JPH03170368A - High-strength aluminum titanate sintered compact and its production - Google Patents

High-strength aluminum titanate sintered compact and its production

Info

Publication number
JPH03170368A
JPH03170368A JP1308542A JP30854289A JPH03170368A JP H03170368 A JPH03170368 A JP H03170368A JP 1308542 A JP1308542 A JP 1308542A JP 30854289 A JP30854289 A JP 30854289A JP H03170368 A JPH03170368 A JP H03170368A
Authority
JP
Japan
Prior art keywords
aluminum titanate
sintered body
powder
strength
produced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1308542A
Other languages
Japanese (ja)
Inventor
Shogo Suzuki
鈴木 省伍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Ceramics Research Institute Co Ltd
Original Assignee
Isuzu Ceramics Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Ceramics Research Institute Co Ltd filed Critical Isuzu Ceramics Research Institute Co Ltd
Priority to JP1308542A priority Critical patent/JPH03170368A/en
Publication of JPH03170368A publication Critical patent/JPH03170368A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title sintered compact improved in mechanical strength by kneading specific aluminum titanate fine powder with inorganic fiber containing Ti as a constituent element followed by molding and then calcination. CONSTITUTION:(A) Fine aluminum titanate powder produced by the alkoxide process and (B) a specified amount of inorganic fiber containing Ti as a constituent element such as Si-Ti-C fiber produced by roasting a polytitanocarbosilane in a N2 atmosphere, are kneaded in a dilute aqueous solution of e.g. PVA into a slurry. This slurry is then deformed, cast in a mold, dried, and then roasted in the atmosphere at 1300 deg.C for 4hr, thus obtaining the objective sintered compact.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、チタンを構成元素として含有する無機質の繊
維によって強化されたチタン酸アルミニウム焼結体とそ
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an aluminum titanate sintered body reinforced with inorganic fibers containing titanium as a constituent element, and a method for producing the same.

(従来の技術) チタン酸アルミニウムは3結晶軸の各々の方向について
の熱膨張率が異なる異方熱膨張収縮を起こすため、チタ
ン酸アルミニウムを高温にて焼成した後冷却すると粒界
が剥離し焼結体内部に微細な亀裂が多数分散して発生す
る。このように内部に微細な亀裂を有するチタン酸アル
ミニウム焼結体を加熱冷却しても、該亀裂が拡大縮少す
るため見掛けの熱膨張率は約I X 1 0−6/℃と
徴小になる。従って、熱応力が低く耐熱衝撃性に優れる
ため、排気マニホールドやホットプラグ等の高温度条件
下にて使用されるエンジン部品にチタン酸アルミニウム
焼結体が使用されている。
(Prior art) Aluminum titanate undergoes anisotropic thermal expansion and contraction in which the coefficient of thermal expansion differs in each direction of the three crystal axes. Therefore, when aluminum titanate is fired at a high temperature and then cooled, the grain boundaries peel off and the firing process occurs. A large number of dispersed minute cracks occur inside the structure. Even when an aluminum titanate sintered body that has minute cracks inside is heated and cooled, the cracks expand and contract, resulting in a small apparent coefficient of thermal expansion of about I x 10-6/°C. Become. Therefore, because of its low thermal stress and excellent thermal shock resistance, aluminum titanate sintered bodies are used in engine parts used under high temperature conditions, such as exhaust manifolds and hot plugs.

(発明が解決しようとする課題) このような従来のチタン酸アルミニウム焼結体は上記の
ごとく内部に多数の微細な亀裂を有しており、外部から
応力が加わると応力が該亀裂に集中し亀裂を成長させる
ので機械的強度が非常に低く、4点曲げ強度は約IKg
/mrn”である。よって、チタン酸アルミニウム焼結
体は構造部材への使用に適しない。そこで、共沈法によ
り生成されたチタン酸アルミニウム焼結体内に無機質の
繊維を分散させ、該繊維によりチタン酸アルミニウム焼
結体を強化することにより機械的強度の優れた高強度チ
タン酸アルミニウム焼結体を形成したが、焼成に要する
時間が8時間と長いため、上記無機質の繊維に構成元素
として含有されている酸素原子が離脱し、該繊維を構成
する結晶の成長に起因する繊維の強度劣化のため、焼結
体が充分に強化されないという問題がある。
(Problem to be solved by the invention) As mentioned above, such a conventional aluminum titanate sintered body has many fine cracks inside, and when stress is applied from the outside, the stress concentrates on the cracks. Since cracks grow, the mechanical strength is very low, and the 4-point bending strength is about IKg.
/mrn". Therefore, the aluminum titanate sintered body is not suitable for use in structural members. Therefore, inorganic fibers are dispersed in the aluminum titanate sintered body produced by the coprecipitation method. A high-strength aluminum titanate sintered body with excellent mechanical strength was formed by reinforcing the aluminum titanate sintered body, but since the time required for firing was as long as 8 hours, it was necessary to strengthen the aluminum titanate sintered body as a constituent element. There is a problem in that the sintered body is not sufficiently strengthened due to the deterioration of the strength of the fiber due to the separation of oxygen atoms and the growth of crystals constituting the fiber.

(課題を解決するための手段) 本発明は上記の問題点を解決するために、共沈法により
作成される粉末より微細なチタン酸アルミニウム粉末を
原料とすることにより、チタン酸アルミニウム焼結体内
に無機質の繊維を分散焼成させる際の焼成時間を短縮し
繊維の強度劣化を防止することにより、機械的強度の優
れた高強度チタン酸アルよニウム焼結体とその製造方法
を提供しようとするものである。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention uses aluminum titanate powder as a raw material, which is finer than the powder produced by the coprecipitation method, so that aluminum titanate sintered bodies can be The present invention aims to provide a high-strength aluminum titanate sintered body with excellent mechanical strength and a method for producing the same by shortening the firing time when dispersing and firing inorganic fibers and preventing deterioration of the strength of the fibers. It is something.

すなわち、共沈法により作成される粉末より微細なチタ
ン酸アルミニウム粉末とチタンを構成元素として含有す
る無機質の繊維とを混練し、該混線物を泥漿鋳込み成型
した後、該成型物を1300℃に加熱して焼成する。
That is, aluminum titanate powder, which is finer than the powder produced by the coprecipitation method, and inorganic fibers containing titanium as a constituent element are kneaded, the mixed material is slurry cast molded, and then the molded product is heated to 1300°C. Heat and bake.

ところで、上記無機質の繊維はチタンを構成元素として
含有しているのでチタン酸アルミニウムとの親和力が大
であり、よって、強固な繊維強化焼結体が得られる。
By the way, since the above-mentioned inorganic fiber contains titanium as a constituent element, it has a high affinity with aluminum titanate, and therefore, a strong fiber-reinforced sintered body can be obtained.

尚、上記無機質の繊維(以下S i −T i−C繊維
という)とは珪素Si、チタンTi、炭素C等からなり
、例えば(株)宇部興産製の商品名rチラノ織維』とし
て販売されているものである。該S i −T i −
C繊維は有機金属架橋重合体の一種であるポリチタノカ
ルボシランを窒素雰囲気にて焼成することによって得ら
れる。該Si−Ti−C繊維が最大強度となる焼成温度
は1300tであり耐熱性に優れている。例えば、炭化
珪素繊維の最大強度となる焼成温度が1200℃である
のに対し更に100℃高温にも耐えることができる。
The above-mentioned inorganic fibers (hereinafter referred to as Si-T i-C fibers) are made of silicon Si, titanium Ti, carbon C, etc., and are sold, for example, under the trade name ``Tyrannoori Fiber'' manufactured by Ube Industries, Ltd. It is something that The S i −T i −
The C fiber is obtained by firing polytitanocarbosilane, which is a type of organometallic crosslinked polymer, in a nitrogen atmosphere. The firing temperature at which the Si-Ti-C fiber reaches its maximum strength is 1300 t, and it has excellent heat resistance. For example, while the firing temperature at which silicon carbide fiber reaches its maximum strength is 1200°C, it can withstand even higher temperatures of 100°C.

また、Si−Ti−C繊維は大気雰囲気下において加熱
されても酸化せず、よって大気雰囲気で加熱されても短
時間であれば比較的強度劣化し難いという特性を備えて
いる。
In addition, Si-Ti-C fibers do not oxidize even when heated in the air, and therefore have the property of being relatively hard to deteriorate in strength even if heated in the air for a short period of time.

(作用) 本発明の高強度チタン酸アルミニウム焼結体の製造方法
によると、チタン酸アルミニウムとの親和力が大であり
、耐熱性に優れたS i −T i −C繊維を微細粒
子のチタン酸アルミニウムと混練して短時間にて焼成す
るので該St−Ti−C繊維の強度劣化を防止すること
ができ、チタン酸アルミニウム焼結体が該St−Ti−
C繊維によって充分強化され強度が向上した高強度チタ
ン酸アルミニウム焼結体を製造できる。
(Function) According to the method for producing a high-strength aluminum titanate sintered body of the present invention, Si-Ti-C fibers, which have a high affinity with aluminum titanate and have excellent heat resistance, are mixed with fine particles of titanate. Since it is kneaded with aluminum and fired in a short time, it is possible to prevent the strength deterioration of the St-Ti-C fibers, and the aluminum titanate sintered body is kneaded with the St-Ti-C fibers.
A high-strength aluminum titanate sintered body that is sufficiently reinforced by C fibers and has improved strength can be produced.

(実施例) 以下、本発明の一実施例について詳細に説明する。(Example) Hereinafter, one embodiment of the present invention will be described in detail.

図は、本発明による焼結体の製造方法を示すフロー図で
ある。
The figure is a flow diagram showing a method for manufacturing a sintered body according to the present invention.

アルコキシド法にて作成したチタン酸アルミニウム粉末
95wt%と8.5μm径で1mm長のSt−Ti−C
繊紐5wt%とをポリビニルアルコールの1%水溶液中
にて混練しスラリー状とする。
95 wt% aluminum titanate powder prepared by alkoxide method and St-Ti-C with a diameter of 8.5 μm and a length of 1 mm.
5 wt % of the fibers were kneaded in a 1% aqueous solution of polyvinyl alcohol to form a slurry.

次に、該スラリーを脱泡した後、石膏型にて鋳込み成型
し80℃の状態で1週間乾燥させる。
Next, after defoaming the slurry, it is cast in a plaster mold and dried for one week at 80°C.

次に、該乾燥された成型品を焼結炉内に配置し大気雰囲
気にて1300℃まで加熱し該加熱状態で4時間保持し
て焼威し、本願の高強度チタン酸アルミニウム焼結体で
ある試料Aを作成する。
Next, the dried molded product is placed in a sintering furnace, heated to 1300°C in the air atmosphere, and kept in this heated state for 4 hours to burn it out, resulting in the high-strength aluminum titanate sintered body of the present application. A certain sample A is created.

比較の為、上記工程の内、共沈法にて作成したチタン酸
アルミニウム粉末を使用し、かつ焼成時間を8時間とし
て試料Bを作成する。
For comparison, Sample B was prepared using aluminum titanate powder prepared by the coprecipitation method in the above process and firing for 8 hours.

上記試料A及び試料BについてJISの4点曲げ試験を
実施した結果を以下の表に示す。
The results of the JIS four-point bending test performed on Sample A and Sample B are shown in the table below.

該表に示すごとく、焼成時間が4時間である試料Aは、
焼成時間が8時間である試料Bに対して機械強度が1.
2倍に強化されている。
As shown in the table, sample A whose firing time was 4 hours was
The mechanical strength of sample B, which was fired for 8 hours, was 1.
It has been strengthened twice.

以上、本発明について詳細に説明したが本発明の精神か
ら逸れないかぎりで、種々の異なる実施例は容易に構成
できるから、本発明は前記特許請求の範囲において記載
した限定以外、特定の実施例に制約されるものではない
Although the present invention has been described in detail above, various different embodiments can be easily constructed without departing from the spirit of the invention. It is not limited to.

(発明の効果) 以上説明したように、本発明によれば、チタン酸アルミ
ニウムとの親和力が大であり、耐熱性に優れたS i 
−T i−C繊維を微細粒子のチタン酸アルミニウムと
混練して短時間にて焼成するので該S i −T i−
C織維の強度劣化を防止することができ、チタン酸アル
ミニウム焼結体が該Si−Ti−C織維によって充分強
化され強度が向上した高強度チタン酸アルミニウム焼結
体とその製造方法を提供できる。
(Effects of the Invention) As explained above, according to the present invention, Si has a high affinity with aluminum titanate and has excellent heat resistance.
-T i-C fibers are kneaded with fine particles of aluminum titanate and fired in a short time, so that the S i -T i-
Provided is a high-strength aluminum titanate sintered body that can prevent strength deterioration of C woven fibers, and in which the aluminum titanate sintered body is sufficiently strengthened by the Si-Ti-C woven fibers and has improved strength, and a method for producing the same. can.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、本発明による焼結体の製造方法を示すフロー図で
ある。
The figure is a flow diagram showing a method for manufacturing a sintered body according to the present invention.

Claims (4)

【特許請求の範囲】[Claims] (1)共沈法により作成される粉末より微細なチタン酸
アルミニウム粉末の焼結体内に、チタンを構成元素とし
て含有する無機質の繊維が分散され、該無機質の繊維に
より強化されていることを特徴とする高強度チタン酸ア
ルミニウム焼結体。
(1) Inorganic fibers containing titanium as a constituent element are dispersed in the sintered body of aluminum titanate powder, which is finer than the powder produced by the coprecipitation method, and is reinforced by the inorganic fibers. High strength aluminum titanate sintered body.
(2)上記微細なチタン酸アルミニウム粉末はアルコキ
シド法にて作成されることを特徴とする請求項(1)記
載の高強度チタン酸アルミニウム焼結体。
(2) The high-strength aluminum titanate sintered body according to claim (1), wherein the fine aluminum titanate powder is produced by an alkoxide method.
(3)共沈法により作成される粉末より微細なチタン酸
アルミニウム粉末とチタンを構成元素として含有する無
機質の繊維とを混練するステップと、該混練物を成型す
るステップと、該成型物を1300℃に加熱し焼成する
ステップとを有することを特徴とする高強度チタン酸ア
ルミニウム焼結体の製造方法。
(3) A step of kneading aluminum titanate powder, which is finer than the powder produced by the coprecipitation method, and an inorganic fiber containing titanium as a constituent element, a step of molding the kneaded product, and a step of molding the molded product at 1. A method for producing a high-strength aluminum titanate sintered body, the method comprising the steps of heating to ℃ and firing.
(4)上記微細なチタン酸アルミニウム粉末はアルコキ
シド法にて作成され、上記焼成ステップでの加熱保持時
間が4時間であることを特徴とする請求項(3)記載の
高強度チタン酸アルミニウム焼結体の製造方法。
(4) The high-strength aluminum titanate sintered product according to claim (3), wherein the fine aluminum titanate powder is produced by an alkoxide method, and the heating and holding time in the firing step is 4 hours. How the body is manufactured.
JP1308542A 1989-11-28 1989-11-28 High-strength aluminum titanate sintered compact and its production Pending JPH03170368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1308542A JPH03170368A (en) 1989-11-28 1989-11-28 High-strength aluminum titanate sintered compact and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1308542A JPH03170368A (en) 1989-11-28 1989-11-28 High-strength aluminum titanate sintered compact and its production

Publications (1)

Publication Number Publication Date
JPH03170368A true JPH03170368A (en) 1991-07-23

Family

ID=17982282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1308542A Pending JPH03170368A (en) 1989-11-28 1989-11-28 High-strength aluminum titanate sintered compact and its production

Country Status (1)

Country Link
JP (1) JPH03170368A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110451938A (en) * 2019-08-01 2019-11-15 辽宁科技大学 A kind of aluminium titanates whisker reinforcement aluminium titanium fire resistant materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110451938A (en) * 2019-08-01 2019-11-15 辽宁科技大学 A kind of aluminium titanates whisker reinforcement aluminium titanium fire resistant materials

Similar Documents

Publication Publication Date Title
EP0037868B2 (en) Method of producing low-expansion ceramic materials
JP2011236120A (en) CERAMIC COMPOSITE BASED ON β-EUCRYPTITE AND OXIDE, AND PROCESS OF MANUFACTURING THE COMPOSITE
CN112851313A (en) High-temperature thermistor material and microwave preparation method thereof
JPH03170368A (en) High-strength aluminum titanate sintered compact and its production
JPH03122047A (en) Sintered aluminum titanate having high strength and production thereof
JPS62119175A (en) Manufacture of silicon carbide fiber reinforced spinel composite sintered body
JP2737323B2 (en) Method for producing silicon nitride based sintered body
JPS6114200A (en) Manufacture of silicon nitride whisker
JPH05279129A (en) Low-thermally conductive ceramic and its production
JP2970131B2 (en) Method for producing silicon nitride sintered body
JP2828583B2 (en) Surface-coated silicon nitride heat-resistant member
JP3156171B2 (en) Method for sintering ZrO2 compact
US4244902A (en) Pressureless method of forming a silicon carbide ceramic material
JP3734100B2 (en) Method for producing high-density columnar grain oriented ceramics
JPS6158868A (en) Radial turbine wheel and manufacture
JPH03164472A (en) Production of silicon nitride sintered body
JPH01320270A (en) Method for calcining fused silicon oxide molded body
JPH08259332A (en) Ceramic fiber-reinforced turbine blade and its production
JPH06144932A (en) Production of silicon nitride-based sintered compact
JPH0688831B2 (en) Method for manufacturing superconducting ceramic material
JPS63307166A (en) Sintered silicon carbide
JP2001130953A (en) Cordierite-based composite sintered compact and its production
JPH04285075A (en) Production of fiber reinforced ceramics
JPH0492859A (en) Composite member having excellent heat-resistance and oxidation resistance
JPH04231382A (en) Composite ceramics and its production