JPH03173492A - Free-electron laser device using linear type accelerator - Google Patents

Free-electron laser device using linear type accelerator

Info

Publication number
JPH03173492A
JPH03173492A JP31407889A JP31407889A JPH03173492A JP H03173492 A JPH03173492 A JP H03173492A JP 31407889 A JP31407889 A JP 31407889A JP 31407889 A JP31407889 A JP 31407889A JP H03173492 A JPH03173492 A JP H03173492A
Authority
JP
Japan
Prior art keywords
electromagnet
electron beams
wiggler
tube
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31407889A
Other languages
Japanese (ja)
Inventor
Kenichi Inoue
憲一 井上
Akira Kobayashi
明 小林
Yutaka Kawada
豊 川田
Kiyotaka Ishibashi
清隆 石橋
Koji Inoue
浩司 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP31407889A priority Critical patent/JPH03173492A/en
Publication of JPH03173492A publication Critical patent/JPH03173492A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the efficiency of energy recovery by arranging a fan- shaped electromagnet, simultaneously deflecting and distributing two electron beams and combining an accelerating tube and a decelerating tube while properly constituting the distance of transfer of beams. CONSTITUTION:Electron beams emitted from an injector 11 are accelerated by an accelerator 13, and projected to a wiggler system by a fan-shaped deflecting electromagnet 15 and a rectangular deflecting electromagnet 16. The direction of electron beams emitted from the wiggler system is bent at 180 deg. by two deflecting electromagnets 20, and the electron beams are projected to the electromagnet 15 from the reverse side again through a rectangular deflecting electromagnet 21, and placed on approximately the same orbit as outgoing. The electron beams are moved backward in decelerating phase to the accelerating tube 13 by properly organizing the distance of transfer of beams in the constitution, and RF resonance is intensified while losing kinetic energy through interaction with an RF electric field. The electron beams decelerated and emitted from the tube 13 are introduced to a beam collector 22 through an electromagnet 22, and terminated. Accordingly, energy can be recovered efficiently, thus acquiring a large output.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、工業化学、製薬、医療分野における物質組成
の分光分析や光励起反応プロセスに利用することを目的
とする産業用自由電子レーザ装置、特にそのエネルギー
回収を効果的に行い得るようにした構造に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an industrial free electron laser device, which is intended for use in spectroscopic analysis of material compositions and photoexcitation reaction processes in the industrial chemistry, pharmaceutical, and medical fields. In particular, the present invention relates to a structure that enables effective energy recovery.

(従来の技術) 近年、電磁波の利用は基礎研究に留まらず、計測、検査
機器から加工、反応装置などの生産機器に到るまで拡が
り、これに伴い単色、コヒーレントで強力な電磁波に対
する要求は象、速に高まっている。とりわけ、レーザは
強力な単色コヒーレント光の光源として、各種の分光分
析をはじめ計測、加工に数々の技術革新をもたらしてき
た。ところが従来のレーザは、原子、分子もしくは固体
中の電子準位間の遷移の際の誘導放射を利用した一種の
増幅器なので、それぞれの媒質固有の決まった発振波長
の電磁波しか得られないという難点があった。特に紫外
域以下の短波長のレーザは、この波長に対して充分な利
得を確保できる適当な準位を持つ媒質が発見されていな
いので、実用段階に到っていない。
(Conventional technology) In recent years, the use of electromagnetic waves has expanded beyond basic research to include measurement and inspection equipment, processing, and production equipment such as reaction devices. , is rapidly increasing. In particular, lasers, as powerful monochromatic coherent light sources, have brought about numerous technological innovations in various types of spectroscopic analysis, measurement, and processing. However, since conventional lasers are a type of amplifier that utilizes stimulated radiation during transitions between electronic levels in atoms, molecules, or solids, they have the disadvantage that they can only obtain electromagnetic waves with a fixed oscillation wavelength unique to each medium. there were. In particular, lasers with short wavelengths below the ultraviolet region have not yet reached the practical stage because a medium with an appropriate level that can ensure sufficient gain for this wavelength has not been discovered.

またレーザ発振は原則的に気体または固体媒質のなかを
透過させて行わせて増幅する機構に依存しているので、
媒質の冷却や損傷の問題があって、出力には上限がある
。有機液体レーザの色素レーザは、ある範囲で波長可変
という特長をもつが、同じような理由で実用出力が得ら
れていない。
Also, since laser oscillation basically relies on a mechanism that transmits it through a gas or solid medium and amplifies it,
There are problems with cooling and damage to the medium, and there is a limit to the output. Dye lasers, which are organic liquid lasers, have the advantage of being wavelength tunable within a certain range, but for the same reason, practical output has not been achieved.

一部レーザの利用は、新材料分野ではレーザプロセッシ
ング、光化学反応、また原子力分野ではレーザ核融合、
同位体分離、また医学・生体分野では外科手術、生体計
測など、実証レベルであるが、広般な応力分野に拡がっ
てきており、それらの実用化のために、(a)任意の波
長、特に短波長領域も可能で、(b)大出力で、(C)
高効率という要請に応えられる新しいレーザ光源の出現
が待たれている。
Some lasers are used for laser processing, photochemical reactions in the field of new materials, and laser fusion, in the field of nuclear power.
Isotope separation is at a proven level in the medical and biological fields, such as surgery and bioinstrumentation, but it has spread to a wide range of stress fields. Short wavelength region is also possible, (b) high output, (C)
The emergence of a new laser light source that can meet the demand for high efficiency is awaited.

この動向に対して、自由電子レーザは、上記の従来のレ
ーザ方式とは発振機構が異なり、高エネルギーの電子ビ
ームがヴイグラ−(wiggler)磁場のなかで蛇行
する時に生じるシンクロトロン放射(synchrot
ron radiation)と、その電磁波が電子の
進行方向の密度分布に変調を与える効果とが一種の共鳴
現象を起こすことによって一種の誘導放射作用が生じる
ことを利用したものであるので、前記要請に応えられる
可能性がある。この場合、発振波長はウィグラー周期に
比例し、電子ビームのエネルギーの2乗に反比例するの
で、適切な加速器の選択と運転条件の設定によって任意
の波長が得られる特長を持つ。
In response to this trend, free electron lasers have a different oscillation mechanism from the conventional laser method described above, and are synchrotron radiation generated when a high-energy electron beam meanders in a Wiggler magnetic field.
ron radiation) and the effect of its electromagnetic waves modulating the density distribution in the direction of electron propagation, which causes a kind of resonance phenomenon, resulting in a kind of stimulated radiation effect. There is a possibility that In this case, the oscillation wavelength is proportional to the wiggler period and inversely proportional to the square of the energy of the electron beam, so it has the advantage that any wavelength can be obtained by selecting an appropriate accelerator and setting operating conditions.

また、飽和時の出力は電子の電流値に比例し、電磁波が
伝搬するのは真空空間なので、原理的に出力に制限がな
い。このような特質から次世代の産業用光源として期待
され、開発が進められている。
Furthermore, the output at saturation is proportional to the electron current value, and since electromagnetic waves propagate in vacuum space, there is no limit to the output in principle. Due to these characteristics, it is expected to be used as a next-generation industrial light source, and development is progressing.

なかでも、線形加速器(RFライナック)を用いた自由
電子レーザは、ビームの質が高く(エミツタンスが小さ
く)、比較的簡単な装置で高エネルギー(〜GeV)が
得られるという特長を生かして、サブミリ波〜紫外線波
長領域の高効率自由電子レーザの実現に利用が期待され
ている。その例として、特開昭56−124282号に
は第2図に示すような基本構成の自由電子レーザシステ
ムが開示されている。第3図はこれを具体化した機器構
成配置図を示す。インジェクター(I)より発射された
電子ビームは、高周波加速管(2)にてRF電源(3)
により加速された後、60°偏向電磁石(4)にてエネ
ルギー分析され、ウィグラー電磁石(5)にはいり、レ
ーザ発振に寄与する。役目を終えた電子ビームは、18
0°偏向電磁石(6)などにより減速管(7)に導かれ
、運動エネルギーがRFエネルギーに変換され減速され
た後、エンドステーション(8)によって回収される。
Among these, free electron lasers using linear accelerators (RF linacs) have high beam quality (low emittance) and can obtain high energy (~GeV) with relatively simple equipment, making it possible to achieve submillimeter lasers. It is expected that it will be used to realize highly efficient free electron lasers in the ultraviolet to ultraviolet wavelength range. As an example, Japanese Patent Laid-Open No. 56-124282 discloses a free electron laser system having a basic configuration as shown in FIG. FIG. 3 shows an equipment configuration layout diagram that embodies this. The electron beam emitted from the injector (I) is sent to the RF power source (3) at the high frequency accelerator tube (2).
After being accelerated, the energy is analyzed by a 60° bending electromagnet (4), enters a wiggler electromagnet (5), and contributes to laser oscillation. The electron beam that has finished its role is 18
It is guided to a deceleration tube (7) by a 0° bending electromagnet (6) and the like, and the kinetic energy is converted into RF energy and decelerated, and then recovered by an end station (8).

減速器で回収されたRFエネルギーはカップラー(9)
にて加速器(2)に戻され再びビーム加速に寄与するこ
とになる。ウィグラー前後に反射鏡θ0)が配置される
。この自由電子レーザは数Aのビーム電流を得、100
〜800μmの発振に成功している。
The RF energy recovered by the decelerator is transferred to the coupler (9)
The beam is then returned to the accelerator (2) and contributes to beam acceleration again. Reflecting mirrors θ0) are placed before and after the wiggler. This free electron laser obtains a beam current of several A and has a beam current of 100
We have successfully achieved oscillation of ~800 μm.

(発明が解決しようとする問題点) 第2および3図に示す従来技術の線形加速器を用いた自
由電子レーザには次の欠点がある。
(Problems to be Solved by the Invention) The free electron laser using the conventional linear accelerator shown in FIGS. 2 and 3 has the following drawbacks.

(A)加速管(2)と減速管(7)の2本の加(減)連
管が必要となる。
(A) Two adding (decreasing) connecting pipes, an acceleration pipe (2) and a deceleration pipe (7), are required.

通常の加速空洞においては、与えたRFエネルギーの8
0%以上がその管壁で熱となって散逸する。同様のこと
は減速管でも起こり、RFに変換されるエネルギーの殆
どは熱となってしまう。これらによりエネルギーの回収
効率は甚だ悪い。
In a normal acceleration cavity, 8 of the applied RF energy
More than 0% is dissipated as heat on the tube wall. A similar thing happens with reduction tubes, where most of the energy converted to RF becomes heat. Due to these factors, energy recovery efficiency is extremely poor.

(B)回収エネルギーはカップラー(9)を通じて加速
管(2)に戻されるが、カップラーでRFの一部が反射
されるため、エネルギーの回収率が悪くなる。
(B) The recovered energy is returned to the accelerating tube (2) through the coupler (9), but a portion of the RF is reflected by the coupler, resulting in a poor energy recovery rate.

(問題点を解決するための手段) 本発明は、従来技術の前記問題点を解決するため、自由
電子レーザとして、エネルギー回収の効率化を図ること
ができる構成配置を与える。
(Means for Solving the Problems) In order to solve the problems of the prior art, the present invention provides a free electron laser with a configuration that can improve the efficiency of energy recovery.

そのため、本発明の線形加速器を用いた自由電子レーザ
装置は、構成としては、線形型加速器を電子ビーム源と
した自由電子レーザ装置において、(I)インジェクタ
ーからの出射電子ビームの軌道と、ウィグラー電磁石を
貫通させたあとの回収電子ビームの軌道とが、ひとつの
加速管を共有できるように、これら2つの電子ビームを
同時に偏向させて振り分ける扇形状の偏向電磁石を前記
加速管の前後に配備するとともに、(II)加速管のR
F励振に対して、インジェクターからの出射電子ビーム
のバンチ(bunches)を加速位相で、またウィグ
ラーから帰還する回収電子ビームバンチは減速位相で前
記加速管に入射するよう、ビーム輸送距離をとった配置
とすることを特徴とする。
Therefore, in the free electron laser device using the linear accelerator of the present invention, in the free electron laser device using the linear accelerator as the electron beam source, (I) the trajectory of the electron beam emitted from the injector and the wiggler electromagnet In order to share one acceleration tube with the trajectory of the recovered electron beam after passing through the electron beam, fan-shaped deflection electromagnets are installed before and after the acceleration tube to simultaneously deflect and distribute these two electron beams. , (II) R of the accelerator tube
For F excitation, the beam transport distance is arranged such that the bunches of electron beams emitted from the injector enter the acceleration tube in an acceleration phase, and the collected electron beam bunches returning from the wiggler enter the acceleration tube in a deceleration phase. It is characterized by:

(作 用) 本発明においては、一つの加速管が加速と減速とに共用
でき、すなわちウィグラー入射前の電子ビームの加速と
そのレーザ発振に寄与しなかった電子エネルギーの減速
回収とに両方の作用をさせることができるので、管壁で
の発熱ロスが従来方式の172で済む。またカップラー
を必要とせず回収側電子ビームが加速管で直接励振に作
用するので、エネルギー回収効率が大幅に改善される。
(Function) In the present invention, one accelerating tube can be used for both acceleration and deceleration, that is, it has the functions of accelerating the electron beam before entering the wiggler and decelerating and recovering the electron energy that did not contribute to the laser oscillation. Since the heat loss at the tube wall can be reduced to 172 compared to the conventional method. Furthermore, since the recovery side electron beam acts directly on the excitation in the accelerator tube without the need for a coupler, energy recovery efficiency is greatly improved.

特に超電導加速管を用いた場合には100%に近いエネ
ルギーが回収できることになり、蓄積リング並の変換効
率が実現できる。
In particular, when a superconducting accelerator tube is used, nearly 100% of the energy can be recovered, making it possible to achieve conversion efficiency comparable to that of a storage ring.

従って高効率な自由電子レーザ装置を実現できる。Therefore, a highly efficient free electron laser device can be realized.

(実施例) 以下、本発明を第1図に示す実施例により一層具体的に
説明する。第1図は1段の線形加速器を利用した光クラ
イストロン型の自由電子レーザの実施例の構成配置図で
ある。
(Example) Hereinafter, the present invention will be explained in more detail with reference to an example shown in FIG. FIG. 1 is a structural layout diagram of an embodiment of an optical klystron type free electron laser using a one-stage linear accelerator.

この実施例では、インジェクターθDから発射された電
子ビームは、第1の扇形状の偏向電磁石0りで偏向され
て、加速位相で高周波線形加速管03)に入射し、ここ
でRF電源0〜により加速されたのち、第2の扇形状の
偏向電磁石05)および矩形偏向電磁石0ωによって、
ウィグラー系軌道に乗せられる。
In this embodiment, the electron beam emitted from the injector θD is deflected by the first fan-shaped bending electromagnet 0, and enters the high frequency linear acceleration tube 03) in the acceleration phase, where it is powered by the RF power source 0. After being accelerated, the second fan-shaped bending electromagnet 05) and the rectangular bending electromagnet 0ω,
It is placed in Wiggler orbit.

この実施例では、ウィグラー系は、光タライストロン(
K lys tron)方式を考慮し、モジュレータ−
マグネット面とヘリカルまたは平面ウィグラーマグネッ
ト08)とから構成される。ここで発生したシンクロト
ロン放射光(synchrotronradiatio
n)は、2つの反射鏡09)によって形成されるファブ
リペロ−(Fabry−Perot)型共振器の間を往
復するうちに増幅され、全反射でない反射鏡からレーザ
ビーム出力として出射される。
In this example, the Wiggler system is an optical talistron (
Considering the K lys tron) method, the modulator
It consists of a magnetic surface and a helical or planar wiggler magnet 08). The synchrotron radiation generated here
n) is amplified while reciprocating between the Fabry-Perot type resonators formed by the two reflecting mirrors 09), and is emitted as a laser beam output from the reflecting mirror that does not perform total reflection.

ウィグラーを出た回収電子ビームは2つの180°偏向
電磁石(2[Dによって180°方向を曲げられ、矩形
偏向電磁石(21)を経て、再び前記第2扇形偏向電磁
石05)に反対側から入射し曲げられ、出射時とほぼ同
じ軌道に乗せられ、今度は減速位相で前記加速管03)
を遡る。電子ビームは加速管を遡る間に、RF電場と相
互作用しながら運動エネルギーを失いつつRFの共振を
強める。減速されて加速管を出た電子ビームは、前記第
1扇形偏向電磁石0りを経てビームコレクター(22)
に導かれて終端する。(23)はビーム経路に配置され
たビーム集束用四重極レンズである。
The collected electron beam that has exited the wiggler is bent by 180° by 2[D, passes through the rectangular bending magnet (21), and then enters the second fan-shaped bending magnet 05 from the opposite side. The acceleration tube 03) is bent and placed on almost the same trajectory as at the time of ejection, and this time in the deceleration phase.
trace back. As the electron beam travels back through the accelerating tube, it interacts with the RF electric field, losing kinetic energy and strengthening the RF resonance. The electron beam that has been decelerated and exits the accelerator tube passes through the first fan-shaped bending electromagnet and is then sent to the beam collector (22).
It is guided and terminated. (23) is a beam focusing quadrupole lens placed in the beam path.

以上のように、本発明では、加速管制のRF励振に対し
て、インジェクター(I)からの出射電子ビームのバン
チは加速位相で、またウィグラーを経て帰還する電子ビ
ームのバンチは減速位相で同じ加速管に入射するように
、ビームの輸送距離をとった配置とする。
As described above, in the present invention, with respect to RF excitation for acceleration control, the bunch of electron beams emitted from the injector (I) is in the acceleration phase, and the bunch of electron beams returning via the wiggler is in the deceleration phase and has the same acceleration. The beam is arranged at a certain distance so that it is incident on the tube.

上記実施例で、扇形磁極を持つ偏向電磁石を用いるのは
、2つの対称軌道が垂直に入出射できる典型的形状であ
るからで、本発明はとくにこれらの幾何形状を限定する
ものではない。垂直入出射ではエツジ付近での四重極磁
基が生じないので、システム設計がしやすいためである
In the above embodiments, the bending electromagnet with sector-shaped magnetic poles is used because it has a typical shape in which two symmetrical orbits can enter and exit perpendicularly, and the present invention does not particularly limit these geometric shapes. This is because vertical input/output does not generate quadrupole magnetic groups near the edges, making system design easier.

(発明の効果) 以上のように本発明による線形加速器使用自由電子レー
ザ装置においては、任意の波長で大出力のレーザ光が得
られるとともに、1つの加速管を加速、減速に共用可能
とすることによりビームエネルギーの損失を少なくし回
収率を高くし高効率とすることができる。
(Effects of the Invention) As described above, in the free electron laser device using a linear accelerator according to the present invention, a high-output laser beam can be obtained at any wavelength, and one accelerator tube can be used commonly for acceleration and deceleration. This makes it possible to reduce the loss of beam energy, increase the recovery rate, and achieve high efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の線形加速器を用いた自由電子
レーザ装置の構成配置図、第2図は従来技術の自由電子
レーザシステムの基本構成を示す図、第3図は具体的機
器構成配置図を示す。 (I)・・・インジェクター、(2)・・・高周波加速
管、(3)・・・RF電源、(4)・・・60°偏向電
磁石、(5)・・・ウィグラー電磁石、(6)・・・1
80°偏向電磁石、(7)・・・減速管、(8)・・・
エンドステーション、(9)・・・カップラー00)・
・・反射鏡、(I1)・・・インジェクター、02)・
・・第1扇形偏向電磁石、面・・・高周波線形加速管、
圓・・・RF電源、05)・・・第2扇形偏向電磁石、
0口(21)・・・矩形偏向電磁石、07]・・・モジ
ュレータマグネット、08)・・・ウィグラーマグネッ
ト、09)・・・反射鏡、Qト・・180’偏向磁石、
(22)・・・ビームコレクター、(23)・・・ビー
ム集束用四重極レンズ。
Figure 1 is a configuration diagram of a free electron laser device using a linear accelerator according to an embodiment of the present invention, Figure 2 is a diagram showing the basic configuration of a conventional free electron laser system, and Figure 3 is a specific equipment configuration. A layout diagram is shown. (I)...Injector, (2)...High frequency accelerator tube, (3)...RF power supply, (4)...60° bending electromagnet, (5)...Wiggler electromagnet, (6) ...1
80° bending electromagnet, (7)...reduction tube, (8)...
End station, (9)...Coupler 00)・
... Reflector, (I1) ... Injector, 02)
・・First fan-shaped bending electromagnet, surface・High frequency linear accelerator tube,
En...RF power supply, 05)...Second sector-shaped bending electromagnet,
0 (21)...Rectangular bending electromagnet, 07]...Modulator magnet, 08)...Wiggler magnet, 09)...Reflector, Qt...180' deflection magnet,
(22)... Beam collector, (23)... Quadrupole lens for beam focusing.

Claims (1)

【特許請求の範囲】 線形型加速器を電子ビーム源とした自由電子レーザ装置
において、 ( I )インジェクターからの出射電子ビームの軌道と
、ウィグラー電磁石を貫通させたあとの回収電子ビーム
の軌道とが、ひとつの加速管を共有できるように、これ
ら2つの電子ビームを同時に偏向させて振り分ける扇形
状の偏向電磁石を前記加速管の前後に配備するとともに
、 (II)加速管のRF励振に対して、インジェクターから
の出射電子ビームのバンチは加速位相で、またウィグラ
ーから帰還する回収電子ビームのバンチは減速位相で加
速管に入射するようビーム輸送距離をとった装置配置と
する、 ことを特徴とするエネルギー回収型の線形加速器使用自
由電子レーザ装置。
[Claims] In a free electron laser device using a linear accelerator as an electron beam source, (I) the trajectory of the electron beam emitted from the injector and the trajectory of the recovered electron beam after passing through the wiggler electromagnet, In order to share one accelerating tube, fan-shaped deflecting electromagnets are installed before and after the accelerating tube to simultaneously deflect and distribute these two electron beams. Energy recovery characterized in that the device is arranged such that the beam transport distance is such that the bunch of electron beams emitted from the wiggler enters the accelerating tube in the acceleration phase, and the bunch of recovered electron beams returning from the wiggler enters the accelerating tube in the deceleration phase. A free electron laser device using a type of linear accelerator.
JP31407889A 1989-12-01 1989-12-01 Free-electron laser device using linear type accelerator Pending JPH03173492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31407889A JPH03173492A (en) 1989-12-01 1989-12-01 Free-electron laser device using linear type accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31407889A JPH03173492A (en) 1989-12-01 1989-12-01 Free-electron laser device using linear type accelerator

Publications (1)

Publication Number Publication Date
JPH03173492A true JPH03173492A (en) 1991-07-26

Family

ID=18048964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31407889A Pending JPH03173492A (en) 1989-12-01 1989-12-01 Free-electron laser device using linear type accelerator

Country Status (1)

Country Link
JP (1) JPH03173492A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012033338A (en) * 2010-07-29 2012-02-16 Japan Atomic Energy Agency Laser compton light generator, laser compton light generating method, and neutron beam generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012033338A (en) * 2010-07-29 2012-02-16 Japan Atomic Energy Agency Laser compton light generator, laser compton light generating method, and neutron beam generator

Similar Documents

Publication Publication Date Title
US4287488A (en) Rf Feedback free electron laser
Murphy et al. Free electron lasers for the XUV spectral region
Benson et al. The Stanford Mark III infrared free electron laser
Benson et al. First lasing of the Jefferson lab IR demo FEL
EP3089561B1 (en) X-ray pulse source and method for generating x-ray pulses
Ostroumov et al. Design of 57.5 MHz cw RFQ for medium energy heavy ion superconducting linac
US5805620A (en) Beam conditioner for free electron lasers and synchrotrons
TWI704736B (en) Free electron laser
Pellegrini et al. The development of X-ray free-electron lasers
US5541944A (en) Apparatus and method for compensating for electron beam emittance in synchronizing light sources
JPH03173492A (en) Free-electron laser device using linear type accelerator
Sessler et al. Free-electron lasers
Joshi Laser accelerators
Sirigiri A novel wideband gyrotron traveling wave amplifier
Baklakov et al. Status of the free electron laser for the Siberian centre for photochemical research
US4442522A (en) Circular free-electron laser
Uesaka Femtosecond beam science
JP2680452B2 (en) Free electron laser device using electrostatic accelerator
Aghamir et al. Saturnus: the UCLA high-gain infrared FEL project
Godlove et al. High-power free-electron lasers driven by RF linear accelerators
NL2017695A (en) Free electron laser
Reveillard et al. Efficient 2D molasses cooling of a cesium beam using a blue detuned top-hat beam
Pagani et al. Design considerations of a MW-scale, high-efficiency, industrial-use, ultraviolet FEL amplifier
JP2625062B2 (en) Free electron laser generator
Vinokurov FEL development at the Budker Institute of Nuclear Physics