JPH03172794A - Dummy nuclear fuel assembly - Google Patents
Dummy nuclear fuel assemblyInfo
- Publication number
- JPH03172794A JPH03172794A JP1313676A JP31367689A JPH03172794A JP H03172794 A JPH03172794 A JP H03172794A JP 1313676 A JP1313676 A JP 1313676A JP 31367689 A JP31367689 A JP 31367689A JP H03172794 A JPH03172794 A JP H03172794A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- simulated
- fuel rod
- fuel assembly
- dummy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003758 nuclear fuel Substances 0.000 title claims abstract description 39
- 239000000446 fuel Substances 0.000 claims abstract description 69
- 239000000463 material Substances 0.000 claims abstract description 11
- 125000006850 spacer group Chemical group 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 3
- 229910052581 Si3N4 Inorganic materials 0.000 abstract description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 abstract description 4
- 229910001220 stainless steel Inorganic materials 0.000 abstract description 4
- 239000010935 stainless steel Substances 0.000 abstract description 4
- 230000008707 rearrangement Effects 0.000 description 8
- 230000008961 swelling Effects 0.000 description 5
- 238000000429 assembly Methods 0.000 description 4
- 230000000712 assembly Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052580 B4C Inorganic materials 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 241000345998 Calamus manan Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 241000208125 Nicotiana Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 235000012950 rattan cane Nutrition 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的コ
(産業上の利用分野)
本発明は、原子炉運転中の核燃料集合体の挙動を、原子
炉外で模擬し評価するための模擬核燃料集合体に関する
。[Detailed Description of the Invention] [Purpose of the Invention (Industrial Application Field) The present invention relates to a simulated nuclear fuel assembly for simulating and evaluating the behavior of a nuclear fuel assembly during operation of a nuclear reactor outside the reactor. .
(従来の技術)
一般に、原子炉の炉心は多数の核燃料集合体から構成さ
れているが、第2図にこめような核燃料集合体の一例と
して高速増殖炉用の核燃料集合体の構成を示す。(Prior Art) Generally, the core of a nuclear reactor is composed of a large number of nuclear fuel assemblies, and FIG. 2 shows the configuration of a nuclear fuel assembly for a fast breeder reactor as an example of such a nuclear fuel assembly.
すなわち、高速増殖炉用の核燃料集合体1は、多数の燃
料棒2を、この燃料棒2の周囲に螺旋状に巻回したワイ
ヤ3をスペーサとして規則正しく束ねて燃料棒バンドル
4を構成し、この燃料棒バンドル4の周囲を囲むように
筒状のラッパー管5を配置した構造とされている。なお
、ワイヤ3は、燃料棒2の湾曲等により燃料棒2が相互
に直接接触することを防止している。また、ラッパー管
5と燃料棒2の間隔は、冷却材がその間隙を流れること
によって生じる燃料棒2の流体振動を防止するため充分
狭く設定されている。That is, a nuclear fuel assembly 1 for a fast breeder reactor consists of a fuel rod bundle 4 in which a large number of fuel rods 2 are regularly bundled using wires 3 spirally wound around the fuel rods 2 as spacers. It has a structure in which a cylindrical wrapper tube 5 is arranged to surround the fuel rod bundle 4. Note that the wire 3 prevents the fuel rods 2 from coming into direct contact with each other due to curvature of the fuel rods 2 or the like. Further, the interval between the wrapper tube 5 and the fuel rod 2 is set to be sufficiently narrow in order to prevent fluid vibration of the fuel rod 2 caused by the coolant flowing through the gap.
このような核燃料集合体1では、中性子照射を受は各構
成部材にスエリング膨脹が生じるが、ラッパー管5の温
度が燃料棒2の被覆管温度より低いため、ラッパー管5
と燃料棒2の被覆管とのスエリング膨脹に差が生じ、次
第に前述したラッパー管5と燃料棒2との間隙が消失し
ていく。In such a nuclear fuel assembly 1, swelling expansion occurs in each component upon receiving neutron irradiation, but since the temperature of the wrapper tube 5 is lower than the temperature of the cladding of the fuel rod 2, the wrapper tube 5
A difference arises in the swelling expansion between the wrapper tube 5 and the cladding tube of the fuel rod 2, and the gap between the wrapper tube 5 and the fuel rod 2 described above gradually disappears.
このように燃料棒バンドル4かラッパー管5内にぎっし
り詰まった状態になると、燃料棒バンドル4内に配列ず
れが生じなければ各燃料棒2に強い力が加わり、燃料棒
2が破損する可能性か生じる。一方、過度の配列ずれが
生じた場合には、燃料棒2が相互にワイヤ3を介さない
で直接接触し、燃料棒2か焼損する恐れが生じる。If the fuel rod bundle 4 becomes tightly packed inside the wrapper tube 5, a strong force will be applied to each fuel rod 2, and there is a possibility that the fuel rods 2 will be damaged unless there is no misalignment within the fuel rod bundle 4. or occur. On the other hand, if excessive misalignment occurs, the fuel rods 2 will come into direct contact with each other without using the wire 3, and there is a risk that the fuel rods 2 will be burnt out.
したかって、燃料棒2の破損および焼損を防止するため
、核燃料集合体1の炉内での照射時間には厳しい制限が
加えられている。Therefore, in order to prevent damage and burnout of the fuel rods 2, strict restrictions are placed on the irradiation time of the nuclear fuel assembly 1 in the reactor.
通常、この照射時間の制限は、燃料棒バンドル4内の再
配列の挙動を予eJ L、燃料棒2の健全性が確保でき
る範囲内で「できるだけ長く」と言う条件で設定されて
いる。この照射時間の制限が厳しすぎると、まだ使用で
きる核燃料集合体1を早(取り出すことになり経済性上
好ましくない。また反対に、この照射時間の制限が緩す
ぎると、核燃料集合体1内の再配列の挙動の評価誤差が
大きすぎる場合には、燃料棒2の破損を引き起こす。Usually, the limit on the irradiation time is set to be ``as long as possible'' within a range in which the rearrangement behavior within the fuel rod bundle 4 can be predicted and the integrity of the fuel rods 2 can be ensured. If this irradiation time limit is too strict, nuclear fuel assemblies 1 that can still be used will have to be taken out prematurely, which is unfavorable from an economic point of view.On the other hand, if this irradiation time limit is too loose, If the evaluation error of the rearrangement behavior is too large, the fuel rods 2 will be damaged.
したがって、この照射時間の制限を決定する基になる核
燃料集合体1内の再配列の挙動を正確に予7fajする
ことは非常に重要である。Therefore, it is very important to accurately predict the rearrangement behavior within the nuclear fuel assembly 1, which is the basis for determining this irradiation time limit.
従来から、この再配列の挙動を予測する為の一つの方法
として、詳細な物理モデルを組み込んだ計算コードが用
いられている。また、このような計算コードの予測精度
を向上させるために、炉外でバンドル圧縮テストと呼ば
れる実験か行われている。これは、核燃料集合体の側面
に圧縮荷重を加え模擬的に配列ずれを生じさせ、評価を
行うものである。Conventionally, one method for predicting the behavior of this rearrangement has been to use calculation codes incorporating detailed physical models. Additionally, in order to improve the prediction accuracy of such calculation codes, an experiment called a bundle compression test is being conducted outside the reactor. This involves applying a compressive load to the side surface of a nuclear fuel assembly to create a simulated misalignment for evaluation.
(発明が解決しようとする課題)
上述したように、実際の炉内の核燃料集合体では、内側
の構成要素の脹らみによって再配列が生じるが、従来は
このような再配列を、核燃料集合体の側面に圧縮加重を
加えることによって模擬し、評価を行っている。このた
め、核燃料集合体の各構成要素の挙動が実際の挙動き異
なる可能性があり、評価精度に限界があるという問題が
あった。(Problems to be Solved by the Invention) As mentioned above, in a nuclear fuel assembly in an actual reactor, rearrangement occurs due to swelling of the inner components, but conventionally, such rearrangement was This is simulated and evaluated by applying compressive weight to the sides of the body. Therefore, there is a possibility that the behavior of each component of the nuclear fuel assembly may differ from the actual behavior, and there is a problem that there is a limit to the accuracy of evaluation.
本発明は、かかる従来の事情に対処してなされたもので
、従来に較べてより実際の状態に近い状態を模擬するこ
とができ、核燃料集合体の挙動の高精度な評価を可能と
する模擬核燃料集合体を提供しようとするものである。The present invention has been made in response to such conventional circumstances, and is capable of simulating a state closer to the actual state than in the past, and is capable of simulating a highly accurate evaluation of the behavior of a nuclear fuel assembly. The aim is to provide nuclear fuel assemblies.
[発明の構成〕
(課題を解決するための手段)
すなわち、本発明の模擬核燃料集合体は、規則正しく配
列された複数の模擬燃料棒およびこれらの模擬燃料棒間
の間隔を保持するためのスペーサを具備した模擬燃料棒
バンドルと、この模擬燃料棒バンドルの周囲を囲むよう
に設けられた筒状のラッパー管とを備え、少なくとも前
記模擬燃料棒は、前記ラッパー管より熱膨脹率の高い材
料から構成されており、かつ、加熱手段を備えているこ
とを特徴とする。[Structure of the Invention] (Means for Solving the Problems) That is, the simulated nuclear fuel assembly of the present invention includes a plurality of regularly arranged simulated fuel rods and a spacer for maintaining the spacing between these simulated fuel rods. and a cylindrical wrapper tube provided to surround the simulated fuel rod bundle, at least the simulated fuel rod being made of a material having a higher coefficient of thermal expansion than the wrapper tube. The apparatus is characterized in that it is equipped with a heating means.
(作 用)
上記構成の本発明の模擬核燃料集合体では、核燃料集合
体の燃料棒の再配列を、内側の構成要素の脹らみによっ
て実際の状態に近い状態で模擬することができる。した
がって、従来に較べて核燃料集合体の挙動の高精度な評
価を行うことができる。(Function) In the simulated nuclear fuel assembly of the present invention having the above configuration, the rearrangement of the fuel rods of the nuclear fuel assembly can be simulated in a state close to the actual state by the swelling of the inner components. Therefore, it is possible to evaluate the behavior of a nuclear fuel assembly with higher accuracy than in the past.
(実施例)
以下、本発明の模擬核燃料集合体を図面を参照して一実
施例について説明する。(Example) Hereinafter, one example of the simulated nuclear fuel assembly of the present invention will be described with reference to the drawings.
第1図は、本発明の一実施例の模擬核燃料集合体の構成
を示すもので、図において符号11は模擬核燃料集合体
を示している。FIG. 1 shows the configuration of a simulated nuclear fuel assembly according to an embodiment of the present invention, and in the figure, reference numeral 11 indicates the simulated nuclear fuel assembly.
模擬核燃料集合体11は、評価対象の核燃料集合体(こ
の実施例では第2図に示した核燃料集合体1)と、その
幾何学的形状がほぼ同一になるよう構成されている。す
なわち、多数の模擬燃料棒12を、この模擬燃料棒12
の周囲に螺旋状に巻回したワイヤ13をスペーサとして
規則正しく束ねて模擬燃料棒バンドル14を構成し、こ
の模擬燃料棒バンドル14の周囲を囲むように筒状のラ
ッパー管15を配置した構造とされている。また、模擬
燃料棒12内には、模擬燃料棒12を加熱するためのヒ
ータ16が設けられている。The simulated nuclear fuel assembly 11 is configured to have substantially the same geometrical shape as the nuclear fuel assembly to be evaluated (in this example, the nuclear fuel assembly 1 shown in FIG. 2). That is, a large number of simulated fuel rods 12 are connected to this simulated fuel rod 12.
The simulated fuel rod bundle 14 is constructed by regularly bundling wires 13 wound spirally around the spacer as spacers, and a cylindrical wrapper tube 15 is arranged to surround the simulated fuel rod bundle 14. ing. Furthermore, a heater 16 for heating the simulated fuel rod 12 is provided inside the simulated fuel rod 12 .
ただし、上記模擬燃料棒12およびワイヤ13は、熱膨
脹率の高い材料から構成されており、ラッパー管15は
、熱膨脹率の低い材料から構成されている。However, the simulated fuel rods 12 and wires 13 are made of a material with a high coefficient of thermal expansion, and the wrapper tube 15 is made of a material with a low coefficient of thermal expansion.
なお、模擬燃料棒12およびワイヤ13を構成する熱膨
脹率の高い材料としては、たとえば、ステンレススチー
ル、鉛、ニッケル、銅、アルミニウム、鉄等が例示され
る。また、ラッパー管15を構成する熱膨脹率の低い材
料としては、たとえば、モリブデン、ジルコニウム、タ
ングステン、アルミナ等の他、窒化ケイ素、窒化ホウ素
、炭化ホウ素等のセラミックス等が例示される。Note that materials with a high coefficient of thermal expansion constituting the simulated fuel rods 12 and the wires 13 include, for example, stainless steel, lead, nickel, copper, aluminum, iron, and the like. In addition, examples of materials with a low coefficient of thermal expansion constituting the wrapper tube 15 include molybdenum, zirconium, tungsten, alumina, and ceramics such as silicon nitride, boron nitride, and boron carbide.
上述したような材料を用いて、常温あるいはやや低温で
所定寸法となるよう、模擬燃料棒12、ワイヤ13、ラ
ッパー管15を形成し、この温度でこれらを組み立てて
模擬核燃料集合体11を構成する。Using the materials described above, the simulated fuel rods 12, wires 13, and wrapper tubes 15 are formed to have predetermined dimensions at room temperature or slightly low temperature, and are assembled at this temperature to form the simulated nuclear fuel assembly 11. .
上記構成のこの実施例の模擬核燃料集合体11では、原
子炉外において、ヒータ16に通電し昇温を行う。In the simulated nuclear fuel assembly 11 of this embodiment having the above configuration, the heater 16 is energized to raise the temperature outside the reactor.
すると、模擬燃料棒12、ワイヤ13、ラッパー管15
か熱膨脹を起こすが、ラツノ°々−管15より模擬燃料
棒12およびワイヤ13が熱膨脹率の高い材料から構成
されているため、周囲のラッパー管15の膨脹より、内
部の模擬燃料棒12・ワイヤ13の膨脹の方が大きいの
で、ラツノ々−管15と模擬燃料棒12との間隙が昇温
にしたがって次第に消失していく。Then, the simulated fuel rod 12, wire 13, wrapper tube 15
However, since the simulated fuel rods 12 and wires 13 are made of materials with a higher coefficient of thermal expansion than the wrapper tubes 15, the expansion of the surrounding wrapper tubes 15 causes the inner simulated fuel rods 12 and wires to expand. Since the expansion of fuel rod 13 is larger, the gap between the rattan tube 15 and the simulated fuel rod 12 gradually disappears as the temperature rises.
そして、模擬燃料棒バンドル14がラッパー管15内に
ぎっしり詰まった状態になると、模擬燃料棒12に強い
力が加わって配列ずれが生じ、模擬燃料棒12の相互の
間隔が狭まったり、ワイヤ13を介さないで直接接触し
たりする。この時の模擬燃料棒12の相互の間隙あるい
は模擬燃料棒12の相互の接触力等を、従来なされてい
るバンドル圧縮実験の場合と同様に、各種測定プローブ
で測定することにより、前述の適切な照射時間の制限を
与えるための情報を得ることができる。When the simulated fuel rod bundle 14 is tightly packed inside the wrapper tube 15, a strong force is applied to the simulated fuel rods 12, causing misalignment, causing the mutual spacing of the simulated fuel rods 12 to become narrower, or causing the wires 13 to Direct contact without intervention. At this time, by measuring the mutual gap between the simulated fuel rods 12 or the mutual contact force between the simulated fuel rods 12 with various measurement probes, as in the case of conventional bundle compression experiments, the above-mentioned appropriate Information for limiting irradiation time can be obtained.
たとえば、模擬燃料棒12とワイヤ13の材質をステン
レススチールとし、ラッパー管15の材質を窒化ケイ素
とする。そして、ラッパー管15の対面間の距離を20
℃で18clIlとすると、ステンレススチールおよび
窒化ケイ素の線膨脹率は、それぞれ20X 1O−6C
TII / ”Cおよび2XlO〜6Clll / ’
Cであるので、たとえば模擬核燃料集合体11を620
℃まで昇温した場合、
(620−20) X18X (20−2) X
lロー6−0.19で与えられるように、模擬燃料棒1
2とラッパ管15との間隔が1.9mm圧縮される。For example, the material of the simulated fuel rod 12 and the wire 13 is stainless steel, and the material of the wrapper tube 15 is silicon nitride. Then, the distance between the facing surfaces of the wrapper tubes 15 is set to 20
℃ and 18clIl, the coefficient of linear expansion of stainless steel and silicon nitride is 20X 1O-6C, respectively.
TII/”C and 2XlO~6Clll/’
C, for example, the simulated nuclear fuel assembly 11 is 620
When the temperature is raised to ℃, (620-20) X18X (20-2) X
The simulated fuel rod 1 as given by l Rho 6-0.19
2 and the trumpet tube 15 is compressed by 1.9 mm.
通常は、このような圧縮長さをワイヤ13の直径で割っ
た値で前述したような照射量の制限値を考えるが、たと
えばワイヤ13の直径を1.3+maとすると、上記圧
縮長さによればこの値は、1.5程度になる。また、模
擬核燃料集合体11を1220℃まで昇温すればこの値
は3(圧縮長さは3.9mm)となり、原子炉内で核燃
料集合体を照射した場合と同様な状態を模擬することが
できる。Normally, the above-mentioned limit value of the irradiation amount is considered as the value obtained by dividing the compressed length by the diameter of the wire 13, but if the diameter of the wire 13 is 1.3+ma, then the The value for tobacco is about 1.5. Furthermore, if the temperature of the simulated nuclear fuel assembly 11 is raised to 1220°C, this value becomes 3 (compression length is 3.9 mm), making it possible to simulate the same state as when a nuclear fuel assembly is irradiated in a nuclear reactor. can.
なお、上記実施例では、模擬燃料棒12の間隔を保持す
るスペーサとしてワイヤ13を用いた例について説明し
たが、本発明はかかる実施例に限定されるものではなく
、たとえば模擬燃料棒12の間隔を保持するスペーサと
してスペーサグリッドを用いた場合でも同様にして適用
することができる。また、模擬燃料棒12の内側にヒー
タ16を設けずに、外側から加熱するように構成するこ
ともできる。In addition, in the above embodiment, an example was explained in which the wire 13 was used as a spacer for maintaining the spacing between the simulated fuel rods 12, but the present invention is not limited to such an embodiment. The same method can be applied even when a spacer grid is used as a spacer to hold the spacer. Alternatively, the simulated fuel rod 12 may be configured to be heated from the outside without providing the heater 16 inside it.
[発明の効果]
以上説明したように、本発明の模擬核燃料集合体によれ
ば、核燃料集合体の燃料棒の再配列を、内側の構成要素
の脹らみによって実際の状態に近い状態で模擬すること
ができ、従来に較べて核燃料集合体の挙動の高精度な評
価を行うことができる。[Effects of the Invention] As explained above, according to the simulated nuclear fuel assembly of the present invention, the rearrangement of the fuel rods of the nuclear fuel assembly can be simulated in a state close to the actual state by the swelling of the inner components. This makes it possible to evaluate the behavior of nuclear fuel assemblies with higher accuracy than in the past.
第1図は本発明の一実施例の模擬核燃料集合体の構成を
示す図、第2図は高速増殖炉用核燃料集合体の構成を示
す図である。
11・・・・・・・・・模擬核燃料集合体12・・・・
・・・・・模擬燃料棒
13・・・・・・・・・ワイヤ
14・・・・・・・・・模擬燃料棒バンドル1
5・・・・・・・・・ラ
ツバ−管
6・・・・・・・・・ヒータFIG. 1 is a diagram showing the configuration of a simulated nuclear fuel assembly according to an embodiment of the present invention, and FIG. 2 is a diagram showing the configuration of a nuclear fuel assembly for a fast breeder reactor. 11... Simulated nuclear fuel assembly 12...
..... Simulated fuel rod 13 ..... Wire 14 ..... Simulated fuel rod bundle 1 5 ..... Lutzber tube 6 ... ·······heater
Claims (1)
れらの模擬燃料棒間の間隔を保持するためのスペーサを
具備した模擬燃料棒バンドルと、この模擬燃料棒バンド
ルの周囲を囲むように設けられた筒状のラッパー管とを
備え、少なくとも前記模擬燃料棒は、前記ラッパー管よ
り熱膨脹率の高い材料から構成されており、かつ、加熱
手段を備えていることを特徴とする模擬核燃料集合体。(1) A simulated fuel rod bundle equipped with a plurality of regularly arranged simulated fuel rods and a spacer for maintaining the spacing between these simulated fuel rods, and a simulated fuel rod bundle provided so as to surround the simulated fuel rod bundle. A simulated nuclear fuel assembly comprising a cylindrical wrapper tube, wherein at least the simulated fuel rod is made of a material having a higher coefficient of thermal expansion than the wrapper tube, and further comprising a heating means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1313676A JPH03172794A (en) | 1989-11-30 | 1989-11-30 | Dummy nuclear fuel assembly |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1313676A JPH03172794A (en) | 1989-11-30 | 1989-11-30 | Dummy nuclear fuel assembly |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03172794A true JPH03172794A (en) | 1991-07-26 |
Family
ID=18044170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1313676A Pending JPH03172794A (en) | 1989-11-30 | 1989-11-30 | Dummy nuclear fuel assembly |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03172794A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104064226A (en) * | 2014-07-04 | 2014-09-24 | 中国科学院合肥物质科学研究院 | Simulation fuel assembly sub-channel heating rod interval adjusting device |
CN111681789A (en) * | 2020-06-22 | 2020-09-18 | 中国核动力研究设计院 | Thermal hydraulic experimental device for closely-arranged rod bundle fuel assemblies |
-
1989
- 1989-11-30 JP JP1313676A patent/JPH03172794A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104064226A (en) * | 2014-07-04 | 2014-09-24 | 中国科学院合肥物质科学研究院 | Simulation fuel assembly sub-channel heating rod interval adjusting device |
CN111681789A (en) * | 2020-06-22 | 2020-09-18 | 中国核动力研究设计院 | Thermal hydraulic experimental device for closely-arranged rod bundle fuel assemblies |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rempe et al. | New in-pile instrumentation to support fuel cycle research and development | |
KR20170135894A (en) | Test specimen for measuring nuclear heating in a nuclear reactor, and calorimetric cell including at least one such test specimen | |
US4108719A (en) | Method and apparatus for gauging the radial spacing between fuel and surrounding cladding of a fuel rod for nuclear reactors | |
JPS58795A (en) | Gamma ray senser having heat flow path in radius direction | |
JPH03172794A (en) | Dummy nuclear fuel assembly | |
Corum et al. | Thermal ratchetting in pipes subjected to intermittent thermal downshocks at elevated temperatures | |
Xiong et al. | Experimental and analytical study on heat dissipation mechanisms during spent fuel unloading in sodium fast reactor | |
Arrestad | Fuel rod performance measurements and re-instrumentation capabilities at HALDEN project | |
US3999067A (en) | High speed radiation scanning technique for simultaneously determining the pitch and eccentricity of an encased oil | |
Zargar et al. | Numerical and Experimental Modal Analysis of Fuel Rods | |
Zeisser et al. | In-pile measurement of fission enhanced creep and swelling of uranium nitride | |
KR100579399B1 (en) | Method of making laboratory degraded heat transfer tubes for steam generator | |
Notley et al. | Measurements of the circumferential strains of the sheathing of UO 2 fuel elements during reactor operation | |
JOHANNESSEN | Reliability Assurance in Sheathed Thermocouples for Nuclear Reactors | |
Bakhtiari et al. | Development of a novel ultrasonic temperature probe for long-term monitoring of dry cask storage systems | |
Mayuzumi et al. | The applicability of the strain-hardening rule to creep deformation of Zircaloy fuel cladding tube under dry storage condition | |
JPH0210198A (en) | Method of detecting leaked fuel rod within nuclear fuel assembly and apparatus for implementing the same | |
JPS5957196A (en) | Heat simulating specimen of nuclear fuel rod | |
Gallagher et al. | Analysis and Design of Ex-Service Garter Spring Irradiation Capsules in the High Flux Isotope Reactor | |
JP3049234B2 (en) | Structure deformation behavior simulator | |
Callahan et al. | Prestressed concrete reactor vessel thermal cylinder model study | |
Franklin et al. | Approach to the HTGR core outlet temperature measurements in the United States | |
Watanabe et al. | Army Gas Cooled Reactor Systems Program. Description of the IB-1T fuel element in-pile experiment | |
JPH10300886A (en) | Gas pressure measuring method in nuclear fuel element | |
Lyons et al. | PLASTIC STRAIN IN THIN FUEL ELEMENT CLADDING DUE TO UO $ sub 2$ THERMAL EXPANSION |