JPH03171784A - Bimorph element - Google Patents

Bimorph element

Info

Publication number
JPH03171784A
JPH03171784A JP1311374A JP31137489A JPH03171784A JP H03171784 A JPH03171784 A JP H03171784A JP 1311374 A JP1311374 A JP 1311374A JP 31137489 A JP31137489 A JP 31137489A JP H03171784 A JPH03171784 A JP H03171784A
Authority
JP
Japan
Prior art keywords
displacement
bimorph element
electrodes
outside electrodes
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1311374A
Other languages
Japanese (ja)
Inventor
Kazuhiro Henmi
和弘 逸見
Tomio Ono
富男 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1311374A priority Critical patent/JPH03171784A/en
Publication of JPH03171784A publication Critical patent/JPH03171784A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To acquire enough displacement even if a circumferencial part is completely fixed and to provide a disc bimorph element which can improve mechanical properties such as resonance frequency and generation force by dividing outside electrodes into two parts, respectively in a radius direction and by driving the two divided parts so that their displacements become reverse phase mutually. CONSTITUTION:Main surfaces of piezoelectric plates 11, 12 are bonded through a shim and holding electrode 13. Outside electrodes 14, 15 are bonded to other main surfaces of the piezoelectric plates 11, 12; and the electrodes 14, 15 are divided into two in a radius direction forming peripheral sides 14a, 15a, and central sides 14b, 15b. When the outside electrodes 14, 15 are dirived so that displacement directions thereof are reverse at a boundary of a division part between the outside electrodes 14, 15, rotation element due to displacement is cancelled at a displacement output part of a fixing end of a circumferential part and a circular central part, thereby enabling parallel movement of the displacement output part at a center. Accordingly, displacement of a bimorph element does not lower even if a circumference is fixed completely.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] (産業上の利用分野) 本発明は、圧電アクチュエー夕として用いられる円形の
バイモルフ素子に係わり、特に円周部を固定して駆動さ
れるバイモルフ素子に関する。 (従来の技術) 従来、圧電効果を利用したアクチュエー夕は、小型・軽
量.低消費電力.低発熱量,磁場を発生せず他の電子部
品等への影響が少ない,電圧駆動であるため制御が容易
である、等の多くの利点を有することから、種々の分野
で利用されている。 このような圧電効果を利用したアクチュエー夕としては
、積層縦効果型アクチュエー夕、すべり効果型アクチュ
エー夕やバイモルフ型圧電素子(バイモルフ素子)に代
表される横効果型アクチュエータが実用化されている。 このうち、比較的大きな変位量を必要とする場合には、
バイモルフ素子が良く用いられている。 バイモルフ素子は、第3図に示す如く圧電板の両主面に
電極を設けた2つの圧電素子を重ね合わせた構造である
。この場合は、図の矢印方向に分極方向を有する圧電板
1.2に対して外atwt極4.5に負の電位、挟持用
電極3には正の電位を与えると、図で点線に示したよう
に圧電体1,2は湾曲する。また、外側電極4,5と挾
持用電極3にそれぞれ上記と逆の電位を与えると、この
バイモルフ素子は逆方向に湾曲する。 汎用されているバイモルフ素子は矩形状のものであるが
、比較的高い共振周波数又は大きな発生力が要求される
場合、或いはポンプ等の応用でアクチュエータ回りをシ
ーリングする必要がある場合には、円形のバイモルフ素
子が用いられる。 従来、用いられている円形のバイモルフ素子の構造を*
4図に示す。なお、第4図(a)は斜視図で、第4図(
b)は同図(a)の矢視B−B断面図である。圧電板1
,2及び電極3.4.5が円形となっているだけで、基
本的な構成は第3図と同様である。この円形バイモルフ
素子では、挟持用電極3と外側電極4,5との間に所定
の電圧を印加し、下側の圧電板2が縮長し上側の圧電板
1が伸長するような電位を与えると、第4図(b)に破
線で示す如く上側に凸に湾曲する。電極3〜5に上記と
逆の電位を与えれば、このバイモルフ素子は下側に凸に
湾曲する。 しかしながら、この種のバイモルフ素子にあっては次の
ような問題があった。即ち、円形のバイモルフ素子は、
通常は円周部を固定して用いるが、このとき円周部を完
全固定してしまうと、変位が拘束されて変位しなくなる
。このため、シム材兼挟持用電極3を圧電体1,2より
円周方向にはみ出した構造をとり、このはみ出した部分
を固定することにより支持する構造とする。一方、共振
周波数,発生力等の機械的性質を向上させるためには、
円形バイモルフの円周部を支持構造から完全固定構造に
変えればよいが、この構造にすると先に説明したように
変位が拘束されてしまうという欠点がある。つまり、変
位量と機械的性質との間にトレードオフの関係があった
。 (発明が解決しようとする3題) このように従来、円形のバイモルフ素子の機械的性質を
向上させるために、円周部を完全固定の条件で使用しよ
うとすると、変位が拘束されてしまい、変位量が著しく
低下するという問題があった。 本発明は、上記事情を考慮してなされたもので、その目
的とするところは、円周部を完全固定で使用しても十分
な変位を得ることができ、共振周波数や発生力等の機械
的性質の向上をはかり得る円形のバイモルフ素子を提供
することにある。
[Object of the Invention] (Industrial Application Field) The present invention relates to a circular bimorph element used as a piezoelectric actuator, and particularly to a bimorph element driven with its circumferential portion fixed. (Prior art) Conventionally, actuators using piezoelectric effects have been small and lightweight. Low power consumption. It is used in a variety of fields because it has many advantages, such as low heat generation, no magnetic field generation and little effect on other electronic components, and easy control because it is driven by voltage. As actuators that utilize such a piezoelectric effect, lateral effect actuators typified by laminated longitudinal effect actuators, sliding effect actuators, and bimorph piezoelectric elements (bimorph elements) have been put into practical use. Among these, if a relatively large amount of displacement is required,
Bimorph elements are often used. As shown in FIG. 3, a bimorph element has a structure in which two piezoelectric elements each having electrodes provided on both main surfaces of a piezoelectric plate are stacked on top of each other. In this case, if a negative potential is applied to the outer atwt electrode 4.5 and a positive potential is applied to the clamping electrode 3 for the piezoelectric plate 1.2 whose polarization direction is in the direction of the arrow in the figure, then the dotted line in the figure The piezoelectric bodies 1 and 2 are curved as shown in FIG. Furthermore, when a potential opposite to the above is applied to the outer electrodes 4, 5 and the clamping electrode 3, the bimorph element curves in the opposite direction. Generally used bimorph elements are rectangular, but when a relatively high resonance frequency or large generated force is required, or when it is necessary to seal around the actuator in applications such as pumps, a circular bimorph element is used. A bimorph element is used. The structure of the conventionally used circular bimorph element*
Shown in Figure 4. Note that Fig. 4(a) is a perspective view, and Fig. 4(a) is a perspective view.
b) is a sectional view taken along the line BB in FIG. Piezoelectric plate 1
, 2 and electrodes 3.4.5 are circular, but the basic configuration is the same as that in FIG. 3. In this circular bimorph element, a predetermined voltage is applied between the clamping electrode 3 and the outer electrodes 4 and 5 to provide a potential that causes the lower piezoelectric plate 2 to contract and the upper piezoelectric plate 1 to expand. Then, as shown by the broken line in FIG. 4(b), it curves convexly upward. When a potential opposite to the above is applied to the electrodes 3 to 5, this bimorph element curves downward in a convex manner. However, this type of bimorph element has the following problems. That is, the circular bimorph element is
Normally, the circumferential portion is fixed and used, but if the circumferential portion is completely fixed at this time, the displacement will be restricted and it will not be displaced. For this reason, a structure is adopted in which the shim material and holding electrode 3 protrudes from the piezoelectric bodies 1 and 2 in the circumferential direction, and the protruding portion is supported by being fixed. On the other hand, in order to improve mechanical properties such as resonance frequency and generated force,
It is possible to change the circumferential portion of the circular bimorph from a support structure to a completely fixed structure, but this structure has the drawback that displacement is restricted as described above. In other words, there was a trade-off relationship between the amount of displacement and mechanical properties. (Three Problems to be Solved by the Invention) As described above, in order to improve the mechanical properties of a circular bimorph element, if an attempt was made to use the circumferential part under a completely fixed condition, the displacement would be restricted. There was a problem that the amount of displacement decreased significantly. The present invention was made in consideration of the above circumstances, and its purpose is to be able to obtain sufficient displacement even when the circumferential portion is completely fixed, and to reduce mechanical problems such as resonance frequency and generated force. An object of the present invention is to provide a circular bimorph element that can improve physical properties.

【発明の構成] (課題を解決するための手段) 本発明の骨子は、円周部を完全固定構造としたときの変
位の拘束を防止するため、円の中心側と周辺側とで変位
方向を逆にすることにある。 即ち本発明は、2枚の圧電体の主面同士を挟持用電極を
挟んで被着し、各圧電体の他の主面にそれぞれ外側電極
を被着した円形のバイモルフ素子において、前記各外側
電極を半径方向にそれぞれ2分割し、該2分割した部分
を互いに変位が逆位相となるように駆動するようにした
ものである。 (作用) 本発明によれば、分割電極構造を採用することにより、
円周部分の固定端及び円中央部分の変位取り出し部では
変位による回転成分がキャンセルされて、中央の変位取
り出し部分は平行運動する。このため、円周完全固定を
行っても、バイモルフ,素子の変位を低下させることは
ない。 従って、円周部を完全固定しても変位が著しく低下する
ことはなく、十分な変位量を得ると共に共振周波数や発
生力等の機械的性質の向上が可能となる。 (実施例) 以下、本発明の詳細を図示の実施例によって説明する。 第1図は本発明の一実施例に係わるバイモルフ素子の概
略構成を示すもので、第1図(a)は斜視図、第1図(
b)は同図(a)の矢視A−A断面図である。゛図中1
1.12は圧電体からなる円形の圧電板であり、これら
の圧電板11.12の主面同士はシム兼挟持用電極13
を介して接着されている。圧電板11.12の他の主面
には外側電極14.15が接着されており、これらの電
極14.15は半径方向に2分割されている。分割比は
、周辺側の電極14a.15a,中心側の電極14b,
15bにそれぞれ同電界を印加したときにそれぞれの変
位が等しくなる値に設定してある。また、円の中央部分
には変位を取り出す部分として電極の無い変位に関与し
ない無効部分を設けてある。そして、円形バイモルフ素
子の円周部は固定端に完全固定されるものとなっている
。 第2図は上記素子における電圧印加の方法を説明するた
めの模式図である。第2図(a)においては、圧電板1
1.12の分極方向を同一方向とし、挟持用電極13は
接地、外側電極14,15のうち周辺側14a,15a
を負の電圧、中心側14b,15bに正の電圧を印加す
る。 この場合、周辺側のA領域は下側に凸に変位し、中心側
のB領域は上側に凸に変位する。従って、前記第1図(
b)に示す如き変位が得られる。第2図(b)において
は、圧電板11.12の分極方向を周辺側と中心側で逆
方向にし、外側電極に印加する電圧はいずれも同じとし
た。この場合、挟持用電極13に負、外側電極14.1
5に正の電圧を印加することにより、周辺側のA領域は
下側に凸に変位し、中心側のB領域は上側に凸に変位す
ることになり、前記第1図(b)に示す如き変位が得ら
れる。また、電源として交流電源16を用いることによ
り、バイモルフ素子を振動させることが可能となる。 このように本実施例では、外側電極14.15の分割部
分を境に変位方向が逆になるように駆動すると、円周部
分の固定端及び円中央部分の変位取り出し部では変位に
よる四転威分がキャンセルされて、中央の変位取り出し
部分は平行運動する。このため、円周完全固定を行って
も、バイモルフ素子の変位を低下させることはない。 なお、分割電極構造を採用することにより、変位は全面
電極構造の同形状バイモルフを円周自由で駆動した場合
に比べて略1/2小さい値となる。しかし、実際には円
周自由ではアクチュエー夕として使用できないので、円
周支持構造の円形バイモルフと比較した場合、全体的な
特性としては向上する。実際に測定を行った例を下記表
に示す。使用した材料及び形状は同じとして、本発明の
実施例と従来例であるところの円周支持構造のバイモル
フとの比較を示した。 本発明の実施例の分割比は半径方向に等分割とした。 表 この表からも判るように、従来例に比して本実施例は変
位量は僅かに小さくなるものの、共振周波数が格段に高
くなり、高速駆動が可能となる。また、円周完全固定で
あることから、共振周波数や発生力等の機械的性質の向
上をはかることができる。従って、比較的高い共振周波
数及び大きな発生力が要求されるアクチュエー夕に用い
ることができ、その有用性は絶大である。 なお、本発明は上述した実施例に限定されるものではな
い。例えば、挟持用電極及び外側電極に印加する電位は
前記第2図に限定されるものではなく、2つの圧電板の
対向する部分が逆位相で、且つ分割された周辺側と中心
側とで逆位相となるような電位であれがよい。また、実
施例では円周部を固定し円中央部で変位を取り出す構成
としたが、逆に円中央部を固定し円周部で変位を取り出
すようにしてもよい。その他、本発明の要旨を逸脱しな
い範囲で、種々変形して実施することができる。 【発明の効果】 以上詳述したように本発明によれば、分割電極構造を採
用し円の中心側と周辺側とで変位方向を逆にしているの
で、円周部を完全固定で使用しても十分な変位を得るこ
とができ、共振周波数や発生力等の機械的性質の向上を
はかり得る円形のバイモルフ素子を実現することができ
る。
[Structure of the Invention] (Means for Solving the Problems) The gist of the present invention is to prevent the displacement from being constrained when the circumferential portion is completely fixed. It consists in reversing the . That is, the present invention provides a circular bimorph element in which the main surfaces of two piezoelectric bodies are attached to each other with sandwiching electrodes in between, and outer electrodes are attached to the other main surfaces of each piezoelectric body, respectively. The electrode is divided into two parts in the radial direction, and the two divided parts are driven so that their displacements are in opposite phases. (Function) According to the present invention, by adopting a split electrode structure,
At the fixed end of the circumferential portion and the displacement extraction portion at the center of the circle, the rotational component due to displacement is canceled, and the central displacement extraction portion moves in parallel. Therefore, even if the circumference is completely fixed, the displacement of the bimorph or element will not be reduced. Therefore, even if the circumferential portion is completely fixed, the displacement does not decrease significantly, and it is possible to obtain a sufficient amount of displacement and improve mechanical properties such as resonance frequency and generated force. (Example) Hereinafter, the details of the present invention will be explained by referring to the illustrated example. FIG. 1 shows a schematic configuration of a bimorph element according to an embodiment of the present invention, FIG. 1(a) is a perspective view, and FIG.
b) is a sectional view taken along arrow AA in FIG.゛Figure 1
1.12 is a circular piezoelectric plate made of a piezoelectric material, and the main surfaces of these piezoelectric plates 11.12 are used as shims and clamping electrodes 13.
It is glued through. On the other main surface of the piezoelectric plate 11.12, outer electrodes 14.15 are glued, and these electrodes 14.15 are divided into two parts in the radial direction. The division ratio is determined by the peripheral electrodes 14a. 15a, center side electrode 14b,
The displacements are set to be equal when the same electric field is applied to each of the electrodes 15b. Furthermore, in the center of the circle, there is provided an ineffective part that does not involve the displacement and has no electrodes as a part from which the displacement is taken out. The circumferential portion of the circular bimorph element is completely fixed to the fixed end. FIG. 2 is a schematic diagram for explaining the method of voltage application in the above element. In FIG. 2(a), the piezoelectric plate 1
1. The polarization direction of 12 is the same direction, the clamping electrode 13 is grounded, and the outer electrodes 14 and 15 are connected to the peripheral sides 14a and 15a.
A negative voltage is applied to the center sides 14b and 15b, and a positive voltage is applied to the center sides 14b and 15b. In this case, area A on the peripheral side is displaced convexly downward, and area B on the center side is displaced convexly upward. Therefore, the above-mentioned FIG. 1 (
A displacement as shown in b) is obtained. In FIG. 2(b), the polarization directions of the piezoelectric plates 11 and 12 were reversed between the peripheral side and the center side, and the voltages applied to the outer electrodes were the same. In this case, the clamping electrode 13 is negative, the outer electrode 14.1
By applying a positive voltage to 5, the area A on the peripheral side is displaced convexly downward, and the area B on the center side is displaced convexly upwardly, as shown in FIG. 1(b) above. A displacement like this can be obtained. Furthermore, by using the AC power source 16 as a power source, it is possible to vibrate the bimorph element. As described above, in this embodiment, when the outer electrodes 14 and 15 are driven so that the displacement directions are reversed at the divided portions, the four transitions due to displacement occur at the fixed end of the circumferential portion and the displacement extraction portion of the center portion of the circle. , the central displacement take-out portion moves in parallel. Therefore, even if the circumference is completely fixed, the displacement of the bimorph element will not be reduced. Note that by adopting the divided electrode structure, the displacement becomes approximately 1/2 smaller than that when a bimorph of the same shape with a full electrode structure is driven freely around the circumference. However, in reality, it cannot be used as an actuator if it is free around the circumference, so when compared with a circular bimorph with a circumferential support structure, the overall characteristics are improved. Examples of actual measurements are shown in the table below. A comparison is shown between an embodiment of the present invention and a conventional bimorph having a circumferential support structure, assuming that the materials and shapes used are the same. The division ratio in the embodiment of the present invention is equal division in the radial direction. Table As can be seen from this table, although the amount of displacement in this embodiment is slightly smaller than that in the conventional example, the resonance frequency is significantly higher and high-speed driving is possible. Furthermore, since the circumference is completely fixed, mechanical properties such as resonance frequency and generated force can be improved. Therefore, it can be used in actuators that require a relatively high resonant frequency and a large generated force, and is extremely useful. Note that the present invention is not limited to the embodiments described above. For example, the potentials applied to the clamping electrodes and the outer electrodes are not limited to those shown in FIG. The potential should be such that the phase is the same. Further, in the embodiment, the circumferential portion is fixed and the displacement is taken out at the center of the circle, but conversely, the center of the circle may be fixed and the displacement taken out at the circumferential portion. In addition, various modifications can be made without departing from the gist of the present invention. [Effects of the Invention] As detailed above, according to the present invention, a split electrode structure is adopted and the direction of displacement is reversed between the center side and the peripheral side of the circle, so the circumferential part can be used completely fixed. It is possible to realize a circular bimorph element that can obtain a sufficient displacement even when using a circular bimorph element, and can improve mechanical properties such as resonance frequency and generated force.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係わる円形バイモルフ素子
の概略構成を示す図、第2図は上記バイモルフ素子の駆
動方法を説明するための模式図、第3図は短冊型バイモ
ルフ素子の構成及び変位状態を示す図、第4図は従来の
円形バイモルフ素子の概略構成を示す図である。 11・・・圧電板、 12・・・圧電板、 13・・・シム兼挟持用電極、 14.15・・・外側電極、 14a,15a・・・周辺側電極、 i4b,15b・・・中心側電極、 16・・・交流電源。
FIG. 1 is a diagram showing a schematic configuration of a circular bimorph element according to an embodiment of the present invention, FIG. 2 is a schematic diagram for explaining a method of driving the bimorph element, and FIG. 3 is a configuration of a strip-shaped bimorph element. FIG. 4 is a diagram showing a schematic configuration of a conventional circular bimorph element. 11... Piezoelectric plate, 12... Piezoelectric plate, 13... Shim and clamping electrode, 14.15... Outer electrode, 14a, 15a... Peripheral electrode, i4b, 15b... Center Side electrode, 16...AC power supply.

Claims (1)

【特許請求の範囲】[Claims] 2枚の圧電板の主面同士を挟持用電極を挟んで被着し、
各圧電板の他の主面にそれぞれ外側電極を被着した円形
のバイモルフ素子において、前記各外側電極は半径方向
にそれぞれ2分割されてなることを特徴とするバイモル
フ素子。
The main surfaces of two piezoelectric plates are attached to each other with a sandwiching electrode in between,
1. A circular bimorph element having an outer electrode attached to the other main surface of each piezoelectric plate, wherein each of the outer electrodes is divided into two parts in a radial direction.
JP1311374A 1989-11-30 1989-11-30 Bimorph element Pending JPH03171784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1311374A JPH03171784A (en) 1989-11-30 1989-11-30 Bimorph element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1311374A JPH03171784A (en) 1989-11-30 1989-11-30 Bimorph element

Publications (1)

Publication Number Publication Date
JPH03171784A true JPH03171784A (en) 1991-07-25

Family

ID=18016410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1311374A Pending JPH03171784A (en) 1989-11-30 1989-11-30 Bimorph element

Country Status (1)

Country Link
JP (1) JPH03171784A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007634A1 (en) 2006-07-11 2008-01-17 Murata Manufacturing Co., Ltd. Piezoelectric pump
WO2008081767A1 (en) * 2006-12-27 2008-07-10 Murata Manufacturing Co., Ltd. Piezoelectric valve
WO2012105522A1 (en) * 2011-02-01 2012-08-09 パナソニック株式会社 Power generating device and power generating module using same
WO2012117831A1 (en) * 2011-03-01 2012-09-07 株式会社村田製作所 Piezoelectric element and piezoelectric device using same
US11211544B2 (en) 2015-08-31 2021-12-28 Koninklijke Philips N.V. Actuator or sensor device based on an electroactive or photoactive polymer

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2039934A4 (en) * 2006-07-11 2012-06-13 Murata Manufacturing Co Piezoelectric pump
EP2573396A3 (en) * 2006-07-11 2013-04-10 Murata Manufacturing Co., Ltd. Piezoelectric pump
EP2039934A1 (en) * 2006-07-11 2009-03-25 Murata Manufacturing Co. Ltd. Piezoelectric pump
WO2008007634A1 (en) 2006-07-11 2008-01-17 Murata Manufacturing Co., Ltd. Piezoelectric pump
US8162629B2 (en) 2006-07-11 2012-04-24 Murata Manufacturing Co., Ltd. Piezoelectric pump
JP4858546B2 (en) * 2006-12-27 2012-01-18 株式会社村田製作所 Piezoelectric valve
WO2008081767A1 (en) * 2006-12-27 2008-07-10 Murata Manufacturing Co., Ltd. Piezoelectric valve
WO2012105522A1 (en) * 2011-02-01 2012-08-09 パナソニック株式会社 Power generating device and power generating module using same
JP2012160620A (en) * 2011-02-01 2012-08-23 Panasonic Corp Power generating device and power generating module using the same
KR101366735B1 (en) * 2011-02-01 2014-02-24 파나소닉 주식회사 Power generating device and power generating module using same
WO2012117831A1 (en) * 2011-03-01 2012-09-07 株式会社村田製作所 Piezoelectric element and piezoelectric device using same
CN103392244A (en) * 2011-03-01 2013-11-13 株式会社村田制作所 Piezoelectric element and piezoelectric device using same
JP5500308B2 (en) * 2011-03-01 2014-05-21 株式会社村田製作所 Piezoelectric element and piezoelectric device using the same
US9406861B2 (en) 2011-03-01 2016-08-02 Murata Manufacturing Co., Ltd. Piezoelectric element and piezoelectric device using the same
US11211544B2 (en) 2015-08-31 2021-12-28 Koninklijke Philips N.V. Actuator or sensor device based on an electroactive or photoactive polymer

Similar Documents

Publication Publication Date Title
US4742260A (en) Piezoelectrically driving device
JPH03171784A (en) Bimorph element
CN107834899B (en) Method for adjusting two-phase modal frequency difference and steering of ultrasonic motor
CN107332460B (en) A kind of ring-like ultrasound electric machine oscillator of high performance piezoelectric monocrystalline patch type
JPH0552138B2 (en)
JPH05122949A (en) Linear actuator
JPS62147974A (en) Supersonic motor
JP2532425B2 (en) Ultrasonic motor
JPH0773428B2 (en) Piezoelectric drive
JPS60162487A (en) Piezoelectric driving device
JPS63277482A (en) Ultrasonic motor
JP2710803B2 (en) Piezo actuator
JP3213570B2 (en) Ultrasonic motor
JPH06106029B2 (en) Ultrasonic motor
JPH0458272B2 (en)
JPH02163982A (en) Piezoelectric displacement element
JP2601659B2 (en) Ultrasonic drive
JPH07178370A (en) Vibrator and vibrating actuator
JPS63257474A (en) Ultrasonic motor
JPS6084890A (en) Actuator
JPH01308172A (en) Ultrasonic wave driver
JPH0223074A (en) Ultrasonic motor
JPH0724956Y2 (en) Ultrasonic linear motor
JP2574675B2 (en) Rotary drive
JPS63283476A (en) Ultrasonic motor