JPH0317254Y2 - - Google Patents
Info
- Publication number
- JPH0317254Y2 JPH0317254Y2 JP16774382U JP16774382U JPH0317254Y2 JP H0317254 Y2 JPH0317254 Y2 JP H0317254Y2 JP 16774382 U JP16774382 U JP 16774382U JP 16774382 U JP16774382 U JP 16774382U JP H0317254 Y2 JPH0317254 Y2 JP H0317254Y2
- Authority
- JP
- Japan
- Prior art keywords
- graphite crucible
- current
- analysis
- lower electrodes
- electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 31
- 229910002804 graphite Inorganic materials 0.000 claims description 31
- 239000010439 graphite Substances 0.000 claims description 31
- 238000000605 extraction Methods 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 10
- 230000002159 abnormal effect Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000012159 carrier gas Substances 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004868 gas analysis Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Landscapes
- Investigating And Analyzing Materials By Characteristic Methods (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Crucibles And Fluidized-Bed Furnaces (AREA)
Description
【考案の詳細な説明】
本考案は、金属中ガス分析装置に用いられる黒
鉛るつぼの良、不良を判定する装置に関する。[Detailed Description of the Invention] The present invention relates to an apparatus for determining whether a graphite crucible used in a gas-in-metal analyzer is good or bad.
この種黒鉛るつぼは、通常製造直後に抜取り検
査が行なわれるがその後の梱包、輸送、保管時
に、ひびわれや欠けが生じたり、あるいは湿気を
ふくんで品質が劣化することがあり、これらの不
良品を用いて分析を行なうと、抽出炉に電流が流
れない、あるいは流れても異常値である等の事故
が発生する。電流値が異常である場合には試料の
分析値の信頼性が低下するという欠点があつた。 This type of graphite crucible is normally subjected to sampling inspection immediately after manufacturing, but during subsequent packaging, transportation, and storage, cracks or chips may occur, or the quality may deteriorate due to moisture content, so it is difficult to dispose of these defective products. If this is used for analysis, accidents may occur, such as the current not flowing through the extraction furnace, or even if it does, the value is abnormal. There is a drawback that when the current value is abnormal, the reliability of the sample analysis value decreases.
本考案はこのような従来欠点に鑑み、黒鉛るつ
ぼの良、不良を分析に使用する直前に適確且つ迅
速に判定しようとするものである。 In view of these conventional drawbacks, the present invention aims to accurately and quickly determine whether a graphite crucible is good or bad immediately before it is used for analysis.
以下、本考案の実施例を図面に基づいて説明す
る。 Hereinafter, embodiments of the present invention will be described based on the drawings.
第1図は本考案の一実施例を示し、この図にお
いて、A,Bは黒鉛るつぼC(そのサイズは例え
ば直径14mm,肉厚1.2mm,高さ20mm)を例えば50
Kg/cm2の圧力で上下から挟持する上部電極、下部
電極で、これらの一方は上下方向に移動可能に構
成されている。Dは前記両電極A,Bおよび黒鉛
るつぼCに電流を流す電流供給装置(電源)で、
抽出炉における分析時の通電電流(通常1000A程
度)に比較してかなり小さい電流(例えは1A程
度)を供給するように構成されている。Eは前記
両電極A,B間の電圧を測定する電圧計である。 Fig. 1 shows an embodiment of the present invention, and in this figure, A and B represent a graphite crucible C (its size is, for example, 14 mm in diameter, 1.2 mm in wall thickness, and 20 mm in height).
An upper electrode and a lower electrode are sandwiched from above and below with a pressure of Kg/cm 2 , and one of these electrodes is configured to be movable in the vertical direction. D is a current supply device (power supply) that supplies current to the electrodes A and B and the graphite crucible C;
It is configured to supply a considerably smaller current (for example, about 1 A) compared to the current flowing during analysis in the extraction furnace (usually about 1000 A). E is a voltmeter that measures the voltage between the electrodes A and B.
ところで、前記サイズの黒鉛るつぼCは、その
抵抗値が6mΩ±1〜1.5mΩの範囲にあるものが
正常とされており、例えば抵抗値が9mΩと大き
い場合には、分析時において1000Aの通電電流を
流したとき、温度が上昇しすぎて黒鉛るつぼCが
破壊されてしまい、抽出不能になるといつた不都
合があり、また、逆に抵抗値が3mΩと小さい場
合には、分析時において1000Aの通電電流を流し
たとき、温度が上昇せず、所定の抽出が行えない
といつた不都合がある。 By the way, it is considered normal for graphite crucible C of the above size to have a resistance value in the range of 6 mΩ ± 1 to 1.5 mΩ. For example, if the resistance value is as large as 9 mΩ, a current of 1000 A is applied during analysis. When flowing, there is an inconvenience that the temperature rises too much and destroys the graphite crucible C, making it impossible to extract.On the other hand, if the resistance value is as small as 3mΩ, a current of 1000A may be applied during analysis. There is a disadvantage that when a current is applied, the temperature does not rise and the desired extraction cannot be performed.
そこで、前記両電極A,B間に黒鉛るつぼCを
50Kg/cm2程度の圧力で挟持して、電流供給装置D
によつて1Aの電流を黒鉛るつぼCに通電供給し
て、そのときの電圧計Eの指示値が6mV±1〜
1.5mVであるもの、すなわち、抵抗値が6mΩ±
1〜1.5mΩの範囲にあるものを良品とし、これ以
外のものを不良品とし、良品と判定された黒鉛る
つぼCのみを抽出炉における分析に使用するので
ある。尚前記電圧計Eの出力をマイクロコンピユ
ータにインプツトして当該コンピユータに良、不
良を判定させても良い。次に第2図乃至第5図
は、本考案の第2実施例を示す。第2,3図にお
いて1はエアシリンダで、そのロツド2上端には
下ブロツク3が固着されている。そして、下ブロ
ツク3内には、ロータリアクチユエータ4が収納
されていて、その出力軸5に銅製の下部電極6が
固着連設されている。前記ロータリアクチユエー
タ4は、たとえば第4図に示すように、孔7を介
して一方の室8内にエアが導入されると羽根9及
び出力軸5が矢印P方向に約45度回転し、次に、
エア流路の切換により孔7′を介して他方の室
8′内にエアが導入されると羽根9及び出力軸5
が矢印Q方向に約45度回転する構造のものが用い
られている。このほかにギヤとラツクを用いたも
の等種々の構造のものを採用できる。10は、エ
アシリンダ1の押付力により生じるスラスト荷重
をにがすためのベアリングである。次に11は図
外支持フレームに固定された上ブロツクでその内
部には、縦孔12横孔13が設けられており、横
孔13内にはその軸芯まわりに回転可能で且つ、
中央に凹入部を有するロツド15が挿入されてい
る。16は試料投入口、17は前記縦孔12の上
部開口を開閉するシヤツター、18は横孔13の
壁に貫通して設けられたキヤリヤガス導入口であ
る。次に、19は上ブロツク11に固着連設され
た銅製の上部電極で、前記縦孔12の下部開口2
0に連なる縦孔21及びその途中に設けられた段
部22をそなえている。この段部22には、第5
図に示すように三本の溝23…が放射状に設けら
れており、これら溝23…の各外端を結ぶ仮想円
の直径Rは後述する黒鉛るつぼ27の外径rより
も大に形成されている。24は抽出ガス流路、2
5はシール用のOリングである。尚、図示してい
ないが、前記上、下部電極19,6は夫々冷却機
構をそなえている。従つて、金属試料中のガス分
析を行なうには、まず第2図に示すように、下部
電極6の上端面26に黒鉛るつぼ27を載置し次
に第3図に示すように、エアシリンダ1のロツド
2を往動させて上部電極19の段部22下面と下
部電極6の上端面26とで黒鉛るつぼ27をたと
えば約20Kg/cm2の圧力で挾圧する。次に端子X,
Yを介して図外電流供給部から電流を、上、下部
電極19,6及びこれらに挾圧された黒鉛るつぼ
27に流し、上、下部電極19,6に接続した電
圧計E(第3図中仮想線で図示)の指示を読み取
つて黒鉛るつぼ27の電気抵抗値を知り、その値
が所定範囲(前記第1実施例において示した範
囲)に含まれるものであれば次の工程に移行す
る。(尚、その値が所定範囲外である場合には、
下部電極6を下降させてその不良品である黒鉛る
つぼを取り出して廃棄する。)尚、このとき流す
電流値は、後述するガス抽出時に流す電流(たと
えば1000アンペア)に比較して低電流(たとえば
1アンペア)とすることがのぞましい。次に、ロ
ータリアクチユエータ4を作動させて、まず出力
軸5下部電極6を前記出力軸15の軸芯まわり
に、即ち上下方向軸芯まわりに時計方向に約45度
回転させ、次いで反時計方向に約45度回転させ
る。すると黒鉛るつぼ27は上、下部電極19,
6にしつかりと挾圧された状態にあり且つ、下部
電極6が回転するので黒鉛るつぼ27と上、下部
電極19,6との接触面が、互いになじみが良く
なり、より密着した状態で接触することとなる。 Therefore, a graphite crucible C is placed between the electrodes A and B.
Clamp it with a pressure of about 50Kg/cm 2 and connect it to the current supply device D.
When a current of 1A is supplied to the graphite crucible C, the reading on the voltmeter E at that time is 6mV±1~
1.5mV, that is, the resistance value is 6mΩ±
Those in the range of 1 to 1.5 mΩ are considered good, and those outside this range are considered defective, and only graphite crucibles C that are judged to be good are used for analysis in the extraction furnace. Incidentally, the output of the voltmeter E may be input to a microcomputer and the computer may determine whether the device is good or bad. Next, FIGS. 2 to 5 show a second embodiment of the present invention. In FIGS. 2 and 3, 1 is an air cylinder, and a lower block 3 is fixed to the upper end of a rod 2 of the air cylinder. A rotary actuator 4 is housed within the lower block 3, and a lower electrode 6 made of copper is fixedly connected to an output shaft 5 of the rotary actuator 4. In the rotary actuator 4, as shown in FIG. 4, for example, when air is introduced into one chamber 8 through the hole 7, the blades 9 and the output shaft 5 rotate about 45 degrees in the direction of arrow P. ,next,
When air is introduced into the other chamber 8' through the hole 7' by switching the air flow path, the blades 9 and the output shaft 5
A structure in which the rotation angle is rotated approximately 45 degrees in the direction of arrow Q is used. In addition, various structures such as those using gears and racks can be adopted. 10 is a bearing for absorbing the thrust load generated by the pressing force of the air cylinder 1. Next, reference numeral 11 denotes an upper block fixed to a support frame (not shown), and inside thereof, a vertical hole 12 and a horizontal hole 13 are provided.
A rod 15 having a recess in the center is inserted. 16 is a sample input port, 17 is a shutter for opening and closing the upper opening of the vertical hole 12, and 18 is a carrier gas inlet provided through the wall of the horizontal hole 13. Next, reference numeral 19 denotes an upper electrode made of copper that is fixedly connected to the upper block 11 and is connected to the lower opening 2 of the vertical hole 12.
It has a vertical hole 21 continuous to 0 and a stepped portion 22 provided in the middle thereof. This stepped portion 22 has a fifth
As shown in the figure, three grooves 23 are provided radially, and the diameter R of a virtual circle connecting the outer ends of these grooves 23 is larger than the outer diameter r of a graphite crucible 27, which will be described later. ing. 24 is an extraction gas flow path, 2
5 is an O-ring for sealing. Although not shown, the upper and lower electrodes 19 and 6 each have a cooling mechanism. Therefore, in order to perform gas analysis in a metal sample, first place the graphite crucible 27 on the upper end surface 26 of the lower electrode 6 as shown in FIG. The graphite crucible 27 is pressed between the lower surface of the stepped portion 22 of the upper electrode 19 and the upper end surface 26 of the lower electrode 6 at a pressure of, for example, about 20 kg/cm 2 by moving one rod 2 forward. Next, terminal X,
A current is passed from a current supply section (not shown) through Y to the upper and lower electrodes 19, 6 and the graphite crucible 27 clamped between them, and a voltmeter E (see Fig. 3) is connected to the upper and lower electrodes 19, 6. The electric resistance value of the graphite crucible 27 is known by reading the instruction indicated by the medium phantom line, and if the value is within a predetermined range (the range shown in the first embodiment), the process moves to the next step. . (If the value is outside the specified range,
The lower electrode 6 is lowered and the defective graphite crucible is taken out and discarded. ) Note that it is preferable that the current value passed at this time is lower (for example, 1 ampere) than the current (for example, 1000 ampere) that is passed during gas extraction, which will be described later. Next, the rotary actuator 4 is operated to rotate the output shaft 5 lower electrode 6 about 45 degrees clockwise around the axis of the output shaft 15, that is, around the vertical axis, and then counterclockwise. Rotate approximately 45 degrees in the direction. Then, the graphite crucible 27 has upper and lower electrodes 19,
6 and the lower electrode 6 rotates, so the contact surfaces of the graphite crucible 27 and the upper and lower electrodes 19, 6 become familiar with each other and come into closer contact. That will happen.
次に、シヤツタ17を開状態にして投入口16
から金属試料を前記凹入部14内に落しこみ、つ
いでロツド15を180度回転させてこの凹入部1
4内の前記試料を縦孔21を介し黒鉛るつぼ27
内に入れる。 Next, the shutter 17 is opened and the input port 16 is opened.
The metal sample is dropped into the recessed part 14, and then the rod 15 is rotated 180 degrees to remove the metal sample from the recessed part 1.
The sample in 4 is passed through the vertical hole 21 into the graphite crucible 27.
Put it inside.
そして、導入口18からキヤリヤガスを供給し
つつ、端子X,Yを介して図外電流供給部から電
流を上、下部電極19,6及びこれら19,6に
挾圧された黒鉛るつぼ27に流すと、黒鉛るつぼ
27において発生したジユール熱により黒鉛るつ
ぼ27中に試料が溶解して、試料からたとえば、
水素、酸素、窒素などが対応するガス成分として
抽出され前記キヤリヤガスとともに第3図中の矢
印Sで示すように抽出ガス流路24を通つて流出
され、図外のガス分析計へと送られその濃度が測
定されるのである。 Then, while supplying carrier gas from the inlet 18, current is caused to flow from the current supply section (not shown) through the terminals X and Y to the upper and lower electrodes 19, 6 and the graphite crucible 27 sandwiched between these 19, 6. , the sample is dissolved in the graphite crucible 27 by the Joule heat generated in the graphite crucible 27, and from the sample, for example,
Hydrogen, oxygen, nitrogen, etc. are extracted as corresponding gas components and flowed out along with the carrier gas through the extracted gas flow path 24 as shown by arrow S in FIG. 3, and sent to a gas analyzer (not shown). The concentration is measured.
尚、前記実施例では下部電極6のみを回転させ
るようにしてあるが、上部電極19をも回転させ
てもよい。この場合、上、下電極を互いに逆方向
に回転させることが望ましい。 In the embodiment described above, only the lower electrode 6 is rotated, but the upper electrode 19 may also be rotated. In this case, it is desirable to rotate the upper and lower electrodes in opposite directions.
本考案は上述したように、ガス分析に使用する
前の黒鉛るつぼの電気抵抗を測定して黒鉛るつぼ
の良、不良を判別するものであり、金属中ガスの
分析時において、黒鉛るつぼの不良に起因する電
流の異常値の発生及びそれに伴なう分析ミスを未
然に防止できる。さらに黒鉛るつぼの電気抵抗値
を予じめ把握できるので、分析時に抽出炉におい
て流す電流を当該黒鉛るつぼの電気抵抗値にあわ
せて制御することも可能であり、黒鉛るつぼの電
気抵抗値のばらつきによる分析誤差を防止でき
る。尚、本考案では、第1実施例で示したように
抽出炉とは別に良、不良判定用の上、下電極を設
けてもよいし、又、第2実施例で示したように抽
出炉の上、下電極をそのまま利用して良、不良判
定装置を構成してもよい。 As mentioned above, this invention measures the electrical resistance of a graphite crucible before it is used for gas analysis to determine whether the graphite crucible is good or bad. It is possible to prevent the occurrence of an abnormal value of the current caused by the abnormal value and analysis errors caused by the abnormal value. Furthermore, since the electrical resistance value of the graphite crucible can be known in advance, it is also possible to control the current flowing in the extraction furnace during analysis according to the electrical resistance value of the graphite crucible. Analysis errors can be prevented. In addition, in the present invention, as shown in the first embodiment, upper and lower electrodes for determining pass/fail may be provided separately from the extraction furnace, or as shown in the second embodiment, the extraction furnace The upper and lower electrodes may be used as they are to form a pass/fail determination device.
第1図は本考案の第1実施例を示す概略図、第
2図ないし第5図は本考案の第2実施例を示し第
2図はるつぼ挾圧前の抽出炉の縦断面図、第3図
はるつぼ挾圧時の抽出炉の縦断面図、第4図はロ
ータリアクチユエータの概略図、第5図は抽出炉
の要部底面図である。
A,19……上部電極、B,6……下部電極、
C,27……黒鉛るつぼ、D……電流供給部、E
……電圧計。
FIG. 1 is a schematic diagram showing a first embodiment of the present invention, FIGS. 2 to 5 show a second embodiment of the present invention, and FIG. 2 is a longitudinal sectional view of the extraction furnace before crucible clamping. FIG. 3 is a longitudinal sectional view of the extraction furnace when the crucible is clamped, FIG. 4 is a schematic diagram of the rotary actuator, and FIG. 5 is a bottom view of the essential parts of the extraction furnace. A, 19... Upper electrode, B, 6... Lower electrode,
C, 27...Graphite crucible, D...Current supply section, E
……voltmeter.
Claims (1)
部電極と、これら上、下部電極及び黒鉛るつぼに
電流を流す電流供給部と、上、下部電極に接続さ
れて黒鉛るつぼの電気抵抗を測定する手段とから
なる黒鉛るつぼの良、不良判定装置。 An upper electrode and a lower electrode that press the graphite crucible from above and below, a current supply section that supplies current to the upper and lower electrodes and the graphite crucible, and a means that is connected to the upper and lower electrodes and measures the electrical resistance of the graphite crucible. A device for determining whether graphite crucibles are good or bad.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16774382U JPS5971160U (en) | 1982-11-04 | 1982-11-04 | Good/bad judgment device for graphite crucibles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16774382U JPS5971160U (en) | 1982-11-04 | 1982-11-04 | Good/bad judgment device for graphite crucibles |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5971160U JPS5971160U (en) | 1984-05-15 |
JPH0317254Y2 true JPH0317254Y2 (en) | 1991-04-11 |
Family
ID=30366908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16774382U Granted JPS5971160U (en) | 1982-11-04 | 1982-11-04 | Good/bad judgment device for graphite crucibles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5971160U (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6656732B2 (en) * | 2016-08-10 | 2020-03-04 | メイン—エナージア インコーポレイテッド | Photovoltaic module surface contamination measurement device |
-
1982
- 1982-11-04 JP JP16774382U patent/JPS5971160U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5971160U (en) | 1984-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060243029A1 (en) | Gas sensor for detecting combustible gases | |
US7351316B2 (en) | Water electrolysis method and device for determination of hydrogen and oxygen stable isotopic composition | |
US4824528A (en) | Gas detection apparatus and method with novel electrolyte membrane | |
US5661403A (en) | Apparatus and method for testing a solid electrolyte | |
JPH0317254Y2 (en) | ||
US4045319A (en) | Electrochemical gage for measuring partial pressures of oxygen | |
US4882032A (en) | Hydrogen probe | |
CN111624128B (en) | Method for detecting residual quality of electrolyte | |
US7013701B2 (en) | Inspection method of multilayer gas sensing device | |
JPS60187854A (en) | Oxygen concentration measuring apparatus | |
US4037773A (en) | Bonding of metals to solid electrolytes | |
EP0281037B1 (en) | Method of measuring oxygen in silicon | |
JPH0237984B2 (en) | ||
JP2012511713A (en) | Method and apparatus for monitoring gas concentration | |
GB2316178A (en) | Solid electrolyte gas sensor | |
JP7133132B2 (en) | Short-circuit inspection method for all-solid-state battery assembly, restraint jig used therein, short-circuit inspection kit, and method for manufacturing all-solid-state battery | |
JPH0224344B2 (en) | ||
CN1033103C (en) | Proton conducting solid electrolyte solid-phase reference electrode hydrogen test probe | |
CA1190600A (en) | Electrochemical device for the measurement of partial oxygen pressure in gases or liquids | |
CN219777459U (en) | In-situ Raman device for capacitor and battery | |
Wang et al. | Ultrahigh vacuum/transfer system for electrochemical studies | |
EP0409652B1 (en) | Sodium sulfur cell and process of manufacturing the same | |
JPS6335398Y2 (en) | ||
Nikolaev et al. | Beta-alumina solid electrolyte parameters in as-fabricated condition and after tests in Na-Na cells | |
JPH0212052A (en) | Monolithic gas sensor |