JPH03169497A - Austenitic stainless steel welding material having excellent creep rupture ductility and brittleness resistance - Google Patents

Austenitic stainless steel welding material having excellent creep rupture ductility and brittleness resistance

Info

Publication number
JPH03169497A
JPH03169497A JP30667289A JP30667289A JPH03169497A JP H03169497 A JPH03169497 A JP H03169497A JP 30667289 A JP30667289 A JP 30667289A JP 30667289 A JP30667289 A JP 30667289A JP H03169497 A JPH03169497 A JP H03169497A
Authority
JP
Japan
Prior art keywords
creep rupture
welding material
ferrite
less
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30667289A
Other languages
Japanese (ja)
Other versions
JP2619079B2 (en
Inventor
Takanori Nakazawa
中澤 崇徳
Nobuhiro Fujita
展弘 藤田
Mitsuru Yano
谷野 満
Hajime Komatsu
肇 小松
Masanori Tashimo
田下 正宣
Kiyoshi Takanabe
高鍋 清志
Seiichi Kawaguchi
聖一 川口
Takehiko Imada
今田 武彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nippon Steel Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Nippon Steel Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1306672A priority Critical patent/JP2619079B2/en
Publication of JPH03169497A publication Critical patent/JPH03169497A/en
Application granted granted Critical
Publication of JP2619079B2 publication Critical patent/JP2619079B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To provide a welding material for high temp. structure by constituting the welding material with the specific wt.% of C, Si, Mn, P, Cr, Ni, Mo, Al, N and the balance of Fe and making the specific vol.% of delta-ferrite quantity. CONSTITUTION:The welding material is constituted of <=0.03wt.% C, <=1% Si, <=3% Mn, 0.01-0.07% P, 14-20% Cr, 6-10% Ni, 2-3% Mo, <=0.04% Al, 0.06-0.18% N and the balance of Fe. Further, the composition of the welding material is constituted so that the delta-ferrite quantity in the welding material thus obtd. is in the range of 1-12vol.% found from the equation. In the equation, Creq=Cr+Mo+1.5XSi and Nieq=Ni+0.5XMn+30X(C+N). By this method, the welding material having excellent creep rupture characteristic can be provided.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高温におけるクリープ破断延性及び耐脆化性
の優れたNi− Crオーステナイト系ステンレス鋼溶
接材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a Ni-Cr austenitic stainless steel welding material having excellent creep rupture ductility and embrittlement resistance at high temperatures.

(従来の技術) 現在開発が進められている高速増殖炉の構造材料には、
SUS304,SUS31B等のオーステナイト系ステ
ンレス鋼が使用されるが、これらの構造材料は、クリー
プ温度項域で使用される。高速増殖炉の構造材料に負荷
される主要応力は、温度変動にともなう熱応力である。
(Conventional technology) Structural materials for fast breeder reactors currently under development include:
Austenitic stainless steels such as SUS304 and SUS31B are used, and these structural materials are used in the creep temperature range. The main stress applied to the structural materials of fast breeder reactors is thermal stress due to temperature fluctuations.

この熱応力による残留応力が、高温運転時にクリープに
より緩和される過程が構造材料に繰り返し加えられるこ
とから、クリープ疲労特性が重要視される。ところで、
このクリープ疲労特性は、クリープ破断延性と相関関係
があることが明らかにされており、高速増殖炉の構造材
料に使用されるステンレス鋼は、クリープ破断延性が優
れていることが要求される。
Creep fatigue characteristics are important because the residual stress caused by this thermal stress is repeatedly applied to structural materials during high-temperature operation in which the stress is relaxed by creep. by the way,
It has been revealed that this creep fatigue property has a correlation with creep rupture ductility, and stainless steel used as a structural material for fast breeder reactors is required to have excellent creep rupture ductility.

このようなステンレス鋼として、本発明者等はクリープ
破断延性の優れた316系のステンレス鋼厚板を発明し
た(特開昭82 − 23348号公報参照)。
As such a stainless steel, the present inventors have invented a 316 series stainless steel plate having excellent creep rupture ductility (see Japanese Patent Laid-Open No. 82-23348).

しかしながら、高速増殖炉は大型の溶接構造物であるた
め、その溶接金属部に対してもクリープ破断延性に優れ
ていることが要求される。これまでの高温用溶接材料は
、たとえばSUS  Y31Bでは、クリープ中に炭化
物が析出し十分なクリープ破断延性が得られない、ある
いは炭素含有量の低いSUS  Y3L6L系では、ク
リープ破断延性は優れるがクリープ破断強度が低く、い
ずれも高速増殖炉の構造用として十分とは言えないもの
であった。さらにこれらの溶接材料では、溶接時の高温
割れを防止するため導入されたδ−フェライト相から、
脆化相であるシグマ相が析出し、靭性低下をまねく傾向
にある。
However, since fast breeder reactors are large welded structures, the welded metal parts are also required to have excellent creep rupture ductility. Conventional high-temperature welding materials, such as SUS Y31B, do not have sufficient creep rupture ductility because carbides precipitate during creep, and SUS Y3L6L, which has a low carbon content, has excellent creep rupture ductility but has poor creep rupture ductility. Their strength was low, and none of them could be said to be sufficient for the structure of a fast breeder reactor. Furthermore, in these welding materials, from the δ-ferrite phase introduced to prevent hot cracking during welding,
The sigma phase, which is a brittle phase, tends to precipitate, leading to a decrease in toughness.

(発明が解決しようとする課8) このように、従来のS U S  Y31BあるいはS
US  Y318L系の溶接材料は、クリープ破断延性
、あるいはクリープ破断強度の何れかの点、及び耐脆化
性の点で高速増殖炉の構造材料として不十分なものであ
る。この原因は、SUSY31B系については、鋼中に
存在するCが、高温での使用中にδ−フェライトとオー
ステナイト相の界面に炭化物として析出すること、及び
δーフエライト相からシグマ相が析出することに関.係
している。すなわち、界面に析出する炭化物は界面脆化
を引き起こし、延性低下あるいはクリープ破断強度の劣
化原因となり、またSUSY ale L系では強化元
素であるC量が低いため、クリープ破断強度が十分でな
い。さらに、δ−フェライト相から容易にシグマ相が析
出するため靭性が低下するという問題点があった。
(Question 8 to be solved by the invention) In this way, the conventional SUS Y31B or S
US Y318L-based welding materials are inadequate as structural materials for fast breeder reactors in terms of either creep rupture ductility or creep rupture strength, and embrittlement resistance. The reason for this is that for the SUSY31B steel, C present in the steel precipitates as carbide at the interface between the δ-ferrite and austenite phases during use at high temperatures, and the sigma phase precipitates from the δ-ferrite phase. Seki. I'm in charge. That is, carbides precipitated at the interface cause interfacial embrittlement, causing a decrease in ductility or deterioration of creep rupture strength, and in the SUSY ale L system, the amount of C, which is a reinforcing element, is low, so the creep rupture strength is not sufficient. Furthermore, there was a problem in that the sigma phase easily precipitated from the δ-ferrite phase, resulting in a decrease in toughness.

本発明は、このような問題点を解決し、高温でのクリー
プ破断延性や強度及び耐脆化性の優れたオーステナイト
系ステンレス鋼溶接材料を提供するものである。
The present invention solves these problems and provides an austenitic stainless steel welding material that has excellent creep rupture ductility, strength, and embrittlement resistance at high temperatures.

(課題を解決するための手段) 本発明は、以上のような課題を解決するためになされた
ものであって、その要旨とするところは、(1)  重
量%で、C :0.030%以下、S I:1.0%以
下、Mn:3.0%以下、P : 0.01〜0.07
%、Cr:14.0〜20.0%、N i:6.0  
〜IO,0%、Mo:2.O  〜3,0%、Aj7 
二〇.04%以下、N : 0.06〜0.l8%を含
有し、残部は実質的にFeからなる溶接材料であり、か
つ該溶接材料によって得られる溶接金属部におけるδ−
フェライト量が、下記式1によって求められる容積%で
、1〜12%の範囲になるように前記溶接材料の成分を
構成することを特徴とする高温でのクリープ破断延性に
優れ、かつ高温での耐脆化性の優れたオーステナイト系
ステンレス鋼溶接材料。
(Means for Solving the Problems) The present invention has been made to solve the above problems, and the gist thereof is (1) C: 0.030% by weight. Below, SI: 1.0% or less, Mn: 3.0% or less, P: 0.01 to 0.07
%, Cr: 14.0-20.0%, Ni: 6.0
~IO, 0%, Mo: 2. O ~3,0%, Aj7
Twenty. 04% or less, N: 0.06-0. The welding material is a welding material containing 18% of Fe, with the remainder substantially consisting of Fe, and δ-
The composition of the welding material is configured such that the amount of ferrite is in the range of 1 to 12% by volume as determined by formula 1 below. Austenitic stainless steel welding material with excellent embrittlement resistance.

δ−フェライト量一 −70.29+3.2XCr..−0.031x(Ni
..)2+15.881XCr.JNi.q−0.02
08xCr.,xNi.,−(1)〔但し、Cr*@−
Cr + No + 1.5XSi,Ni−q−Ni 
+0.5×Mn+30X (C十N)〕 (2)重量%で、C :0.030%以下、S i:1
.o%以下、M n + 3 . 0%以下、P : 
0.OL〜0.07%、Cr:14.0〜 20.0%
 、  Ni:8.O  〜 10.0%、  Mo二
2,0  〜3.0%、Ajl:0.04%以下、N 
: 0.08〜0.t8%、さらにW:3.0%以下を
含有し、残部は実質的にFeからなる溶接材料であり、
かつ該溶接材料によって得られる溶接金属部におけるδ
−フェライト量が、下記式1によって求められる容積%
で、1〜12%の範囲になるように前記溶接材料の成分
を構成することを特徴とする高温でのクリープ破断延性
に優れ、かつ高温での耐脆化性の優れたオーステナイト
系ステンレス鋼溶接材料。
δ-Ferrite amount -70.29+3.2XCr. .. −0.031x(Ni
.. .. )2+15.881XCr. JNi. q-0.02
08xCr. ,xNi. ,-(1) [However, Cr*@-
Cr + No + 1.5XSi, Ni-q-Ni
+0.5×Mn+30X (C×N)] (2) In weight%, C: 0.030% or less, Si: 1
.. o% or less, M n + 3. 0% or less, P:
0. OL~0.07%, Cr:14.0~20.0%
, Ni:8. O ~ 10.0%, Mo2 2,0 ~ 3.0%, Ajl: 0.04% or less, N
: 0.08~0. A welding material containing t8% and W: 3.0% or less, with the remainder substantially consisting of Fe,
and δ in the weld metal part obtained by the welding material
-The amount of ferrite is determined by the following formula 1 in volume %
Welding of an austenitic stainless steel having excellent creep rupture ductility at high temperatures and excellent embrittlement resistance at high temperatures, characterized in that the composition of the welding material is comprised in a range of 1 to 12%. material.

δ−フェライト′m噛 −70.29+3.2XCr.−0.081X(NI.
q)2+15.661xCr.Q/Ni*.−0.02
08xCr*,xNie.”’ (1)〔但し、Cr.
,−Cr+Mo+0.5×W+1.5XSi,Ni−q
−Ni + 0.5x Mn + 30×(C 十N)
〕にある。
δ-ferrite 'm-70.29+3.2XCr. -0.081X (NI.
q) 2+15.661xCr. Q/Ni*. -0.02
08xCr*, xNie. ”' (1) [However, Cr.
, -Cr+Mo+0.5×W+1.5XSi, Ni-q
-Ni + 0.5x Mn + 30x (C 1N)
〕It is in.

(作  用) 以下本発明の要件を特定した技術的根拠について説明す
る。
(Function) The technical basis for specifying the requirements of the present invention will be explained below.

発明者は、溶接金属部のクリープ破断特性に対する、化
学或分およびδ−フェライト量について系統的な調査を
行った。第1図(A)と(B)にクリープ破断特性に対
するCとN量の影響(試験温度は550℃)を示す。(
A)図から低C化することにより、クリープ破断延性が
向上しクリープ破断強度が低下することがわかる。一方
、Nについては、(B)図に示すように、Cが0.05
%存在する場合は、Nffiとともにクリープ破断強度
は増加するが、クリープ破断延性は低下する。これに対
し、Cが0,Ol%と低い系ではNffiとともにクリ
ープ破断強度は向上するが、クリープ破断延性は低下し
ない。すなわち、強化元素をCからNに変えることによ
り、クリープ破断強度、クリープ破断延性ともに優れた
溶接材料の開発の可能性が見出された。
The inventor conducted a systematic investigation on the chemical fraction and the amount of δ-ferrite with respect to the creep rupture characteristics of a welded metal part. Figures 1(A) and 1(B) show the influence of C and N amounts on creep rupture properties (test temperature: 550°C). (
A) It can be seen from the figure that by lowering C, the creep rupture ductility improves and the creep rupture strength decreases. On the other hand, for N, as shown in figure (B), C is 0.05
%, creep rupture strength increases with Nffi, but creep rupture ductility decreases. On the other hand, in a system with a low C content of 0.Ol%, the creep rupture strength improves with Nffi, but the creep rupture ductility does not decrease. That is, the possibility of developing a welding material with excellent creep rupture strength and creep rupture ductility was discovered by changing the reinforcing element from C to N.

第2図は、このようなクリープ破断特性の優れれた低C
一高N系(0.01%C−0.08%N−8%Ni−1
8%Cr−2.1%Mo)の溶接金属部のクリープ破断
特性に対するPの影響を示したものである。
Figure 2 shows such a low C material with excellent creep rupture properties.
High-N system (0.01%C-0.08%N-8%Ni-1
8%Cr-2.1%Mo) shows the influence of P on the creep rupture properties of weld metal parts.

Pを添加することにより、クリープ破断強度、クリープ
破断延性がともに向上することがわかる。
It can be seen that by adding P, both creep rupture strength and creep rupture ductility are improved.

オーステナイト系ステンレス鋼の溶接施工上の問題とし
て、高温割れがあり、この対策として、通常溶接金属に
δ−フェライトを導入することが行われている。このδ
−フェライトは、先に述べたように、クリープ亀裂の伝
播径路となることからクリープ破断特性への影響が考え
られる。第3図は、クリープ破断特性に対するδ−フェ
ライト量の影響を示したもので、クリープ破断特性に対
して、δ−フェライト量に最適値が存在することがわか
る。すなわち、従来型の0606%C−0.02%N系
では、クリープ中に炭化物の析出が生じることから、δ
−フェライトの影響が顕著であるが、クリープ破断延性
が改善された0.01%C−0.11%N系においても
、やや変化量は小さいものの、やはり最適δ−フェライ
ト量が存在する。
Hot cracking is a problem in welding austenitic stainless steel, and as a countermeasure to this problem, δ-ferrite is usually introduced into the weld metal. This δ
-As mentioned above, ferrite serves as a propagation path for creep cracks, so it is thought to have an effect on creep rupture characteristics. FIG. 3 shows the influence of the amount of δ-ferrite on the creep rupture characteristics, and it can be seen that there is an optimum value for the amount of δ-ferrite with respect to the creep rupture characteristics. In other words, in the conventional 0606%C-0.02%N system, carbide precipitation occurs during creep, so δ
- Although the influence of ferrite is significant, even in the 0.01% C-0.11% N system with improved creep rupture ductility, an optimum amount of δ-ferrite still exists, although the amount of change is somewhat small.

以上の調査結果から、従来材並のクリープ破断強度を有
するクリープ破断延性の優れた溶接材料の可能性を見出
したわけであるが、クリープ破断延性を損なわずに、更
にクリープ破断強度を高めるための検討を行った。クリ
ープ破断延性を損なわずに強化する方法としては、固溶
強化が最適であり、その代表元素としてNを利用したが
、0.18%以上では析出するため他の元素を考える必
要がある。
From the above research results, we found the possibility of creating a welding material with excellent creep rupture ductility that has creep rupture strength comparable to that of conventional materials.However, we need to study ways to further increase creep rupture strength without impairing creep rupture ductility. I did it. As a method for strengthening without impairing creep rupture ductility, solid solution strengthening is optimal, and N was used as a representative element, but other elements must be considered because N precipitates at 0.18% or more.

本発明者らは、ざらに固溶強化能が高くかつ溶解度の大
きい元素としてWを選定し、その効果について調査した
。第4図はその結果を示したもので、0.01%C−0
.07%N−9%Ni−18%Cr−2,1%Mo系に
Wを添加することによりクリープ破断強度が向上するこ
とがわかる。しかし、多量に添加するとクリープ破断延
性が低下するが、これはWを含む金属間化合物が析出す
ることに起因している。
The present inventors selected W as an element with a high solid solution strengthening ability and high solubility, and investigated its effects. Figure 4 shows the results, 0.01%C-0
.. It can be seen that the creep rupture strength is improved by adding W to the 07%N-9%Ni-18%Cr-2,1%Mo system. However, if added in a large amount, the creep rupture ductility decreases, but this is due to the precipitation of intermetallic compounds containing W.

以下に本発明における各成分の限定理由を述べる。The reasons for limiting each component in the present invention will be described below.

先ず本発明の成分系において、Cは有効な強化元素では
あるが、δ−フェライトとオーステナイト相の界面に炭
化物として析出するため、高温長時間使用後のクリープ
破断特性などの高温の機械的性質を損なう元素でもある
。このような観点から、Cffiは0.030%以下と
定めたが、とくに高いクリープ破断延性が要求される場
合は0.020%以下とすることが望ましい。
First, in the component system of the present invention, C is an effective strengthening element, but since it precipitates as a carbide at the interface between the δ-ferrite and austenite phases, it impairs high-temperature mechanical properties such as creep rupture properties after long-term use at high temperatures. It is also a damaging element. From this point of view, Cffi was determined to be 0.030% or less, but if particularly high creep rupture ductility is required, it is desirable to set it to 0.020% or less.

次に、S1は脱酸材として必要であるが、1.0%を超
えて過剰に存在すると高温割れ感受性を高めるのでこの
値を上限とした。
Next, S1 is necessary as a deoxidizer, but if it exists in excess of more than 1.0%, it increases hot cracking susceptibility, so this value was set as the upper limit.

Mnは、脱酸元素であると同時に、鋼中のSを固定する
ことから熱間加工性を向上させる効果を有するが、3%
を超えるとクリープ破断強度を低下させるのでこの値を
上限とした。
Mn is a deoxidizing element and at the same time has the effect of improving hot workability by fixing S in steel, but at 3%
If it exceeds this value, the creep rupture strength decreases, so this value was set as the upper limit.

Pは、高温保持中にリン化物として結晶粒内に析出し強
化作用を有し、さらに相界面を強化する作用もあること
から、クリープ破断延性の点から効果的な元素であるが
、その効果は0,Ol%より生じることから下限を0.
01%とした。しかし、過剰の添加は溶接性および熱間
加工性を著しく損なうことから、その上限を0.07%
とした。なお、特にクリープ破断延性が必要とされる場
合は、P量を0.02%以上とすることが望ましい。
P is an effective element in terms of creep rupture ductility because it precipitates in crystal grains as phosphide during high temperature holding and has a strengthening effect, and also has the effect of strengthening the phase interface. Since it occurs from 0.Ol%, the lower limit is set to 0.
It was set as 01%. However, since excessive addition significantly impairs weldability and hot workability, the upper limit has been set at 0.07%.
And so. In addition, especially when creep rupture ductility is required, it is desirable that the amount of P be 0.02% or more.

Niは、オーステナイト生成元素として必須の元素であ
り、δ−フェライト量を所定の範囲に制御するために、
フエライト生成元素であるCr量に対し成分平衡上、式
1により調整される元素であるが、クリープ破断特性を
劣化させるσ一相、χ一相の析出を抑制する効果を有す
ることから、6%以上とした。10%以上の添加は、δ
−フェライト量制御に必要なCrffiを増加させる結
果、全体の合金量を大幅に高めることになり、溶接性を
損なうことから、上限を10%とした。
Ni is an essential element as an austenite forming element, and in order to control the amount of δ-ferrite within a predetermined range,
It is an element that is adjusted according to formula 1 in terms of composition balance with respect to the amount of Cr, which is a ferrite-forming element, and has the effect of suppressing the precipitation of σ-1 phase and χ-1 phase that deteriorate creep rupture properties, so it is 6% That's all. Addition of 10% or more causes δ
- As a result of increasing Crffi necessary for controlling the amount of ferrite, the overall alloy amount will be significantly increased, impairing weldability, so the upper limit was set at 10%.

Crは、耐酸化性を高める元素であり、そのためにはl
4%以上を必要とするが、20%を超えると高温長時間
加熱中にδ−フェライト相からシグマ相の析出が促進さ
れ、シグマ相による脆化を引き起こすことから、上限を
20%とした。
Cr is an element that increases oxidation resistance, and for that purpose, l
4% or more is required, but if it exceeds 20%, the precipitation of the sigma phase from the δ-ferrite phase will be promoted during long-term heating at high temperatures, causing embrittlement due to the sigma phase, so the upper limit was set at 20%.

Moは、固溶強化作用を有する元素であるが、2.0%
未満では不十分であり、また3.0%超では高温長時間
加熱による脆化を引き起こすことから、上限を3,0%
とした。
Mo is an element that has a solid solution strengthening effect, but at 2.0%
If it is less than 3.0%, it is insufficient, and if it exceeds 3.0%, it will cause embrittlement due to long-term heating at high temperatures, so the upper limit should be set at 3.0%.
And so.

lは、強力な脱酸元素であるが、0.04%を超えて添
加されると、高温長時間加熱により鋼中のNと結合しA
DNを形或し、クリープ破断延性を損なうことから、上
限を0.04%とした。
L is a strong deoxidizing element, but if it is added in excess of 0.04%, it will combine with N in the steel due to high temperature and long-term heating.
The upper limit was set at 0.04% because it would distort the DN and impair creep rupture ductility.

Nは、オーステナイト系ステンレス鋼において固溶限が
大きく、かつ強力な固溶強化作用を有する元素である。
N is an element that has a large solid solubility limit in austenitic stainless steel and has a strong solid solution strengthening effect.

その作用は0.0B%より顕著となることから、下限を
0.06%とした。また、0.18%超のN添加は高温
使用中に窒化物の析出を引き起こすことから、0.18
%を上限とした。
Since this effect is more pronounced than 0.0B%, the lower limit was set at 0.06%. In addition, since adding more than 0.18% of N causes nitride precipitation during high-temperature use,
The upper limit was %.

以上が本発明における基本戊分系であるが、本発明にお
いては、さらに高強度化を図るためWを所定の範囲で含
有せしめることが有効である。すなわち、WはMoと同
様に固溶強化作用を有し、かつ固溶限も大きいことから
、クリープ破断延性を損なうことなくクリープ破断強度
を増加させることができる元素である。しかし3.0%
を超えると、高温使用中に金属間化合物の析出を引き起
こしクリープ破断延性を低下させることから、この値を
上限とした。
The above is the basic breakdown system in the present invention, but in the present invention, it is effective to contain W within a predetermined range in order to further increase the strength. That is, since W has a solid solution strengthening effect like Mo and has a large solid solubility limit, it is an element that can increase creep rupture strength without impairing creep rupture ductility. However, 3.0%
If this value is exceeded, intermetallic compounds will precipitate during high-temperature use, reducing creep rupture ductility. Therefore, this value was set as the upper limit.

以上の化学戊分の他に、δ−フェライト量に関してはク
リープ破断延性を確保するためおよび溶接時の高温割れ
を防止するため最低1%が必要である。一方、δ−フェ
ライトを12%を超えて含有するとクリープ破断延性を
損なうことから上限を12%とした。
In addition to the above chemical fractionation, the amount of δ-ferrite must be at least 1% in order to ensure creep rupture ductility and to prevent hot cracking during welding. On the other hand, if the content of δ-ferrite exceeds 12%, the creep rupture ductility is impaired, so the upper limit was set at 12%.

本発明におけるδ−フェライト量の算出は式1による。Calculation of the amount of δ-ferrite in the present invention is based on Equation 1.

式1の計算に用いる各或分濃度は溶接材料中の濃度を適
用する。本発明の溶接材料は組成が溶接材料に近い母材
に適用し、また、母材組或が溶接金属組成にほとんど影
響しない溶接手段で溶接するので、溶接金属組成は溶接
材料組成でほぼ反映できる。
For each partial concentration used in the calculation of Equation 1, the concentration in the welding material is applied. The welding material of the present invention is applied to a base metal whose composition is close to that of the welding material, and welding is performed using a welding method that has little effect on the base metal composition or weld metal composition, so the weld metal composition can be almost reflected in the welding material composition. .

以下に本発明の効果を実施例に基づいてさらに具体的に
示す。
The effects of the present invention will be described in more detail below based on Examples.

(実 施 例) 第1表は本発明溶接材料と比較溶接材料と母材の化学成
分を示す。第2表は溶接条件とδ−フェライトの実測値
を示す。δ−フェライト実測値は溶接材料の組或から算
出した値とほぼ近い値である。第3表は第1表の鋼につ
いて550℃の引張特性とクリープ破断特性を示したも
のである。これら特性調査結果から明らかなように、本
発明溶接材料は比較材に比べ高温長時間使用後のクリー
プ破断強度およびクリープ破断延性が優れたものである
(Example) Table 1 shows the chemical compositions of the welding materials of the present invention, comparative welding materials, and base metals. Table 2 shows welding conditions and actual measured values of δ-ferrite. The measured value of δ-ferrite is almost close to the value calculated from the set of welding materials. Table 3 shows the tensile properties and creep rupture properties at 550°C for the steels shown in Table 1. As is clear from these property investigation results, the welding material of the present invention is superior in creep rupture strength and creep rupture ductility after long-term use at high temperatures compared to comparative materials.

第 2 表 (発明の効果) 以上述べた如く本発明溶接材料は、従来の溶接材料に比
して優れたクリープ破断特性を有する材料となっており
、クリープ領域で使用される高温構造物用の溶接材料と
して工業的に極めて有効なものである。
Table 2 (Effects of the Invention) As stated above, the welding material of the present invention has superior creep rupture properties compared to conventional welding materials, and is suitable for high-temperature structures used in creep regions. It is industrially extremely effective as a welding material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A) . (B)はクリープ破断特性に対する
CとN量の影響を示す図、第2図はクリープ破断特性に
対するP量の影響を示す図、第3図はクリープ破断特性
に対するδ−フェライト量の影響を示す図、第4図はク
リープ破断特性に対するW量の影響を示す図である。
Figure 1 (A). (B) is a diagram showing the influence of C and N content on creep rupture properties, Figure 2 is a diagram showing the influence of P content on creep rupture properties, and Figure 3 is a diagram showing the influence of δ-ferrite content on creep rupture properties. 4 are diagrams showing the influence of the amount of W on the creep rupture characteristics.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で、C:0.030%以下、Si:1.0
%以下、Mn:3.0%以下、P:0.01〜0.07
%、Cr:14.0〜20.0%、Ni:6.0〜10
.0%、Mo:2.0〜3.0%、Al:0.04%以
下、N:0.06〜0.18%を含有し、残部は実質的
にFeからなる溶接材料であり、かつ該溶接材料によっ
て得られる溶接金属部におけるδ−フェライト量が、下
記式1によって求められる容積%で、1〜12%の範囲
になるように前記溶接材料の成分を構成することを特徴
とする高温でのクリープ破断延性に優れ、かつ高温での
耐脆化性の優れたオーステナイト系ステンレス鋼溶接材
料。 δ−フェライト量= −70.29+3.2×Cr_e_q−0.031×(
Ni_e_q)^2+15.661×Cr_e_q/N
i_e_q−0.0208×Cr_e_q×Ni_e_
q・・・(1)〔但し、Cr_e_q=Cr+Ho+1
.5×Si、Ni_e_q=Ni+0.5×Mn+30
×(C+N)〕
(1) In weight%, C: 0.030% or less, Si: 1.0
% or less, Mn: 3.0% or less, P: 0.01 to 0.07
%, Cr: 14.0-20.0%, Ni: 6.0-10
.. 0%, Mo: 2.0-3.0%, Al: 0.04% or less, N: 0.06-0.18%, and the remainder is a welding material consisting essentially of Fe, and A high-temperature method characterized in that the components of the welding material are configured such that the amount of δ-ferrite in the weld metal part obtained by the welding material is in the range of 1 to 12% by volume % determined by the following formula 1. An austenitic stainless steel welding material with excellent creep rupture ductility at high temperatures and excellent embrittlement resistance at high temperatures. δ-ferrite amount = -70.29+3.2×Cr_e_q-0.031×(
Ni_e_q)^2+15.661×Cr_e_q/N
i_e_q−0.0208×Cr_e_q×Ni_e_
q...(1) [However, Cr_e_q=Cr+Ho+1
.. 5×Si, Ni_e_q=Ni+0.5×Mn+30
×(C+N)]
(2)重量%で、C:0.030%以下、Si:1.0
%以下、Mn:3.0%以下、P:0.01〜0.07
%、Cr:14.0〜20.0%、Ni:6.0〜10
.0%、Mo:2.0〜3.0%、Al:0.04%以
下、N:0.06〜0.18%、さらにW:3.0%以
下を含有し、残部は実質的にFeからなる溶接材料であ
り、かつ該溶接材料によって得られる溶接金属部におけ
るδ−フェライト量が、下記式1によって求められる容
積%で、1〜12%の範囲になるように前記溶接材料の
成分を構成することを特徴とする高温でのクリープ破断
延性に優れ、かつ高温での耐脆化性の優れたオーステナ
イト系ステンレス鋼溶接材料。 δ−フェライト量= −70.29+3.2×Cr_e_q−0.031×(
Ni_e_q)^2+15.661×Cr_e_q/N
i_e_q−0.0208×Cr_e_q×Ni_e_
q・・・(1)〔但し、Cr_e_q=Cr+Mo+0
.5×W+1.5×Si、Ni_e_q=Ni+0.5
×Mn+30×(C+N)〕
(2) In weight%, C: 0.030% or less, Si: 1.0
% or less, Mn: 3.0% or less, P: 0.01 to 0.07
%, Cr: 14.0-20.0%, Ni: 6.0-10
.. 0%, Mo: 2.0 to 3.0%, Al: 0.04% or less, N: 0.06 to 0.18%, and W: 3.0% or less, with the remainder being substantially The welding material is a welding material made of Fe, and the composition of the welding material is adjusted so that the amount of δ-ferrite in the weld metal part obtained by the welding material is in the range of 1 to 12% by volume % determined by the following formula 1. An austenitic stainless steel welding material having excellent creep rupture ductility at high temperatures and excellent embrittlement resistance at high temperatures. δ-ferrite amount = -70.29+3.2×Cr_e_q-0.031×(
Ni_e_q)^2+15.661×Cr_e_q/N
i_e_q−0.0208×Cr_e_q×Ni_e_
q...(1) [However, Cr_e_q=Cr+Mo+0
.. 5×W+1.5×Si, Ni_e_q=Ni+0.5
×Mn+30×(C+N)]
JP1306672A 1989-11-28 1989-11-28 Ni-Cr austenitic stainless steel welding consumables with excellent creep rupture ductility, strength and embrittlement resistance at high temperatures Expired - Lifetime JP2619079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1306672A JP2619079B2 (en) 1989-11-28 1989-11-28 Ni-Cr austenitic stainless steel welding consumables with excellent creep rupture ductility, strength and embrittlement resistance at high temperatures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1306672A JP2619079B2 (en) 1989-11-28 1989-11-28 Ni-Cr austenitic stainless steel welding consumables with excellent creep rupture ductility, strength and embrittlement resistance at high temperatures

Publications (2)

Publication Number Publication Date
JPH03169497A true JPH03169497A (en) 1991-07-23
JP2619079B2 JP2619079B2 (en) 1997-06-11

Family

ID=17959930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1306672A Expired - Lifetime JP2619079B2 (en) 1989-11-28 1989-11-28 Ni-Cr austenitic stainless steel welding consumables with excellent creep rupture ductility, strength and embrittlement resistance at high temperatures

Country Status (1)

Country Link
JP (1) JP2619079B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5080941A (en) * 1973-11-22 1975-07-01
JPS586792A (en) * 1981-07-03 1983-01-14 Nippon Steel Corp Gas shielded welding material for stainless steel
JPS5858996A (en) * 1981-10-02 1983-04-07 Sumitomo Metal Ind Ltd Filler metal for tig welding
JPS6250232A (en) * 1985-08-28 1987-03-04 Toyota Motor Corp Four-wheel-drive device
JPH0299295A (en) * 1988-10-04 1990-04-11 Nippon Steel Corp Ni-cr austenitic stainless steel material welding material having excellent creep rupture ductility at high temperature
JPH03110097A (en) * 1989-09-22 1991-05-10 Kobe Steel Ltd Wire for welding austenitic stainless steel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5080941A (en) * 1973-11-22 1975-07-01
JPS586792A (en) * 1981-07-03 1983-01-14 Nippon Steel Corp Gas shielded welding material for stainless steel
JPS5858996A (en) * 1981-10-02 1983-04-07 Sumitomo Metal Ind Ltd Filler metal for tig welding
JPS6250232A (en) * 1985-08-28 1987-03-04 Toyota Motor Corp Four-wheel-drive device
JPH0299295A (en) * 1988-10-04 1990-04-11 Nippon Steel Corp Ni-cr austenitic stainless steel material welding material having excellent creep rupture ductility at high temperature
JPH03110097A (en) * 1989-09-22 1991-05-10 Kobe Steel Ltd Wire for welding austenitic stainless steel

Also Published As

Publication number Publication date
JP2619079B2 (en) 1997-06-11

Similar Documents

Publication Publication Date Title
KR900006870B1 (en) Ferrite-austenitic stainless steel
EP0219089B1 (en) High-strength high-cr ferritic heat-resistant steel and process for producing the same
JPH09217146A (en) Low mn, low cr fertitic heat resistant steel excellent in high temperature strength
JP2005023353A (en) Austenitic stainless steel for high temperature water environment
EP0708184A1 (en) High-strength austenitic heat-resisting steel with excellent weldability and good high-temperature corrosion resistance
US3201232A (en) Use of steel involving prolonged stressing at elevated temperatures
JP2831051B2 (en) Austenitic stainless steel welding wire
JPS6389644A (en) High-strength ferritic steel for boiler steel tube
JPS5914097B2 (en) Ferritic heat-resistant steel with improved toughness
JPS62297435A (en) High-strength ferritic steel for boiler steel tube improved in weldability
JPH0550288A (en) Austenitic stainless steel welding material having excellent creep rupture characteristic and embrittlement resistance
JPH03169497A (en) Austenitic stainless steel welding material having excellent creep rupture ductility and brittleness resistance
JPH0299295A (en) Ni-cr austenitic stainless steel material welding material having excellent creep rupture ductility at high temperature
JPH0543986A (en) High chromium ferritic heat resisting steel reduced in deterioration in strength in weld heat-affected zone
JPH0550287A (en) Austenitic stainless steel welding material having excellent creep rupture characteristic and embrittlement resistance
JPH0248613B2 (en)
JP2001300763A (en) Tig welding material for austenitic heat resisting steel excellent in high-temperature strength
JPH0796390A (en) Wire for welding 9cr-1mo steel
JPH09308989A (en) Welding material for high cr ferritic heat resistant steel
JPS62243742A (en) Austenitic stainless steel having superior creep rupture strength
JPS60116750A (en) Heat-resistant austenitic alloy containing v and n
JP2619079C (en)
JPS61174350A (en) Heat-resistant high-chromiun alloy
JPH10225792A (en) Tig welding material for austenitic heat resistant steel excellent in high temperature strength
JPS6214629B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 13