JPH03171787A - Wavelength conversion system and wavelength converter device - Google Patents

Wavelength conversion system and wavelength converter device

Info

Publication number
JPH03171787A
JPH03171787A JP1310916A JP31091689A JPH03171787A JP H03171787 A JPH03171787 A JP H03171787A JP 1310916 A JP1310916 A JP 1310916A JP 31091689 A JP31091689 A JP 31091689A JP H03171787 A JPH03171787 A JP H03171787A
Authority
JP
Japan
Prior art keywords
semiconductor laser
laser medium
light
angular frequency
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1310916A
Other languages
Japanese (ja)
Inventor
Yasuhiro Aoki
青木 ▲やす▼弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1310916A priority Critical patent/JPH03171787A/en
Publication of JPH03171787A publication Critical patent/JPH03171787A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To control efficiency of wavelength conversion by producing tertiary nonlinear polarization which is required to produce four-optical wave mixing effect in a semiconductor laser medium by injecting a proper sine-wave current to the semiconductor laser medium by superposing it to a direct current. CONSTITUTION:Signal light and excitation light which are projected from semiconductor lasers 11, 12 are coupled by a single mode optical fiber coupler 31 and injected to a semiconductor laser medium 5. Wavelength conversion light which is newly produced by four-light wave mixing effect in the semiconductor laser medium 5 is taken out by an optical fiber 4 after separated to a signal light and excitation light by an optical filter 50. Meanwhile, excitation light and signal light are partially accepted by a light detecting device 201 which consists of InGaAs avalanche photodiode and output thereof is amplified by an amplifying circuit 301 and input to a sine-wave oscillator 7. A sine-wave current from the sine-wave oscillator 7 and a direct current from a direct power source 6 are superposed by a synthetic circuit 9 and supplied to the semiconductor laser medium 5.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光通信や光交換などで用いられる波長変換方
式および波長変換器に関する.(従来の技術) 近年、情報伝送量の拡大に伴って、チャンネル間隔を数
GHZから数10GHz程度に設定した高密度波長多重
光ファイバ伝送技術や複数のチャンネル間の波長を入替
えることによって交換を行なう波長分割光交換技術に関
する研究開発が活発に進められている(例えば、電子情
報通信学会誌、第72巻( 1989年)、第2号、1
41〜156ページ).上記のような光ファイバ伝送・
光交換では、信号光の波長を異なる波長に変換する波長
変換機能の実現が求められている.このような波長変換
を可能にする方式のひとつとして、最近、半導体レーザ
媒質の四光波混合効果を利用する方式が注目されている
(例えば、電子情報通信学会技術研究報告、第OQE−
88巻(1988年)、69〜74ページ).この方式
では、波長を変換したい角周波数ωaの信号光とともに
角周波数ωpの励起光を半導体レーザ媒質に入射させ、
この半導体レーザ媒質中での四光波混合効果によって新
しく生成される角周波数Ω=2ωp一ωaの光波を取り
だして波長変換光として用いる.ここで、半導体レーザ
媒質中の四光波混合効果は、主に励起光と信号光との差
周波数に相当するキャリア密度の脈動が生じ、3次の非
線形分極が媒質中に誘起されることに起因する. (発明が解決しようとする課U> この半導体レーザ媒質の四光波混合効果による波長変換
では、変換効率が高く、励起光パワーが1nW以下の比
較的低入力で足りる.しかしながら、キャリア密度の脈
動に起因する3次の非線形分極の大きさは、励起光パワ
ー、信号光パワーおよびそれらの差周波数の値に依存す
る.一方、これらの値は一般ににはシステム設計上の制
約によって任意には選べないことが多い.そこで、従来
の四光波混合効果を利用する波長変換方式では、波長変
換効率、ひいては得られる波長変換光パワーを所定の値
に設定すことが困難である.このように、従来の波長変
換方式には、波長変換光のパワーの制御に関して解決す
べき課題があった.本発明の目的は、上記のような従来
技術の欠点を除去し、波長変換効率、すなわち波長変換
光パワーを所定の値に設定できるようにした半導体レー
ザ媒質の四光波混合効果を用いる波長変換方式および波
長変換器を提供することにある.《課題を解決するため
の手段) 本発明の波長変換方式は、直流電流が注入されている半
導体レーザ媒質に角周波数ωpの励起光と角周波数ωa
の信号光をそれぞれ入射させ、前記半導体レーザ媒質中
の四光波混合効果によって新たに発生する角周波数がω
a=2ωp一ωaの波長変換光を取りだす波長変換方式
において、前記半導体レーザ媒質に角周波数が Ω=1ωp−ωa1の正弦波電流を直流電流に重畳して
注入することを特徴とする. 本発明の他の波長変換方式は、上に記載した波長変換方
式において、時間をtで表すとき、角周波数ωaの信号
光がFa(t)の関数で変調されている場合に、 1=Ia@+I&@F@ (t)Sin[ (ω# −
ωa ) tlただし、 Io:半導体レーザ媒質への注入直流電流値I1.:半
導体レーザ媒質への注入交流電流値で表される電流を注
入することを特徴とする.本発明の波長変換器は、半導
体レーザ媒質と、角周波数ωpの励起光を出力する励起
光源と、情報信号Fa(t)で変調された角周波数ωa
の入力信号光を分岐する光分岐手段と、前記角周波数ω
aの励起光と前記光分岐手段によって分岐された角周波
数ωaの入力信号光の一方を合波して前記半導体レーザ
媒質に入射させる手段と、前記光分岐手段によって分岐
された角周波数ωaの入力信号光の他方を受信して前記
情報信号Fa(t)に対応した電流を出力する光受信部
と、振幅と位相が変えられる角周波数Ω=1ωp−ωa
Iの正弦波電流を出力する正弦波発振器と、前記光受信
部と前記正弦波発振器の出力の積に直流電流を加えて前
記半導体レーザ媒質に注入する駆動回路とを備えること
を特徴とする. (作用〉 半導体レーザ媒質中の四光波混合効果は、前述の様に励
起光と信号光との差周波数Ω=1ωpωa1に等しいキ
ャリア密度脈動に起因した3次の非線形分極によって生
じる.本発明では、この光波による本来の3次非線形分
極以外に、適切な振幅、位相を有する角周波数Ωの正弦
波電流を半導体レザー媒質に供給することによって擬似
的に3次非線形分極を誘起している.すなわち、本発明
での3次非線形分極PMLは、 PML” Popt 十Pele         ”
ただし、 P  :光波による非線形分極 opt P  :正弦波電流印加による非線形分極ee で与えられる.この結果、本発明によれば、3次の非線
形分極の大きさ、ひいては四光波混合効果による波長変
換プロセスを人工的に制御できるという利点が生じる.
ここで、PeleとP。pt間の相対的符号は、印加正
弦波電流の位相を変えることによって同一、あるいは反
対のいずれにもできる.したがって、本方式では、全体
としてのPMLを自由に制御できるという特長がある.
ところで、正弦波電流印加による非線形分極Peleは
光波の有無に関係なく誘起されている.したがって、信
号光が情報信号Fa(t)で変調されている場合には、
連続的に正弦波電流を注入すると波長変換光に情報信号
を乗せることができない.しかしながら、信号光が情報
信号Fa(t)で変調されている場合にも、適切な方法
でFa(t)を検知し、 T=Iac+IacF* (t)sin[ (ωp −
(aha ) t]ただし、 Io:半導体レーザ媒質へ注入される 直流電流値 ■1。:半導体レーザ媒質へ注入される交流電流値 で表せるような電流を注入すれば、情報信号を失うこと
なく波長変換を行なうことができる.本発明の波長変換
器では、信号光の一部を用いてFa(1)を検知してい
る. (実施例) 次に、図面を参照して、本発明の波長変換方式および波
長変換器について更に詳しく説明する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a wavelength conversion method and a wavelength converter used in optical communication, optical switching, etc. (Conventional technology) In recent years, as the amount of information transmission has expanded, high-density wavelength division multiplexing optical fiber transmission technology that sets the channel spacing from several GHz to several tens of GHz, and swapping of wavelengths between multiple channels have become popular. Research and development on wavelength-division optical switching technology is actively progressing (for example, Journal of the Institute of Electronics, Information and Communication Engineers, Vol. 72 (1989), No. 2, 1).
(pages 41-156). Optical fiber transmission and
Optical switching requires the realization of a wavelength conversion function that converts the wavelength of signal light into a different wavelength. As one of the methods that enables such wavelength conversion, a method that utilizes the four-wave mixing effect of a semiconductor laser medium has recently attracted attention (for example, IEICE technical research report, No. OQE-
Volume 88 (1988), pages 69-74). In this method, excitation light with an angular frequency ωp is incident on a semiconductor laser medium together with a signal light with an angular frequency ωa whose wavelength is to be converted.
A light wave with an angular frequency Ω = 2ωp - ωa newly generated by the four-wave mixing effect in this semiconductor laser medium is extracted and used as wavelength-converted light. Here, the four-wave mixing effect in the semiconductor laser medium is mainly caused by pulsations in the carrier density corresponding to the difference frequency between the pump light and the signal light, and third-order nonlinear polarization is induced in the medium. do. (Problem to be solved by the invention U> Wavelength conversion using the four-wave mixing effect of this semiconductor laser medium has high conversion efficiency, and a relatively low input of pumping light power of 1 nW or less is sufficient. However, the pulsation of carrier density The magnitude of the resulting third-order nonlinear polarization depends on the values of the pump light power, signal light power, and their difference frequency.On the other hand, these values generally cannot be arbitrarily selected due to system design constraints. Therefore, in the conventional wavelength conversion method that uses the four-wave mixing effect, it is difficult to set the wavelength conversion efficiency and the obtained wavelength-converted optical power to a predetermined value. The wavelength conversion method has a problem that needs to be solved regarding the control of the power of the wavelength converted light.The purpose of the present invention is to eliminate the above-mentioned drawbacks of the conventional technology and improve the wavelength conversion efficiency, that is, the power of the wavelength converted light. An object of the present invention is to provide a wavelength conversion method and a wavelength converter that use the four-wave mixing effect of a semiconductor laser medium that can be set to a predetermined value. Excitation light with an angular frequency ωp and an angular frequency ωa are applied to the semiconductor laser medium into which a DC current is injected.
The angular frequency newly generated by the four-wave mixing effect in the semiconductor laser medium is ω.
A wavelength conversion method for extracting wavelength-converted light of a=2ωp-ωa is characterized in that a sinusoidal current with an angular frequency of Ω=1ωp-ωa1 is injected into the semiconductor laser medium in a manner superimposed on a direct current. Another wavelength conversion method of the present invention is that in the wavelength conversion method described above, when the time is expressed as t, and the signal light of angular frequency ωa is modulated by a function of Fa(t), 1=Ia @+I&@F@ (t) Sin[ (ω# −
ωa ) tl, where Io: DC current value I1. injected into the semiconductor laser medium. :It is characterized by injecting a current expressed as an AC current value into the semiconductor laser medium. The wavelength converter of the present invention includes a semiconductor laser medium, a pumping light source that outputs pumping light with an angular frequency ωp, and an angular frequency ωa modulated by an information signal Fa(t).
an optical branching means for branching the input signal light, and the angular frequency ω
means for combining one of the excitation light a and the input signal light of angular frequency ωa branched by the optical branching means and inputting it into the semiconductor laser medium; and an input of the angular frequency ωa branched by the optical branching means. an optical receiver that receives the other signal light and outputs a current corresponding to the information signal Fa(t); and an angular frequency Ω=1ωp−ωa whose amplitude and phase can be changed.
The present invention is characterized by comprising a sine wave oscillator that outputs a sine wave current of I, and a drive circuit that adds a direct current to the product of the outputs of the optical receiver and the sine wave oscillator and injects it into the semiconductor laser medium. (Function) As mentioned above, the four-wave mixing effect in the semiconductor laser medium is caused by third-order nonlinear polarization caused by carrier density pulsations equal to the difference frequency Ω=1ωpωa1 between the excitation light and the signal light.In the present invention, In addition to the original third-order nonlinear polarization caused by this light wave, pseudo third-order nonlinear polarization is induced by supplying a sinusoidal current with an angular frequency Ω having an appropriate amplitude and phase to the semiconductor laser medium. That is, The third-order nonlinear polarization PML in the present invention is PML"Popt Pele"
However, P: nonlinear polarization due to light waves opt P: nonlinear polarization ee due to sinusoidal current application. As a result, the present invention has the advantage of being able to artificially control the magnitude of third-order nonlinear polarization and, by extension, the wavelength conversion process due to the four-wave mixing effect.
Here, Pele and P. The relative signs between pt can be made either the same or opposite by changing the phase of the applied sinusoidal current. Therefore, this method has the advantage that the overall PML can be controlled freely.
By the way, nonlinear polarization Pele due to the application of a sinusoidal current is induced regardless of the presence or absence of light waves. Therefore, when the signal light is modulated by the information signal Fa(t),
If a sinusoidal current is continuously injected, an information signal cannot be added to the wavelength-converted light. However, even when the signal light is modulated by the information signal Fa(t), Fa(t) can be detected using an appropriate method and T=Iac+IacF* (t) sin[(ωp −
(aha) t] However, Io: DC current value injected into the semiconductor laser medium ■1. :By injecting a current that can be expressed as an alternating current value into the semiconductor laser medium, wavelength conversion can be performed without losing the information signal. In the wavelength converter of the present invention, Fa(1) is detected using part of the signal light. (Example) Next, the wavelength conversion method and wavelength converter of the present invention will be described in more detail with reference to the drawings.

第1図は、本発明による波長変換器の第1の実施例の梢
戒図である.この図において、半導体レーザ媒質5は、
通常のInGaAsP/InP埋め込み構造半導体レー
ザ素子の両端面に反射率が0.1%以下の低反射コーテ
ィングを施したものであり、活性層の厚さは0.2μ−
、幅は1μ指、長さは300μmである.この半導体レ
ーザ媒質5では、10(l^の直流電流を注入した場合
に波長1.55μ増で約15dBの小信号利得が得られ
る.また、信号光源11及び励起光源12はいずれも発
振波長L55μ−のInGaAsP/PnP分布帰還型
半導体レーザ、光結合系21.22.23.24は先球
セルフォックレンズ、光合波器31は単一モード光ファ
イバカップラ、光検出器201はT nGaAsアバラ
ンシ・フォトダイオード、正弦波発振器7は外部入力に
対して周波数I GHZから5 GHZまで同期発振が
可能なフェイズ・ロックト・ループ(PLL)発振器、
合成回路9はバイアス・テイ回路である.さらに、光フ
ィルタ50はファプリペロエタロンでなる. 第1図において、それぞれ半導体レーザ11.12から
それぞれ出射された信号光、励起光は、単一モード光フ
ァイバカップラ31によって合渡され、半導体レーザ媒
質5に入射されている.そして、半導体レーザ媒質5に
おいて、四光波混合効果によって新たに発生した波長変
換光は、光フィルタ50によって信号光と励起光とに分
離された後に光ファイバ4によって取り出される.この
実施例では、信号光と励起光との周波数差は20HZ、
ファブリベロエタロンでなる光フィルタ50のスペクト
ル間隔はIOGHZとした.一方、励起光と信号光の一
部は、半導体レーザ媒質5中に誘起されるキャリア密度
脈動と注入する正弦波電流との同期をとるためにI n
GaAsアバランシ・フォトダイオードでなる光検出器
201で受光され、その出力は増幅回路301で増幅さ
れ正弦波発振器7に入力されている.そして、半導体レ
ーザ媒質5には、この正弦波発振器7からの正弦波電流
と直流電源6からの直流電流が合成回路9によって重畳
されて供給されている。ここで、印加する正弦波電流の
位相は、遅延線8によって調整している. 第2図は、第1図の梢或で得られる波長変換光パワーの
印加正弦波電流への依存性を示した図である.ただし、
この場合の励起光パワーはO dBn(1nW)、信号
光パワーは−3068n(lμ賀》両光波の周波数差お
よび正弦波電流の周波数は2GHZ 、直流f4流は1
00ll^である.また、2本の曲線は、それぞれ正弦
波電流を増加させた時に波長変換光パワーの増加率、あ
るいは減少率が最大になるように正弦波電流の位相を設
定した場合に対応する.この図から明らかなように、本
実施例では、正弦波電流値をIon^まで変えることに
よって波長変換光パワーをおよそ−40dBI1から0
dBnの極めて広い範囲に渡って変えられることがわか
る,また、この範囲は、正弦波電流値をさらに増やせば
より広くできる. 第3図は本発明による波長変換器の第2の実施例の楕或
図である.第1の実施例と異なる点は、信号光源である
半導体レーザ11の出力が光変調器10によって変調さ
れていることである.そして、その変調信号光の一部を
光分波器32、光検出器202、増幅回路302および
検波回路60を用いて検出し、その検出出力によって正
弦波電流を変調している点である.この図において、光
変調器10はLiNbO3でなる光強度変調器、光分波
器32は単一モード光ファイバカップラ、光検出器20
2は I nGaAsフォトダイオードである.その他の梢戒
は、第1図と同様であるので同一の要素には同一の番号
を付して示す. この実施例では、半導体レーザ11からの信号光は光変
調器10によって50Hb/sで変調された後に、単一
モード光ファイバカップラでなる合波器31によって励
起光と合波され半導体レーザ媒質に入射されている.ま
た、上記50Hb/s変調信号を検知するために、変調
信号光の一部は光分波器32によって取り出され、光検
出器202で受光されている.そして、その受光出力は
、増幅回路302、検波回路60によって変調信号に再
生された後にミキサー回路40に入力され、正弦波発振
器7からの正弦波電流を変調している.この変調された
正弦波電流は、バイアステイー回路でなる合成回路9に
よって直流電流に重畳されて、半導体レーザ媒質5に供
給されている.本実施例においても、第1の実施例と同
じ条件で動作さtたところ、5 0 Wb/ sの変調
信号を失うことなく第2図とほぼ同様に、波長変換光パ
ワーを極めて広範囲にわたって変化させ得ることが確認
された. 以上、゛本発明による波長変換方式および波長変換器に
ついて実雑例を挙げて説明したが、本発明はこれらの実
施例に限られることなくいくつかの変形が考えられる. 例えば、本実施例では、半導体レーザ媒質としてI n
GaAsP/I nP系材料を用いたが、GaAjAs
/GaAs系などの他の材料でもよい.また、励起光源
、信号光源は、他のS造、材料の半導体レーザあるいは
ガスレーザ等のaW!のレーザを用いても良い,さらに
、光結合系、光合分波器、種々の電気回路等に関しては
、その性能を有する限りいかなる構造、種類であっても
よいことは言うまでもない. 《発明の効果) 以上に説明したように、本発明の波長変換方式および波
長変換器では、四光波混合効果が半導体レーザ媒質中で
生じるのに必要な3次の非線形分極を、半導体レーザ媒
質に適切な正弦波電流を直流電流に重畳して注入するこ
とによって生成している.そこで、本発明の方式および
変換器を採用することにより、波長変換効率を注入交流
電流のf!幅と位相とによって制御できる.
FIG. 1 is a diagram of a first embodiment of a wavelength converter according to the present invention. In this figure, the semiconductor laser medium 5 is
A low-reflection coating with a reflectance of 0.1% or less is applied to both end faces of a normal InGaAsP/InP buried structure semiconductor laser device, and the active layer has a thickness of 0.2μ-
, the width is 1μ finger and the length is 300μm. In this semiconductor laser medium 5, when a DC current of 10(l^) is injected, a small signal gain of about 15 dB is obtained by increasing the wavelength by 1.55 μ. Furthermore, both the signal light source 11 and the pumping light source 12 have an oscillation wavelength L of 55 μ. - InGaAsP/PnP distributed feedback semiconductor laser, optical coupling system 21, 22, 23, 24 is selfoc lens with tip, optical multiplexer 31 is single mode optical fiber coupler, photodetector 201 is T nGaAs avalanche photo The diode and sine wave oscillator 7 is a phase locked loop (PLL) oscillator that can oscillate synchronously with external input from frequencies IGHZ to 5GHz.
Synthesizing circuit 9 is a bias-tay circuit. Furthermore, the optical filter 50 is made of a Fapuri-Perot etalon. In FIG. 1, signal light and excitation light respectively emitted from semiconductor lasers 11 and 12 are combined by a single mode optical fiber coupler 31 and input into a semiconductor laser medium 5. The wavelength-converted light newly generated by the four-wave mixing effect in the semiconductor laser medium 5 is separated into signal light and excitation light by an optical filter 50, and then extracted by the optical fiber 4. In this example, the frequency difference between the signal light and the excitation light is 20Hz,
The spectral spacing of the optical filter 50 made of Fabry Vero etalon was set to IOGHZ. On the other hand, a part of the excitation light and the signal light are used to synchronize the carrier density pulsations induced in the semiconductor laser medium 5 with the injected sinusoidal current.
The light is received by a photodetector 201 made of a GaAs avalanche photodiode, and its output is amplified by an amplifier circuit 301 and input to a sine wave oscillator 7. The semiconductor laser medium 5 is supplied with a sine wave current from the sine wave oscillator 7 and a DC current from the DC power source 6 in a superimposed manner by a combining circuit 9. Here, the phase of the applied sine wave current is adjusted by a delay line 8. FIG. 2 is a diagram showing the dependence of the wavelength-converted optical power obtained at the top of FIG. 1 on the applied sinusoidal current. however,
In this case, the pumping light power is O dBn (1nW), the signal light power is -3068n (lμga), the frequency difference between both light waves and the frequency of the sine wave current is 2GHz, and the DC f4 current is 1
It is 00ll^. Furthermore, the two curves correspond to the case where the phase of the sine wave current is set so that the increase rate or decrease rate of the wavelength-converted optical power becomes maximum when the sine wave current is increased. As is clear from this figure, in this example, by changing the sine wave current value to Ion^, the wavelength converted optical power can be changed from approximately -40 dBI1 to 0.
It can be seen that the dBn can be varied over an extremely wide range, and this range can be made wider by further increasing the sine wave current value. FIG. 3 is an elliptical diagram of a second embodiment of the wavelength converter according to the present invention. The difference from the first embodiment is that the output of a semiconductor laser 11, which is a signal light source, is modulated by an optical modulator 10. A part of the modulated signal light is detected using an optical demultiplexer 32, a photodetector 202, an amplifier circuit 302, and a detection circuit 60, and the detected output modulates a sine wave current. In this figure, an optical modulator 10 is an optical intensity modulator made of LiNbO3, an optical demultiplexer 32 is a single mode optical fiber coupler, and a photodetector 20
2 is an InGaAs photodiode. The other precepts are the same as in Figure 1, so the same elements are given the same numbers. In this embodiment, the signal light from the semiconductor laser 11 is modulated at 50 Hb/s by the optical modulator 10, and then combined with the excitation light by the multiplexer 31, which is a single mode optical fiber coupler, to the semiconductor laser medium. It is being incident. Further, in order to detect the 50 Hb/s modulated signal, a part of the modulated signal light is extracted by the optical demultiplexer 32 and received by the photodetector 202. The received light output is regenerated into a modulated signal by the amplifier circuit 302 and the detection circuit 60, and then input to the mixer circuit 40, where it modulates the sine wave current from the sine wave oscillator 7. This modulated sinusoidal current is superimposed on a direct current by a combining circuit 9 consisting of a bias tee circuit, and is supplied to the semiconductor laser medium 5. When the present example was operated under the same conditions as the first example, the wavelength-converted optical power was changed over a very wide range, almost the same as in Fig. 2, without losing the 50 Wb/s modulation signal. It has been confirmed that this can be done. Above, the wavelength conversion method and wavelength converter according to the present invention have been explained using practical examples, but the present invention is not limited to these embodiments, and several modifications can be made. For example, in this embodiment, I n is used as the semiconductor laser medium.
GaAsP/I nP material was used, but GaAjAs
Other materials such as /GaAs may also be used. In addition, the excitation light source and signal light source may be a semiconductor laser made of other steel or materials, or an aW! laser such as a gas laser. It goes without saying that any structure or type of optical coupling system, optical multiplexer/demultiplexer, various electric circuits, etc. may be used as long as it has the performance. <<Effects of the Invention>> As explained above, in the wavelength conversion method and wavelength converter of the present invention, the third-order nonlinear polarization necessary for the four-wave mixing effect to occur in the semiconductor laser medium can be applied to the semiconductor laser medium. It is generated by injecting an appropriate sinusoidal current superimposed on a direct current. Therefore, by adopting the method and converter of the present invention, the wavelength conversion efficiency can be increased by f! of the injected alternating current. It can be controlled by width and phase.

【図面の簡単な説明】[Brief explanation of the drawing]

第l図は本発明による波長変換器の第1の実施例の構成
図、第2図はその波長変換器の第1の実施例で得られる
印加正弦波電流に対する波長変換光パワーを示す特性図
、第3図は本発明による波長変換器の第2の実施例の構
戒図である.図において、 11・・・信号光源、12・・・励起光源、21,22
,23.24・・・光結合系、31・・・光合波器、3
2・・・光分波器、4・・・光ファイバ、5・・・半導
体レーザ媒質、6・・・直流電源、7・・・正弦波発振
器、8・・・遅延線、9・・・合成回路、10・・・光
変調器、201,202・・・光検出器、301.30
2・・・増幅回路、40・・・ミキサー回路、50・・
・光フィルタ、60・・・検波回路である.
Fig. 1 is a block diagram of a first embodiment of the wavelength converter according to the present invention, and Fig. 2 is a characteristic diagram showing the wavelength-converted optical power with respect to the applied sinusoidal current obtained by the first embodiment of the wavelength converter. , FIG. 3 is a schematic diagram of a second embodiment of the wavelength converter according to the present invention. In the figure, 11... signal light source, 12... excitation light source, 21, 22
, 23.24... Optical coupling system, 31... Optical multiplexer, 3
2... Optical demultiplexer, 4... Optical fiber, 5... Semiconductor laser medium, 6... DC power supply, 7... Sine wave oscillator, 8... Delay line, 9... Synthesizing circuit, 10... Optical modulator, 201, 202... Photodetector, 301.30
2...Amplification circuit, 40...Mixer circuit, 50...
- Optical filter, 60...detection circuit.

Claims (3)

【特許請求の範囲】[Claims] (1)直流電流が注入されている半導体レーザ媒質に角
周波数ω_pの励起光と角周波数ω_aの信号光をそれ
ぞれ入射させ、前記半導体レーザ媒質中の四光波混合効
果によって新たに発生する角周波数がω_a=2ω_p
−ω_aの波長変換光を取りだす波長変換方式において
、前記半導体レーザ媒質に角周波数がΩ=|ω_p−ω
_a|の正弦波電流を直流電流に重畳して注入すること
を特徴とする波長変換方式。
(1) A pump light with an angular frequency ω_p and a signal light with an angular frequency ω_a are respectively incident on a semiconductor laser medium into which a direct current is injected, and the angular frequency newly generated by the four-wave mixing effect in the semiconductor laser medium is ω_a=2ω_p
In a wavelength conversion method that extracts wavelength-converted light of −ω_a, the semiconductor laser medium has an angular frequency of Ω=|ω_p−ω
A wavelength conversion method characterized by superimposing and injecting a sine wave current of __a| on a direct current.
(2)請求項1に記載の波長変換方式において、時間を
tで表すとき、角周波数ω_aの信号光がF_a(t)
の関数で変調されている場合に、半導体レーザ媒質に I=I_d_c+I_a_cF_a(t)sin[(ω
_p−ω_a)t]ただし、 I_d_c:半導体レーザ媒質への注入直流電流値I_
a_c:半導体レーザ媒質への注入交流電流値で表され
る電流を注入することを特徴とする波長変換方式。
(2) In the wavelength conversion method according to claim 1, when time is expressed as t, the signal light of angular frequency ω_a is F_a(t)
When the semiconductor laser medium is modulated by a function of I=I_d_c+I_a_cF_a(t)sin[(ω
_p-ω_a)t] However, I_d_c: DC current value I_ injected into the semiconductor laser medium
a_c: A wavelength conversion method characterized by injecting a current represented by an injection alternating current value into a semiconductor laser medium.
(3)半導体レーザ媒質と、角周波数ω_pの励起光を
出力する励起光源と、情報信号F_a(t)で変調され
た角周波数ω_aの入力信号光を分岐する光分岐手段と
、前記角周波数ω_pの励起光と前記光分岐手段によっ
て分岐された角周波数ω_aの入力信号光の一方を合波
して前記半導体レーザ媒質に入射させる手段と、前記光
分岐手段によって分岐された角周波数ω_aの入力信号
光の他方を受信して前記情報信号F_a(t)に対応し
た電流を出力する光受信部と、振幅と位相が変えられる
角周波数Ω=ω_p−ω_aの正弦波電流を出力する正
弦波発振器と、前記光受信部と前記正弦波発振器の出力
の積に直流電流を加えて前記半導体レーザ媒質に注入す
る駆動回路とを備えることを特徴とする波長変換器。
(3) a semiconductor laser medium, an excitation light source that outputs excitation light with an angular frequency ω_p, an optical branching means that branches an input signal light with an angular frequency ω_a modulated by the information signal F_a(t), and the angular frequency ω_p means for combining one of the excitation light and the input signal light having an angular frequency ω_a branched by the light branching means and inputting it into the semiconductor laser medium; and an input signal having an angular frequency ω_a branched by the light branching means. an optical receiver that receives the other light and outputs a current corresponding to the information signal F_a(t); and a sine wave oscillator that outputs a sine wave current with an angular frequency Ω=ω_p−ω_a whose amplitude and phase can be changed. A wavelength converter comprising: a drive circuit that adds a direct current to the product of the output of the optical receiver and the sine wave oscillator and injects the DC current into the semiconductor laser medium.
JP1310916A 1989-11-30 1989-11-30 Wavelength conversion system and wavelength converter device Pending JPH03171787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1310916A JPH03171787A (en) 1989-11-30 1989-11-30 Wavelength conversion system and wavelength converter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1310916A JPH03171787A (en) 1989-11-30 1989-11-30 Wavelength conversion system and wavelength converter device

Publications (1)

Publication Number Publication Date
JPH03171787A true JPH03171787A (en) 1991-07-25

Family

ID=18010925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1310916A Pending JPH03171787A (en) 1989-11-30 1989-11-30 Wavelength conversion system and wavelength converter device

Country Status (1)

Country Link
JP (1) JPH03171787A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5798853A (en) * 1992-10-16 1998-08-25 Fujitsu, Limited Optical communication system compensating for chromatic dispersion and phase conjugate light generator for use therewith
US6424774B1 (en) 1998-12-18 2002-07-23 Fujitsu Limited Tunable wavelength four light wave mixer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5798853A (en) * 1992-10-16 1998-08-25 Fujitsu, Limited Optical communication system compensating for chromatic dispersion and phase conjugate light generator for use therewith
US6424774B1 (en) 1998-12-18 2002-07-23 Fujitsu Limited Tunable wavelength four light wave mixer

Similar Documents

Publication Publication Date Title
US5917179A (en) Brillouin opto-electronic oscillators
EP0765046B1 (en) Broad linewidth lasers for optical fiber communication systems
Joergensen et al. All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers
JP3458613B2 (en) Wavelength conversion device and optical operation device
US5777778A (en) Multi-Loop opto-electronic microwave oscillator with a wide tuning range
US5781327A (en) Optically efficient high dynamic range electro-optic modulator
US6766070B2 (en) High power fiber optic modulator system and method
JPH04192729A (en) Optical transmitter
Morgan et al. Widely tunable four-wave mixing in semiconductor optical amplifiers with constant conversion efficiency
CN105867045B (en) Optical fiber parameter calculation method and device, all-optical phase regeneration device and PSA
CN105811225A (en) Microwave signal generating device and method of photoelectric oscillator based on liquid-core optical fiber Brillouin scattering effect
Yao et al. A novel photonic oscillator
US6577435B1 (en) Optical wavelength converter based on cross-gain modulation with wide input power dynamic range
KR19990055420A (en) Fully Optical Wavelength Converter Using Semiconductor Optical Amplifier and Polarization Interferometer
Chow et al. Widely tunable wavelength converter using a double-ring fiber laser with a semiconductor optical amplifier
JPH1093201A (en) Semiconductor light amplifier
JPH03171787A (en) Wavelength conversion system and wavelength converter device
US6909534B2 (en) Wideband four-wave-mixing wavelength converter
US6377388B1 (en) Optical signal processor
US7324256B1 (en) Photonic oscillator
CN107508127A (en) A kind of microwave photon signal frequency multiplication method and device with amplitude equalization effect
Li et al. Transient and optoelectronic feedback-sustained pulsation of laser diodes at 1300 nm
CN207559265U (en) A kind of microwave photon signal frequency multiplication device with amplitude equalization effect
CN112882310A (en) Kerr optical comb-based arbitrary high-order modulation format signal phase regeneration method
JP4674361B2 (en) Optoelectric oscillator