JPH0317221Y2 - - Google Patents

Info

Publication number
JPH0317221Y2
JPH0317221Y2 JP1985093728U JP9372885U JPH0317221Y2 JP H0317221 Y2 JPH0317221 Y2 JP H0317221Y2 JP 1985093728 U JP1985093728 U JP 1985093728U JP 9372885 U JP9372885 U JP 9372885U JP H0317221 Y2 JPH0317221 Y2 JP H0317221Y2
Authority
JP
Japan
Prior art keywords
flow path
impeller
fluid
groove
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985093728U
Other languages
Japanese (ja)
Other versions
JPS623016U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985093728U priority Critical patent/JPH0317221Y2/ja
Publication of JPS623016U publication Critical patent/JPS623016U/ja
Application granted granted Critical
Publication of JPH0317221Y2 publication Critical patent/JPH0317221Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Details Of Flowmeters (AREA)
  • Measuring Volume Flow (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 本考案はタービン式流量計に係り、特に流路内
壁に付着するダストにより器差が経時変化と共に
低下することを防止しうるタービン式流量計に関
する。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a turbine-type flowmeter, and particularly to a turbine-type flowmeter that can prevent instrumental error from decreasing over time due to dust adhering to the inner wall of a flow path.

従来の技術 従来のタービン式流量計では、例えば流路内に
流体の流量に応じて回転する羽根車を設け、羽根
車の回転速度を測定することにより流量を計測す
る。このようにして流量計測を行うタービン式流
量計では、羽根車の先端部分が流路内壁に当接し
ないように羽根車の先端部分と流路内壁との間に
隙間を設けてある。この隙間は羽根車の軸受部の
ガタ及び羽根車、羽根車の軸等の加工精度によ
り、羽根車が若干半径方向に振れながら回転して
も支障が無いように設けてある。また、この隙間
を通過する流体は、羽根車の羽根を通過せず羽根
車を回転させる力を生じることがなく損失とな
る。したがつて、流体を計測する際には、羽根車
と流路内壁との間の隙間を通過する流体の漏れ量
が流量計の器差に影響を与える大きな要因であ
る。
BACKGROUND ART In a conventional turbine flowmeter, for example, an impeller that rotates in accordance with the flow rate of fluid is provided in a flow path, and the flow rate is measured by measuring the rotational speed of the impeller. In the turbine flowmeter that measures the flow rate in this manner, a gap is provided between the tip of the impeller and the inner wall of the flow path so that the tip of the impeller does not come into contact with the inner wall of the flow path. This gap is provided so that there is no problem even if the impeller rotates with slight radial swing due to play in the impeller bearing and machining precision of the impeller, impeller shaft, etc. Further, the fluid passing through this gap does not pass through the blades of the impeller and generates no force to rotate the impeller, resulting in a loss. Therefore, when measuring fluid, the amount of fluid leaking through the gap between the impeller and the inner wall of the flow path is a major factor that affects the instrumental error of the flowmeter.

また、別の従来例としては、上記羽根車と流路
内壁との隙間を流れる流体による損失を小さく抑
えるため、流路内壁に半径方向に凹んだ環状の溝
部を設け、この溝部内に羽根車の先端部が嵌入し
た状態で羽根車が流路内を流れる流量に応じて回
転して流量を計測するように構成したタービン式
流量計がある。この流量計の場合、低流量計測時
には溝部内にも流体が流れるが、中高流量計測時
には流体が溝部内に流れず溝部内は死水域にな
り、流体の流量が損失なく計測されていた。
Another conventional example is to provide an annular groove recessed in the radial direction on the inner wall of the flow path in order to reduce the loss caused by the fluid flowing through the gap between the impeller and the inner wall of the flow path. There is a turbine-type flowmeter configured such that an impeller rotates in accordance with the flow rate flowing in a flow path with the tip of the impeller inserted into the flow path to measure the flow rate. In the case of this flowmeter, fluid flows into the groove when measuring low flow rates, but when measuring medium to high flow rates, the fluid does not flow into the groove and the groove becomes a dead area, and the fluid flow rate is measured without loss.

考案が解決しようとする問題点 しかしながら、上記構成になる従来のタービン
式流量計では、前者の場合、羽根車の先端部と流
路内壁との間に隙間があり、この隙間を流れる流
体の漏れ量が流路内の流体流量の低流量から高流
量までの増減に比例せず低流量計測時、中流量計
測時、高流量計測時の各流量によつて器差が異な
つていた。また、流体中のダストが流路内壁に付
着するため、経時変化と共に羽根車に対向する流
路内壁にダストが堆積すると、ダストが羽根車と
流路内壁との隙間を塞ぐことになる。このため、
隙間を通過する流体の漏れ量が経時変化により減
少してしまう。したがつて、流量計の器差がダス
トの堆積量により次第に変化してしまい長期間に
亘り精度良く流量計測を行うことが難しいという
欠点があつた。
Problems to be solved by the invention However, in the former case, in the conventional turbine flowmeter with the above configuration, there is a gap between the tip of the impeller and the inner wall of the flow path, and fluid flowing through this gap leaks. The amount was not proportional to the increase/decrease in the fluid flow rate in the channel from low to high flow rate, and the instrumental error varied depending on the flow rate during low flow measurement, medium flow measurement, and high flow measurement. Further, since dust in the fluid adheres to the inner wall of the flow path, if the dust accumulates on the inner wall of the flow path facing the impeller over time, the dust will close the gap between the impeller and the inner wall of the flow path. For this reason,
The amount of fluid leaking through the gap decreases over time. Therefore, there has been a drawback that the instrumental error of the flowmeter gradually changes depending on the amount of accumulated dust, making it difficult to accurately measure the flow rate over a long period of time.

また、従来のタービン式流量計の後者の場合、
中高流量計測時に溝部内が死水域となるため、溝
部内にダストが付着しやすくなる。したがつて、
長期間に亘り中高流量計測を行うと溝部内にダス
トが堆積し、羽根車の回転を阻害するといつた欠
点があつた。このため、従来のタービン式流量計
では、長期間使用するとダストの堆積に伴つて器
差が変化して高精度に流量計測を行うことが難し
く、耐久性に劣るという欠点があつた。
In addition, in the case of the latter of conventional turbine flowmeters,
Since the inside of the groove becomes a dead area when measuring medium and high flow rates, dust tends to adhere to the inside of the groove. Therefore,
The drawback was that when medium to high flow rates were measured over a long period of time, dust would accumulate in the grooves and impede the rotation of the impeller. For this reason, conventional turbine-type flowmeters have disadvantages in that, when used for a long period of time, the instrumental error changes due to the accumulation of dust, making it difficult to measure the flow rate with high precision and resulting in poor durability.

そこで、本考案は上記諸欠点を除去したタービ
ン式流量計を提供することを目的とする。
Therefore, an object of the present invention is to provide a turbine flowmeter that eliminates the above-mentioned drawbacks.

問題点を解決するための手段及び作用 本考案は、円管状の流路内壁に該流路の半径方
向に凹んだ環状の溝部を設け、前記流路には、周
面に複数の羽根を備えた羽根車を、該羽根の先端
部が、前記溝部内に突出するように、前記流路と
同軸に回転自在に設け、被測流体の流量に応じて
回転する該羽根車の回転に基づき被測流体の流量
を計測するタービン式流量計において、 前記溝部は、開口部の流れ方向の幅がその奥部
の幅より大きくなるように形成させ、かつ該奥部
と前記流路内壁とを接続する上・下流側の壁部は
それぞれ上・下流側へ傾斜されてなり、ダスト付
着により経時変化しうる器差の変動を小さく抑え
て長期間に亘つて精度良く流量計測を行うように
したものである。
Means and Effects for Solving the Problems The present invention provides an annular groove recessed in the radial direction of the flow path on the inner wall of the flow path, and the flow path is provided with a plurality of blades on the circumferential surface. An impeller is rotatably provided coaxially with the flow path so that the tips of the blades protrude into the groove, and the impeller rotates in accordance with the flow rate of the fluid to be measured. In a turbine flow meter that measures the flow rate of a measuring fluid, the groove is formed such that the width of the opening in the flow direction is larger than the width of the inner part thereof, and the inner wall of the flow path is connected to the inner wall of the groove. The upstream and downstream walls are sloped upward and downstream, respectively, to minimize fluctuations in instrumental error that can change over time due to dust adhesion, allowing accurate flow rate measurement over a long period of time. It is.

実施例 第1図に本考案になるタービン式流量計の一実施
例を示す。第1図中、タービン式流量計1は筒状
の本体2を有する。本体2は上面フランジ2a、
両端フランジ2b、及び流路2cを有している。
本体2の内周には後述する羽根車の上、下流側に
設けられた上流側及び下流側コーン部材3,4が
嵌合固定される。下流側コーン部材4の上方のフ
ランジ2aにはタービン式流量計1により計測さ
れた流量を計数して表示する計数表示部(図示せ
ず)を有する筺体5が取付けられている。
Embodiment FIG. 1 shows an embodiment of the turbine flowmeter according to the present invention. In FIG. 1, a turbine flowmeter 1 has a cylindrical main body 2. As shown in FIG. The main body 2 has a top flange 2a,
It has flanges 2b at both ends and a flow path 2c.
Upstream and downstream cone members 3 and 4 provided above and downstream of an impeller, which will be described later, are fitted and fixed to the inner periphery of the main body 2. Attached to the upper flange 2a of the downstream cone member 4 is a housing 5 having a count display section (not shown) that counts and displays the flow rate measured by the turbine flow meter 1.

6は羽根車で、流体の流量に応じて回転するよ
うに軸7により回転自在に支承されている。な
お、軸7は軸受8,9により両端を回転自在に軸
承されている。10は油溜室で、潤滑油が貯溜さ
れている。この油溜室10の潤滑油は潤滑油供給
機構11により軸受8,9に供給される。12は
ダスト防止部材で、流体中のダストが羽根車6の
内周側より下流側コーン部材4の内側に侵入する
ことを防止している。
Reference numeral 6 denotes an impeller, which is rotatably supported by a shaft 7 so as to rotate according to the flow rate of the fluid. The shaft 7 is rotatably supported at both ends by bearings 8 and 9. Reference numeral 10 is an oil reservoir chamber in which lubricating oil is stored. The lubricating oil in this oil reservoir chamber 10 is supplied to the bearings 8 and 9 by a lubricating oil supply mechanism 11. A dust prevention member 12 prevents dust in the fluid from entering the inner side of the downstream cone member 4 from the inner peripheral side of the impeller 6.

第2図に示す如く、本体2の流路内壁2dには
半径方向に凹んだ環状の溝部13が設けてある。
溝部13は、その開口部の流れ方向の幅が奥部1
4の幅より大きくなるように形成され、かつ奥部
14との流路内壁2dとを接続する上・下流側の
壁部はそれぞれ上・下流側へ傾斜させてなる。即
ち、溝部13は奥部14と、奥部14と上、下流
側の流路内壁2dとを接続するようにテーパ形状
に形成された傾斜部15,16とよりなる。ま
た、羽根車6のハブ6aより放射状に突出した複
数枚の羽根6bの先端部6cは溝13内に嵌入し
ている。
As shown in FIG. 2, an annular groove 13 recessed in the radial direction is provided on the inner wall 2d of the flow path of the main body 2.
The width of the opening in the flow direction of the groove 13 is the width of the inner part 1.
The upper and downstream wall portions, which are formed to have a width larger than the width of 4 and which connect the inner wall 2d of the flow path with the inner portion 14, are inclined upward and downstream, respectively. That is, the groove portion 13 includes a deep portion 14 and inclined portions 15 and 16 formed in a tapered shape so as to connect the deep portion 14 and the upper and downstream flow path inner walls 2d. Further, the tip portions 6c of the plurality of blades 6b that protrude radially from the hub 6a of the impeller 6 are fitted into the groove 13.

なお、羽根車6の先端部6cと溝部13の奥部
14との間には軸7の加工精度、下流側コーン部
材4の寸法精度、軸受8,9のガタツキ等を考慮
して隙間17が設けてある。また、傾斜部15は
羽根車6の上流側の位置にあり、傾斜部16は羽
根車6の下流側に設けられている。
Note that a gap 17 is provided between the tip 6c of the impeller 6 and the inner part 14 of the groove 13 in consideration of the processing accuracy of the shaft 7, the dimensional accuracy of the downstream cone member 4, the looseness of the bearings 8 and 9, etc. It is provided. Further, the inclined portion 15 is located upstream of the impeller 6, and the inclined portion 16 is provided downstream of the impeller 6.

ここで、下流側より流体を供給されると、流体
は上流側コーン部材3と流路内壁2dとの間に形
成された環状の流路2eに沿つて本体2内に流入
する。さらに、流体は流路2eより羽根車6の羽
根6bを通過して下流側コーン部材4と流路内壁
2dとの間の流路2fに流入し流路2cへ流出す
る。また、流路2eの流路内壁2d近傍を流れる
流体の一部は流路内壁2d、傾斜部15に沿つて
溝部13内に流入し、羽根車6の先端部6cと溝
13の奥部14との間に形成された隙間17を通
過して下流側の傾斜部16へと流れる。このよう
に流路2eから流路2fに流れる流量に応じて羽
根車6が回転する。この羽根車6の回転速度が計
数され流量に換算され表示される。
Here, when fluid is supplied from the downstream side, the fluid flows into the main body 2 along the annular channel 2e formed between the upstream cone member 3 and the channel inner wall 2d. Furthermore, the fluid passes through the blades 6b of the impeller 6 from the flow path 2e, flows into the flow path 2f between the downstream cone member 4 and the flow path inner wall 2d, and flows out into the flow path 2c. In addition, a part of the fluid flowing near the inner wall 2d of the channel 2e flows into the groove 13 along the inner wall 2d of the channel and the inclined part 15, and flows between the tip 6c of the impeller 6 and the inner part 14 of the groove 13. The water passes through the gap 17 formed between the two and flows to the downstream inclined portion 16. In this way, the impeller 6 rotates according to the flow rate flowing from the flow path 2e to the flow path 2f. The rotational speed of the impeller 6 is counted, converted into a flow rate, and displayed.

第3図に流路2e及び溝部13における流体の
速度分布を示す。第3図中、流路2eにおける流
体の速度分布Aは流路中央部分で速度が大で、上
流側コーン部材3及び流路内壁2d近傍では速度
が小となり放物線形状となる。ところが、溝部1
3を有する流路を通過する際の流体の速度分布B
は、流路中央部分及び流路の上流側コーン部材3
側では速度分布Aとほぼ同様であるが、溝部13
近傍では流路面積が流路2eの流路面積より大と
なるため、溝部13の奥部14附近の流体の速度
は小となる。
FIG. 3 shows the velocity distribution of the fluid in the flow path 2e and the groove portion 13. In FIG. 3, the velocity distribution A of the fluid in the channel 2e has a high velocity at the center of the channel, and a small velocity near the upstream cone member 3 and the inner wall 2d of the channel, forming a parabolic shape. However, groove 1
Velocity distribution B of the fluid when passing through a flow path having 3
is the central part of the flow path and the cone member 3 on the upstream side of the flow path.
On the side, the velocity distribution is almost the same as A, but the groove part 13
Since the flow path area in the vicinity is larger than the flow path area of the flow path 2e, the velocity of the fluid near the inner part 14 of the groove portion 13 is small.

したがつて、羽根車6の先端部6cと溝部13
の奥部14との間の隙間17を通過する流体の流
量は従来のもの(羽根車を流路内壁2dより離間
させる)よりも少量で済む。このため、羽根車6
の羽根6bは、流路2eを通過する流体のほとん
どの流体力を受けて回転するため、損失が小さく
精度良く流量計測を行いうる。
Therefore, the tip 6c of the impeller 6 and the groove 13
The flow rate of the fluid passing through the gap 17 between the impeller and the inner wall 14 of the flow path is smaller than that of the conventional system (in which the impeller is spaced apart from the inner wall 2d of the flow path). For this reason, the impeller 6
Since the blades 6b rotate under the influence of most of the fluid force of the fluid passing through the flow path 2e, the loss can be reduced and the flow rate can be measured with high accuracy.

また傾斜部15は死水域となり、流体中のダス
トが傾斜部15に付着しやすい。このため、流体
中のダストは溝部13の奥部14及び下流側の傾
斜部16には付着しにくくなる。奥部14にダス
トが堆積しにくいので、羽根車6はダストにより
回転を妨げられることが無い。また、傾斜部15
は羽根車6より離間しているため、ダストが傾斜
部15に付着しても隙間17を塞ぐことが無い。
即ち、隙間17の流路面積がダストの付着により
狭くなり、隙間17を通過する流体の漏れ量が減
少して器差が経時変化により変動するといつた不
都合はない。
Further, the inclined portion 15 becomes a dead area, and dust in the fluid tends to adhere to the inclined portion 15. Therefore, dust in the fluid is less likely to adhere to the inner part 14 of the groove part 13 and the downstream slope part 16. Since dust is difficult to accumulate in the inner part 14, the rotation of the impeller 6 is not hindered by dust. In addition, the inclined portion 15
Since it is spaced apart from the impeller 6, even if dust adheres to the inclined portion 15, it will not close the gap 17.
That is, there is no problem that the flow path area of the gap 17 becomes narrow due to the adhesion of dust, the leakage amount of the fluid passing through the gap 17 decreases, and the instrumental error fluctuates due to changes over time.

さらに、長期間に亘り流量計測を行つた場合で
もダストが傾斜部15に堆積することにより器差
の低下が防止され、長期間精度良く流量計測を行
いえ、耐久性の向上が図られている。
Furthermore, even when flow rate measurement is performed over a long period of time, a decrease in instrumental error due to dust accumulating on the inclined portion 15 is prevented, allowing accurate flow rate measurement for a long period of time, and improving durability. .

第4図に従来例で説明した流量計の器差(破線
で示す)と、本考案実施例の流量計の器差(実線
で示す)とを対比して示す。第4図中、従来例の
前者として説明した流量計の場合の器差は、破線
Cで示すように低流量計測時には+側に大きく突
出して、中流量計測時には一側にわん曲し、高流
量計測時には再び+側に大となつていることが分
る。これに対して、本実施例の如く、流路内壁2
dに羽根車6の先端部6cが嵌入する溝部13を
設け、その上、下流側に傾斜部15,16を設け
た流量計の場合の器差は、実線Dで示す如く、低
流量から高流量に亘つてほぼ0近傍を直線的に推
移していることが分る。したがつて、本考案の流
量計は従来のものに比べて器差が改善されてお
り、低流量から高流量の範囲に亘つて精度良く流
量計測を行いうる。
FIG. 4 shows a comparison between the instrumental error (indicated by a broken line) of the flowmeter described in the conventional example and the instrumental error (indicated by a solid line) of the flowmeter according to the embodiment of the present invention. In Fig. 4, the instrumental error in the case of the flowmeter described as the former conventional example is as shown by the broken line C, when measuring low flow rates, it largely protrudes to the + side, and when measuring medium flow rates, it curves to one side, and when measuring high When measuring the flow rate, it can be seen that the flow rate has increased to the + side again. On the other hand, as in this embodiment, the flow path inner wall 2
In the case of a flowmeter in which a groove 13 into which the tip 6c of the impeller 6 fits is provided at d, and sloped portions 15 and 16 are provided on the downstream side, the instrumental error varies from low flow to high flow as shown by solid line D. It can be seen that the flow rate changes linearly near 0 over the flow rate. Therefore, the flowmeter of the present invention has improved instrumental error compared to conventional flowmeters, and can accurately measure flow rates over the range from low flow rates to high flow rates.

考案の効果 上述の如く、本考案になるタービン式流量計に
よれば、溝部を有する流路を通過する再の流体の
速度分布が、流路中央部分及び流路の上流側では
溝部が設けられていない流路を通過する際の速度
分布と同じであるが、溝部近傍では傾斜部におい
て流路面積が大となるため、羽根先端部と溝部の
奥部との隙間を通過する流体の速度は小となり、
羽根車を回転させる際の損失を減少させることが
できる。さらに、傾斜部が死水域となつて流体中
のダストが傾斜部に付着しやすくなり、溝部の奥
部へのダストの付着を減少させて経時変化による
ダストの堆積に伴つて器差が低下することを抑制
出来、長期間に亘つて精度良く流量計測を行うこ
とができ、ダスト付着による寿命の低下を防止す
ると共に信頼性の向上を図ることができる等の特
長を有する。
Effects of the Invention As described above, according to the turbine flowmeter of the present invention, the velocity distribution of the fluid passing through the flow path having grooves is different from that in the central portion of the flow path and on the upstream side of the flow path. The velocity distribution is the same as the velocity distribution when passing through a channel that is not tilted, but since the channel area is large at the slope near the groove, the velocity of the fluid passing through the gap between the tip of the blade and the deep part of the groove is It becomes small,
Loss when rotating the impeller can be reduced. Furthermore, the slope becomes a dead zone, making it easier for dust in the fluid to adhere to the slope, reducing dust adhesion to the deep part of the groove, and reducing instrumental error as dust accumulates over time. It has the advantages of being able to suppress this, to be able to accurately measure the flow rate over a long period of time, to prevent shortening of life due to dust adhesion, and to improve reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案になるタービン式流量計の一実
施例を説明するための縦断面図、第2図は流路内
壁の溝部の形状を説明するための断面図、第3図
は第2図に示す流路内を流れる流体の速度分布を
説明するための図、第4図は本実施例と従来例と
の器差を流量変化に基づいて説明するための図で
ある。 1……タービン式流量計、2……本体、2d…
…流路内壁、2e,2f……流路、3……上流側
コーン部材、4……下流側コーン部材、6……羽
根車、6c……先端部、13……溝部、14……
奥部、15,16……傾斜部、17……隙間。
FIG. 1 is a longitudinal cross-sectional view for explaining one embodiment of the turbine flowmeter according to the present invention, FIG. 2 is a cross-sectional view for explaining the shape of the groove on the inner wall of the flow path, and FIG. FIG. 4 is a diagram for explaining the velocity distribution of the fluid flowing in the flow path shown in the figure, and FIG. 4 is a diagram for explaining the instrumental difference between the present embodiment and the conventional example based on changes in flow rate. 1...Turbine type flow meter, 2...Main body, 2d...
... Channel inner wall, 2e, 2f... Channel, 3... Upstream cone member, 4... Downstream cone member, 6... Impeller, 6c... Tip, 13... Groove, 14...
Deep part, 15, 16...slanted part, 17... gap.

Claims (1)

【実用新案登録請求の範囲】 円管上の流路内壁に該流路の半径方向に凹んだ
環状の溝部を設け、前期流路には、周面に複数の
羽根を備えた羽根車を、該羽根の先端部が、前記
溝部内に突出するように、前記流路と同軸に回転
自在に設け、被測流体の流量に応じて回転する該
羽根車の回転に基づき被測流体の流量を計測する
タービン式流量計において、 前記溝部では、開口部の流れ方向の幅がその奥
部の幅より大きくなるように形成され、かつ該奥
部と前記流路内壁とを接続する上・下流側の壁部
はそれぞれ上・下流側へ傾斜させてなることを特
徴とするタービン式流量計。
[Claim for Utility Model Registration] An annular groove recessed in the radial direction of the flow path is provided on the inner wall of the flow path on a circular pipe, and an impeller with a plurality of blades on the circumferential surface is provided in the first half of the flow path. The tip of the blade is rotatably provided coaxially with the flow path so as to protrude into the groove, and the flow rate of the fluid to be measured is determined based on the rotation of the impeller, which rotates in accordance with the flow rate of the fluid to be measured. In the turbine flowmeter for measurement, the groove is formed such that the width of the opening in the flow direction is larger than the width of the inner part thereof, and the upper and downstream sides connecting the inner part and the inner wall of the flow path. A turbine-type flowmeter characterized by having walls that are sloped upward and downward, respectively.
JP1985093728U 1985-06-20 1985-06-20 Expired JPH0317221Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985093728U JPH0317221Y2 (en) 1985-06-20 1985-06-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985093728U JPH0317221Y2 (en) 1985-06-20 1985-06-20

Publications (2)

Publication Number Publication Date
JPS623016U JPS623016U (en) 1987-01-09
JPH0317221Y2 true JPH0317221Y2 (en) 1991-04-11

Family

ID=30651661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985093728U Expired JPH0317221Y2 (en) 1985-06-20 1985-06-20

Country Status (1)

Country Link
JP (1) JPH0317221Y2 (en)

Also Published As

Publication number Publication date
JPS623016U (en) 1987-01-09

Similar Documents

Publication Publication Date Title
JPH0464009B2 (en)
US3623835A (en) Gas flowmeter
US4404861A (en) Liquid flowmeter
EP0088309A1 (en) Fluid flow meter
JPH0317221Y2 (en)
US4111046A (en) Turbine meters
US4294123A (en) Turbine meter
CN212111474U (en) Novel single-flow speedometer
KR20110017859A (en) Axial flow positive displacement flowmeter
JPS6326725Y2 (en)
JPH0212573Y2 (en)
JPH0512738Y2 (en)
JPS6237134Y2 (en)
US4314483A (en) Mass rate of flow meter with improved temperature characteristics
CN216433100U (en) Mass flowmeter
JP2000346689A (en) Improvement of noncircular gear and noncircular gear- type flowmeter using it
JPS622490Y2 (en)
SU1015251A1 (en) Turbine-tanget flowmeter
JPH051783Y2 (en)
AU673162B2 (en) Gas turbine meter
KR830000692Y1 (en) Turbine meter
JPS6237136Y2 (en)
JPS5820890Y2 (en) turbine meter
RU2330244C1 (en) Gas flow rate measuring apparatus
JPH0135287B2 (en)