JPH03172756A - Capillary electrophoretic device - Google Patents

Capillary electrophoretic device

Info

Publication number
JPH03172756A
JPH03172756A JP1312907A JP31290789A JPH03172756A JP H03172756 A JPH03172756 A JP H03172756A JP 1312907 A JP1312907 A JP 1312907A JP 31290789 A JP31290789 A JP 31290789A JP H03172756 A JPH03172756 A JP H03172756A
Authority
JP
Japan
Prior art keywords
capillary
film
immersed
sample
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1312907A
Other languages
Japanese (ja)
Other versions
JPH0737962B2 (en
Inventor
Shoichi Kobayashi
章一 小林
Akihiro Arai
昭博 荒井
Hiroshi Nagayanagi
永柳 衍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1312907A priority Critical patent/JPH0737962B2/en
Publication of JPH03172756A publication Critical patent/JPH03172756A/en
Publication of JPH0737962B2 publication Critical patent/JPH0737962B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To allow the effective control of a temp. and the elimination of an electrostatic effect by forming a capillary coated with a material having a good thermal conductivity on the outside surface as a migration pipe and grounding a part thereof. CONSTITUTION:One end of the capillary 1 coated with the aluminum film 1' is immersed into a sample vessel to introduce the sample therein. Both ends 1A, 1B of the capillary 1 are then immersed into buffer soln. chambers 7, 8 for migration and platinum electrodes 10 are respectively immersed in both liquid chambers. A voltage is impressed to these electrodes. The capillary 1 is cooled by an aluminum block 2 in order to suppress the Joule heat generated in the capillary 1 at this time. Flow is generated in the buffer solns. by the impression of the voltage to both ends of the capillary 1, by which the sample is separated. The separated components are detected by a detector 9. The uniform and effective temp. control of the surface of the capillary 1 is assured by the film 1' thereof. A shielding effect is imparted to the film 1' by grounding a part of the film 1', by which the influence of the static electricity is eliminated.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、タンパク質、核酸などの生体高分子の高分離
分析および精製法に係わり、特に構造や性質が接近した
成分の分離に好適なキャピラリ電気泳動装置に関する。
Detailed Description of the Invention (a) Industrial Application Field The present invention relates to high-level separation analysis and purification methods for biopolymers such as proteins and nucleic acids, and is particularly suitable for separating components with similar structures and properties. This invention relates to a capillary electrophoresis device.

(ロ)従来技術 電気泳動の窩性能装置化技術として、近年急速に研究が
なされているキャピラリ電気泳動法は、J、 L Jo
rgensonやB、 L、 Kargerらの総説(
各々、5cience、222266(1983) J
ournal of Chromatogra−phy
、虱585(1989)、 )において示されているよ
うに、1)キャピラリから効果的にジュール熱を除去す
ることによって高圧で泳動ができるため、原理的に高分
離能、迅速分析が可能、2)オンカラム検出器によって
装置の自動化が可能等の利点を有しペプチド、タンパク
質、核酸の分前分析及び精製をはじめとして、光学分割
、同位体の分離その他極めて酷似した成分間の分離に適
した方法である。
(b) Conventional technology The capillary electrophoresis method, which has been rapidly researched in recent years as a device-based technology for electrophoresis, is the method described by J. L. Jo.
Reviews by Rgenson, B. L., Karger et al.
5science, 222266 (1983) J
internal of chromatography
, 585 (1989), ), 1) Since Joule heat is effectively removed from the capillary, electrophoresis can be performed at high pressure, which in principle enables high resolution and rapid analysis; 2) ) A method suitable for preparative analysis and purification of peptides, proteins, and nucleic acids, as well as optical resolution, isotope separation, and other separations between extremely similar components, with advantages such as the ability to automate the device using an on-column detector. It is.

なお、キャピラリには通常、フユーズドシリカが使用さ
れ、その曲げ強度を増大するために、キャピラリ外面に
ポリイミド被膜をコーティングしている。
Note that fused silica is usually used for the capillary, and the outer surface of the capillary is coated with a polyimide film to increase its bending strength.

(ハ)発明が解決しようとする課題 しかしながら、ポリイミド被膜は非常に熱伝以下 余白 導が悪い究めキャピラリの外側から温調を行う場合に効
果的な温調を行えなかった。
(c) Problems to be Solved by the Invention However, the polyimide coating has extremely low heat conductivity and poor margin conductivity, making it impossible to effectively control the temperature from the outside of the capillary.

また、キャピラリ両端KIO〜50KVを印加して電気
泳動を行うが、ポリイミド被膜は非導電性のためキャピ
ラリ内部と周辺との電位差による静電的影響を生じてい
た。これは、具体的には光学検出器の検出部(フォトセ
ル)、検出回路に対する静電誘導、ホコリ等をひきつけ
ることにより光路全妨げるために生じるノイズ等である
Furthermore, electrophoresis is performed by applying KIO to 50 KV to both ends of the capillary, but since the polyimide coating is non-conductive, electrostatic effects occur due to the potential difference between the inside and the surroundings of the capillary. Specifically, this includes electrostatic induction to the detection section (photocell) of the optical detector and the detection circuit, and noise that occurs because it attracts dust and the like and obstructs the entire optical path.

そこで1本発明は、キャピラリの温調を効果的に行え、
かつ、静電的影響を除去した装置を提供することケ目的
とする。
Therefore, one aspect of the present invention is to effectively control the temperature of the capillary.
In addition, it is an object of the present invention to provide a device that eliminates electrostatic influences.

に)課題を解決する友めの手段 本発明は、上記課題を解決するtめ1曲げ強度を増大す
るためのコーティングに熱伝導の良い材質を用いること
を特徴とする〇 ここで、熱伝導の良い材質とは1例えば、アルミ、金、
銀などの金属を挙げることができ、特にアルミが好まし
い。
B) A companion means for solving the problems The present invention is characterized in that a material with good thermal conductivity is used for the coating for increasing the bending strength. Good materials are 1.For example, aluminum, gold,
Metals such as silver can be used, and aluminum is particularly preferred.

かかる材質ヲキャビラリにコーティングして被膜をf′
f:fMする方法としては9例えば、金属を溶融して、
へヶで塗る方法、スプレーで吹きつける方法、金属の溶
融液にキャピラリヲつける方法など何でも良い。
Such a material is coated on the cavity to form a film f′.
f: As a method for fM, 9 For example, by melting metal,
Any method is suitable, such as applying it with a spatula, spraying it, or dipping a capillary into the molten metal.

なお、熱伝導性材質をコーティングしたキャピラリを泳
動管として用いる場合には、キャピラリ両端の泳動用緩
衝液と接する部分のコーティングをはぎとることが必要
である。
Note that when a capillary coated with a thermally conductive material is used as an electrophoresis tube, it is necessary to strip off the coating on the portions of the capillary that are in contact with the electrophoresis buffer at both ends.

また1本発明では、キャピラリ内部と周辺との電位差に
よる静電的影響を除去するため、上記熱伝導材質でコー
ティングした泳動管の一部を接地することを特徴とする
Further, the present invention is characterized in that a part of the migration tube coated with the heat conductive material is grounded in order to eliminate the electrostatic influence due to the potential difference between the inside of the capillary and its surroundings.

(ホ)作用 本発明では、熱伝導性良好な材質の被膜によりキャピラ
リのほぼ全体がすきまなく密着しているため、被膜の温
調によシ効果的な温調が実現される。
(E) Function In the present invention, since almost the entire capillary is tightly adhered to the capillary without any gaps by the coating made of a material with good thermal conductivity, effective temperature control can be achieved by controlling the temperature of the coating.

また、接地することKよシ金属被膜がシールド効果を持
ち静電的影響を除去できる。
Furthermore, since it is grounded, the metal coating has a shielding effect and can eliminate electrostatic influences.

(へ)夾施例 本発明に部るキャピラリ電気泳動装置の概略図の一実施
例を第1図に示す。
(F) Additional Examples An example of a schematic diagram of a capillary electrophoresis apparatus according to the present invention is shown in FIG.

図中1は、フユース゛ドシリカキャピラリ(内径10〜
100μm、長さ10cM〜1m)で、アルシミ被暎1
を施しており、その両端]A、lBは、酸処理により部
分的に被膜がはぎとっである。なお、かかるIA 、 
IBの拡大図を第2図に示しである。゛被膜1′をはぎ
とったIA 、 IBは泳動用緩衝液槽7゜8につけら
れる。
1 in the figure is a fused silica capillary (inner diameter 10~
100μm, length 10cM~1m), aluminum resistant 1
The coating at both ends A and IB was partially peeled off due to acid treatment. In addition, such IA,
An enlarged view of IB is shown in FIG. IA and IB from which the coating 1' has been removed are placed in an electrophoresis buffer tank 7.8.

アルミ被膜1′ヲ施しであるキャピラリは、アルミブロ
ック2にはさみこまれ、このブロック2はベルチェ素子
3により温調される。
A capillary coated with an aluminum coating 1' is inserted into an aluminum block 2, and the temperature of this block 2 is controlled by a Bertier element 3.

4は、アルミブロック2の温度を検出するための温度セ
ンサ(例えば、抵抗・ダイオード等)5は慇度センサ4
の検出回路及びベルチェ素子の温調用回路である。
4 is a temperature sensor (for example, a resistor, a diode, etc.) for detecting the temperature of the aluminum block 2; 5 is a temperature sensor 4;
This is a detection circuit and a temperature control circuit for the Beltier element.

また、6は電気泳動を行うための高圧電源で最大出力電
圧30 KV程度のものが好ましり、電源6には、白金
型(至)10が接続される。
Further, 6 is a high-voltage power source for performing electrophoresis, preferably having a maximum output voltage of about 30 KV, and a platinum mold 10 is connected to the power source 6.

9は、検出器で例えばUV検出器あるいは螢光検出器が
用いられる。
Reference numeral 9 denotes a detector, such as a UV detector or a fluorescence detector.

以上の構成において動作は次の様に行う。In the above configuration, the operation is performed as follows.

まず、キャピラリ1の−@を、試料容器(図示せず)に
浸しキャピラリ1内に試料全導入する。
First, -@ of the capillary 1 is immersed in a sample container (not shown), and the entire sample is introduced into the capillary 1.

試料導入後、キャピラリ1の両端全泳動用緩衝液を入れ
た緩衝液槽7.8に浸す。この二つの緩僅工液槽に各々
白金電嘩lOを浸し両甑に電圧を印加する。このとき、
キャピラリにジュー/L/P:が発生するため、それを
抑えるためアルミブロック2により冷却する。
After introducing the sample, both ends of the capillary 1 are immersed in a buffer tank 7.8 containing a buffer solution for electrophoresis. A platinum electric wire 1O is immersed in each of these two slow-working liquid tanks, and a voltage is applied to both pots. At this time,
Since juice/L/P: is generated in the capillary, it is cooled by an aluminum block 2 to suppress it.

キャピラリ両端に電Ee印加することによって。By applying an electric current Ee to both ends of the capillary.

緩#液に流れが生じ、試料が分離され1分港された試料
成分は検出器9で検出される。
A flow is generated in the slow liquid, the sample is separated, and the sample components that have been left for 1 minute are detected by the detector 9.

以上の動作において2本発明ではキャピラリの被膜ニア
ルミを用いているため、キャビフリ表面が効果的にかつ
均一に温調される。
In the above-mentioned operation, the present invention uses a capillary coating made of aluminum, so the temperature of the surface of the capillary can be effectively and uniformly controlled.

なお、アルミ被膜ヲ施したキャピラリの強度は両者の熱
膨張率が異なるため、低温あるいは高温での使用には問
題があるが、電気泳動は0通常室温付近で行うため問題
は生じない。
It should be noted that the strength of the capillary coated with aluminum is problematic when used at low or high temperatures because the coefficients of thermal expansion are different, but this problem does not occur because electrophoresis is usually performed at around room temperature.

また1本発明の他の実施例を第3図に示す。第1図と同
じものには同じ番号が付してあり、この実施例では、ア
ルミ被膜1′の一部が接地されている(図中11)。か
かる接地により、高電圧印加部のは#了全域で被膜によ
る静電シールドをツ現できる。
Another embodiment of the present invention is shown in FIG. Components that are the same as those in FIG. 1 are given the same numbers, and in this embodiment, a portion of the aluminum coating 1' is grounded (11 in the figure). This grounding allows electrostatic shielding by the film to be achieved over the entire area of the high voltage application section.

(ト)効果 本発明によれば、キャピラリ表面が効果的にかつ均一に
温調され高分解能の分離を短時間で実現すると共に再現
性が向上する。
(g) Effects According to the present invention, the temperature of the capillary surface is effectively and uniformly controlled, high-resolution separation is realized in a short time, and reproducibility is improved.

また、被膜外部との接触が不完全(一部接触していない
部分がある時)な場合、従来のポリイミド被膜では局部
的に温調されないが1例えばアルミ被膜では熱伝導率が
上記被膜の500〜1000倍であるので、かかる事態
が大幅に緩和される。
In addition, when the contact with the outside of the coating is incomplete (when there are some parts that are not in contact), the temperature cannot be controlled locally with conventional polyimide coatings.1 For example, with aluminum coatings, the thermal conductivity is 500 Since it is 1000 times larger, such a situation can be greatly alleviated.

更に、金属被膜のシールド効果により、静電誘導、ホコ
リのすい込みが防止される。
Furthermore, the shielding effect of the metal coating prevents electrostatic induction and dust from entering.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第3(2)は1本発明に係る電気泳動装置の一
夾施例図、第2図は、キャピラリの両端の状態を示す図
である。 l・・・フユーズドシリカキャヒ′ラリ】・・・アルミ
被膜
FIGS. 1 and 3(2) are views of one embodiment of an electrophoresis device according to the present invention, and FIG. 2 is a view showing the states of both ends of a capillary. l...Fused silica capillary]...Aluminum coating

Claims (1)

【特許請求の範囲】 1、外面に熱伝導性材質をコーティングしたキャピラリ
を泳動管として用いてなるキャピラリ電気泳動装置。 2、請求項第1項の泳動管の一部を接地してなるキャピ
ラリ電気泳動装置。
[Claims] 1. A capillary electrophoresis device using a capillary whose outer surface is coated with a thermally conductive material as a migration tube. 2. A capillary electrophoresis device in which a part of the migration tube according to claim 1 is grounded.
JP1312907A 1989-11-30 1989-11-30 Capillary electrophoresis device Expired - Fee Related JPH0737962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1312907A JPH0737962B2 (en) 1989-11-30 1989-11-30 Capillary electrophoresis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1312907A JPH0737962B2 (en) 1989-11-30 1989-11-30 Capillary electrophoresis device

Publications (2)

Publication Number Publication Date
JPH03172756A true JPH03172756A (en) 1991-07-26
JPH0737962B2 JPH0737962B2 (en) 1995-04-26

Family

ID=18034893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1312907A Expired - Fee Related JPH0737962B2 (en) 1989-11-30 1989-11-30 Capillary electrophoresis device

Country Status (1)

Country Link
JP (1) JPH0737962B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5180475A (en) * 1991-09-04 1993-01-19 Hewlett-Packard Company System and method for controlling electroosmotic flow
US5322607A (en) * 1992-07-14 1994-06-21 Hewlett-Packard Company Electrical potential configuration for an electrophoresis system
US6103081A (en) * 1996-12-11 2000-08-15 The Regents Of The University Of Michigan Heat sink for capillary electrophoresis

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168561A (en) * 1984-09-12 1986-04-08 Fujikura Ltd Capillary column for chromatograph

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168561A (en) * 1984-09-12 1986-04-08 Fujikura Ltd Capillary column for chromatograph

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5180475A (en) * 1991-09-04 1993-01-19 Hewlett-Packard Company System and method for controlling electroosmotic flow
US5322607A (en) * 1992-07-14 1994-06-21 Hewlett-Packard Company Electrical potential configuration for an electrophoresis system
US6103081A (en) * 1996-12-11 2000-08-15 The Regents Of The University Of Michigan Heat sink for capillary electrophoresis

Also Published As

Publication number Publication date
JPH0737962B2 (en) 1995-04-26

Similar Documents

Publication Publication Date Title
US4443319A (en) Device for electrophoresis
EP0356160A2 (en) Capillary device
JPH05505463A (en) Enhanced capillary zone electrophoresis method and its implementation device
JPH0611484A (en) Capillary electrohporesis apparatus and apparatus and method for controlling electroendos- mose in flow in capillary electrophoresis
Hjertén et al. High-performance displacement electrophoresis in 0.025-to 0.050-mm capillaries coated with a polymer to suppress adsorption and electroendosmosis
US5837116A (en) Two dimensional electrophoresis apparatus
EP3226993B1 (en) Apparatus and method for separating molecules
EP0838029B1 (en) Electrophoresis capillary tube with a conductive tip
JP3011914B2 (en) On-column conductivity detector for electrokinetic separation by microcolumn
US4483885A (en) Method and device for electrophoresis
US5512158A (en) Capillary electrophoresis method and apparatus for electric field uniformity and minimal dispersion of sample fractions
JPH08178897A (en) Electrophoresis apparatus
KR930019306A (en) Oxygen measuring probe
JPH03172756A (en) Capillary electrophoretic device
IT8467198A0 (en) METHOD AND DEVICE FOR CONTROL OF WELDING PROCESSES THROUGH THE ANALYSIS OF THE BRIGHTNESS GENERATED DURING THE PROCESS
US4859301A (en) Separation of zone formation from electroosmotic impulse in tubular electrophoretic systems
GB1371888A (en) Electrolchemical electrode liquid junction structure and method for producing same
US3802926A (en) Thermocouple with spaced electrically insulating sheaths
US4940883A (en) Window burner for polymer coated capillary columns
JPH01152354A (en) Electrodynamic analysis method and apparatus employing heat removing means
JPH0674937A (en) Capillary system electrophoresis method and device therefor and column used in the same
JPH10206382A (en) Multicapillary electrophoretic device and electrode plate therefor
De Cock et al. Interinstrumental method transfer of a capillary electrophoretic separation of angiotensin II and five derivatives: Evaluation and update of earlier developed guidelines
JPH06160352A (en) Electrophoretic system
JPH04160356A (en) Sample injection device of capillary electrophoretic apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees