercury intrusion amount ratio (K) determined by the mercury intrusion method shown by the following formula (IV) is 0.0
5 or less and a porosity of 0.4 or more and 0.8 or less. ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(II) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(III) [Here, R_1, R_2 are H, CH_3, C_2H_5
, C_3H_7, C_6H_1_2, C_6H_5, X is H, F, Cl, Br, Y is O,
Selected from SO_2 and CO_2. ] K=Amount of mercury intrusion at a pressure of 150 to 2000 kg/cm^2/Amount of mercury intrusion at a pressure of 1 to 2000 kg/cm^2 (IV)
JP1314096A 1989-12-01 1989-12-01 Hollow fiber type plasma separation membrane Expired - Fee Related JP2844758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1314096A JP2844758B2 (en) 1989-12-01 1989-12-01 Hollow fiber type plasma separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1314096A JP2844758B2 (en) 1989-12-01 1989-12-01 Hollow fiber type plasma separation membrane

Publications (2)

Publication Number Publication Date
JPH03173571A true JPH03173571A (en) 1991-07-26
JP2844758B2 JP2844758B2 (en) 1999-01-06

Family

ID=18049194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1314096A Expired - Fee Related JP2844758B2 (en) 1989-12-01 1989-12-01 Hollow fiber type plasma separation membrane

Country Status (1)

Country Link
JP (1) JP2844758B2 (en)

Also Published As

Publication number Publication date
JP2844758B2 (en) 1999-01-06

Similar Documents

Publication Publication Date Title
US5496637A (en) High efficiency removal of low density lipoprotein-cholesterol from whole blood
US5236644A (en) Process of making membrane for removal of low density lipoprotein-cholesterol from whole blood
US7563376B2 (en) Plasma purification membrane and plasma purification system
US4439322A (en) Polymethyl methacrylate membrane
US5187010A (en) Membrane having high affinity for low density lipoprotein-cholesterol from whole blood
US5418061A (en) Microporous polysulfone supports suitable for removal of low density lipoprotein-cholesterol
JPH08510166A (en) Surface-modified biocompatible membrane
JPWO2002087735A1 (en) Asymmetric porous membrane and method for producing the same
TWI406703B (en) Purify blood with hollow fiber membrane and use its blood purifier
US7087168B2 (en) Hollow fiber membrane for purifying blood
JPS5812028B2 (en) Polycarbonate membrane for blood dialysis
US6632359B1 (en) Blood purifying apparatus
JPH06296686A (en) Polysulfone hollow yarn membrane for medical purpose
JPH10230148A (en) Semipermeable membrane
US4308145A (en) Relatively thick polycarbonate membranes for use in hemodialysis
EP0570232A2 (en) Microporous polysulfone supports suitable for removal of low density lipoprotein-cholesterol
JP2020533166A (en) Microporous membrane and its manufacturing method
EP0092587B1 (en) Polymethyl methacrylate hollow yarn ultra-filtration membrane and process for its production
JPH03173571A (en) Hollow yarn type plasma separating film
JPH0970431A (en) Production of polysulfone hollow fiber type artificial kidney and artificial kidney
CN112588132A (en) Hollow fiber membrane and preparation method thereof
JP4381073B2 (en) Blood purification membrane with excellent blood compatibility
JP2003175321A (en) Method for manufacturing hollow fiber membrane
JP2000350926A (en) Polysulfone hollow fiber membrane of selective permeablility
JP2855725B2 (en) Porous hollow fiber membrane for plasma separation

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071030

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081030

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081030

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091030

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees