JPH03169490A - Follow-up control method for three-dimensional laser beam machine - Google Patents

Follow-up control method for three-dimensional laser beam machine

Info

Publication number
JPH03169490A
JPH03169490A JP1307247A JP30724789A JPH03169490A JP H03169490 A JPH03169490 A JP H03169490A JP 1307247 A JP1307247 A JP 1307247A JP 30724789 A JP30724789 A JP 30724789A JP H03169490 A JPH03169490 A JP H03169490A
Authority
JP
Japan
Prior art keywords
shape
height
workpiece
control
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1307247A
Other languages
Japanese (ja)
Inventor
Toshihiro Mori
俊博 森
Manabu Kubo
学 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1307247A priority Critical patent/JPH03169490A/en
Publication of JPH03169490A publication Critical patent/JPH03169490A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To hardly cause defective machining on a curved-face shape part by selecting the set height of an electrostatic capacity sensor according to the curved-face shape in a machining program according to a work shape during teaching. CONSTITUTION:Three kinds of plane shape, projecting radius-shape and recessed radius-shape are given according to the work shape and respective height data are made to h1, h2 and h3. When an operator selects the work shape as SENSE I, SENSE II and SENSE III, respectively, during teaching, three kinds of control heights can be selected according to the work shape. Although a detection value of electrostatic capacity as in the past will do as a value of the control height h1, values of electrostatic capacities which are deviated from the case of the phase shape actually are measured in advance for the control heights h2 and h3 and the values are obtained only by adding or subtracting the deviated amounts to or from the actual electrostatic capacities. After all, the values of the control heights h2 and h3 are obtained by changing purposely. By this method, since the set height of the electrostatic capacity sensor can be selected, defective machining is hardly caused on the curved-face shape part.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、曲面形状のワークを加工する三次元レーザ加
工装置において、加工ヘッド先端とワーク間の高さを静
電容量式センサによって検出し、ワーク形状の変化に応
じて加工ヘッドをあらかじめ設定した高さに保持する追
従制御方法に関するちのである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a three-dimensional laser processing device that processes a curved workpiece, in which the height between the tip of the processing head and the workpiece is detected by a capacitive sensor. This article relates to a follow-up control method for holding a machining head at a preset height in response to changes in the shape of a workpiece.

〔従来の技術〕[Conventional technology]

従来よりレーザビーム等を用いてワークを切断加工、又
は溶接加工する装置はよく知られており、−Mにワーク
上の加工線を予めティーチングしておき、そのデータ通
りに加工するティーチング・プレイバック方式が用いら
れる。又、この種の装置においては加工中において加工
ヘッド先端とワークとの高さ、つまりレーザービームの
焦点位置を適性に保つ必要があるため、加工ヘッド先端
に、加工ヘッド先端か−らワークまでの高さを検出する
センサが設けられている。そのセンサとしては静電容量
式が採用されている事が多い。
Conventionally, devices for cutting or welding workpieces using laser beams, etc. are well known, and there is a teaching/playback system in which -M is taught the processing line on the workpiece in advance and processing is performed according to the data. method is used. In addition, in this type of equipment, it is necessary to keep the height between the tip of the processing head and the workpiece, that is, the focal position of the laser beam, at an appropriate level during processing. A sensor is provided to detect height. A capacitance type sensor is often adopted as the sensor.

第6図は一般的な三次元レーザ加工機の軸構成を示す概
略斜視図である。図において、アーム(11)は加工ヘ
ッド(1)が取りつけられたβ軸(8)と、β軸(8)
に接続されたα軸(9)と,α軸(9)に接続されたZ
軸(10)とから構成されている.(2)はモータ(M
S)を介してβ軸(8)を矢印β方向に回転させるため
のβ軸受、(3)はモータ(M4)を介してα軸(9)
を矢印α方向に回転させるためのα軸受である。(4)
はモータ(M3)を介して加工ヘッド(1)を゛矢印Z
方向に移動させるためのZ軸受、(5)はモータ(M2
)を介して加工ヘッド(1)を矢印Y方向に移動させる
ためのY軸受、(6)はモータ(M1)を介して加工ヘ
ッド(1)を矢印X方向に移動させるためのX軸受であ
る。(7)は加工ヘッド(1)に取り付けられた静電容
量式センサであり、ワークW上の加工線Kに沿って進行
する際、ワークWからの高さを一定に保持する働きをも
つ、また加工ヘッド(1)は、先端部から加工用レーザ
ビームLを照射する。尚、各モータ(M1)〜(MS)
は、NC制御装置(l2)からの指令で駆動され加工用
レーザビームLの焦点が加工線Kを倣うと共に,加工ヘ
ッド(1)の姿勢が、ワークWの表面に対してほぼ直角
となるように制御されている。加工プログラムは、作業
者が、ティーチングボックス(l3)によりティーチン
グ作業する事により求められ、NC制御装置(12)内
のメモリに格納される。
FIG. 6 is a schematic perspective view showing the shaft configuration of a general three-dimensional laser processing machine. In the figure, the arm (11) has a β-axis (8) to which the processing head (1) is attached, and a β-axis (8) to which the processing head (1) is attached.
α-axis (9) connected to α-axis (9) and Z-axis connected to α-axis (9)
It consists of an axis (10). (2) is the motor (M
S) is a β bearing for rotating the β axis (8) in the direction of arrow β;
This is an α bearing for rotating the machine in the direction of the arrow α. (4)
moves the processing head (1) via the motor (M3) in the direction of arrow Z.
Z bearing for moving in the direction, (5) is the motor (M2
) is a Y bearing for moving the processing head (1) in the direction of arrow Y, and (6) is an X bearing for moving the processing head (1) in the direction of arrow X via a motor (M1). . (7) is a capacitive sensor attached to the processing head (1), which functions to maintain a constant height from the workpiece W when moving along the processing line K on the workpiece W. The processing head (1) also irradiates a processing laser beam L from its tip. In addition, each motor (M1) to (MS)
is driven by a command from the NC control device (l2) so that the focus of the processing laser beam L follows the processing line K and the attitude of the processing head (1) is approximately perpendicular to the surface of the workpiece W. is controlled by. The machining program is determined by a teaching operation performed by an operator using a teaching box (13), and is stored in the memory within the NC control device (12).

次に、加工ヘッド(1)の高さの追従制御方l去につい
て説明する。上記加工プログラムによる加工においては
、加工ヘッド(1)の先端に設けられた静電容量式セン
サ(7)によってワーク(W)と加工ヘッド(1)間の
静電容量が検出されている。この静電容量はワーク(W
)から加工ヘッド(1)先端までの距離によって変化す
るため、検出された静電容量が、予め設定された静電容
量と同じ値になるように制御すればよい。第6図に示す
ように、ワークfW)の加工線(K)に対する加工ヘッ
ド(1)の位置における静電容量が基準値として設定さ
れ、予めNC制御装置(l2)のメモリに格納されてい
る。
Next, a method for controlling the height of the processing head (1) will be explained. In machining using the machining program described above, the capacitance between the workpiece (W) and the machining head (1) is detected by a capacitive sensor (7) provided at the tip of the machining head (1). This capacitance is the workpiece (W
) to the tip of the processing head (1), the detected capacitance may be controlled to have the same value as a preset capacitance. As shown in FIG. 6, the capacitance at the position of the machining head (1) with respect to the machining line (K) of the workpiece fW) is set as a reference value and is stored in advance in the memory of the NC control device (l2). .

これにより、静電容量式センサ(7)によって検出され
た静電容量は、予め設定された静電容量の基準値と比較
され、その結果、検出された静電容量が基準値から外れ
た場合は、検出された静電容量が基準値と一致するよう
にNC制御装it f121によって加工ヘッド(1)
が移動制御される。
As a result, the capacitance detected by the capacitive sensor (7) is compared with a preset capacitance reference value, and as a result, if the detected capacitance deviates from the reference value, The processing head (1) is controlled by the NC controller IT F121 so that the detected capacitance matches the reference value.
movement is controlled.

したがって、ワーク(Wl上の加工線(K)に対ずる加
工ヘッド(1)の高さ,つまり、ワーク[W)に照射さ
れる加工用レーザビーム(L)の焦点位置が常に適正に
保持されながら加工が行われるのである。
Therefore, the height of the processing head (1) with respect to the processing line (K) on the workpiece (Wl), that is, the focal position of the processing laser beam (L) irradiated onto the workpiece [W], is always maintained properly. Processing is performed while

〔発明が゜解決しようとする課題〕[Problem that the invention seeks to solve]

従来の三次元レーザ加工装置の追従制御方法は、ワーク
が平面形状の場合には精度よく追従するが、加工プログ
ラム中には上記センサの設定高さが一つしか選択できな
いので、上記センサの特性上、ワークが曲面形状をなす
箇所においてはセンサの検出精度が低下し、その結果一
定高さからずれを生じる事が知られている。例えば第7
図に示すワークWの形状(凸R部)では、加工ヘッド(
1)の動きは図中で点線で示した、ワークWと加工ヘッ
ド(1)先端間の設定高さ(A)よりも高い位置を移動
する(B)。また第8図に示すワークWの形状(凹R部
)では、加工ヘッド(1)の動きは図中で点線で示した
ワークWと加工ヘッド(1)先端間の設定高さ[A)よ
りも低い位置を移動する(Bl。よって曲面形状部で加
工不良が発生したり、あるいは加工ヘッド(1)がワー
クWに衝突する場合もあり、上記センサを用いて追従制
御する目的が達成できなかった。
Conventional tracking control methods for three-dimensional laser processing equipment can accurately track a workpiece in a planar shape, but only one set height of the sensor can be selected during the processing program, so the characteristics of the sensor cannot be selected. Furthermore, it is known that the detection accuracy of the sensor decreases at locations where the workpiece has a curved surface shape, resulting in a deviation from a constant height. For example, the seventh
In the shape of the workpiece W shown in the figure (convex R part), the processing head (
The movement 1) moves at a position higher than the set height (A) between the workpiece W and the tip of the processing head (1), which is indicated by a dotted line in the figure (B). In addition, in the shape of the workpiece W (concave R part) shown in Fig. 8, the movement of the processing head (1) is based on the set height [A] between the workpiece W and the tip of the processing head (1), which is indicated by a dotted line in the figure. The workpiece also moves at a low position (Bl. Therefore, machining defects may occur on the curved surface shape part, or the machining head (1) may collide with the workpiece W, making it impossible to achieve the purpose of follow-up control using the sensor described above. Ta.

前述のような課題を解決する為に、本発明は静電容量式
センサを用いて曲面形状のワークを加工する場合、上記
センサの検出精度の低下を補正する手段を有する追従制
御を提供することを目的とする。
In order to solve the above-mentioned problems, the present invention provides a follow-up control having a means for correcting the decrease in detection accuracy of the sensor when processing a curved workpiece using a capacitive sensor. With the goal.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は、かかる課題を解決するために、静電容量式
センサの高さ追従制御方法において、加工軌跡を教示す
る時に、作業者がワーク面の形状に応じて、あらかじめ
登録された複数の制御高さから選択して加工プログラム
上に指定できるようにしたものである。
In order to solve this problem, the present invention uses a height tracking control method for a capacitive sensor in which, when teaching a machining trajectory, an operator selects a plurality of pre-registered controls according to the shape of the workpiece surface. It is possible to select from the height and specify it on the machining program.

〔作用〕[Effect]

この発明においては予め静電容量式センサの制御高さを
、制御装置のメモリに複数個登録しておき、静電容量式
センサのワーク面形状に対する検出精度特性を考慮して
、加工軌跡の教示時に、作業者が登録された制御高さを
選択して加工プログラムに指定できるように、教示用の
操作箱(ティーチングボックス)に釦を追加する。上記
加工ブログラム上で指定された制御高さに応じて、追従
制御を実行する。
In this invention, a plurality of control heights of capacitive sensors are registered in advance in the memory of the control device, and the machining trajectory is taught in consideration of the detection accuracy characteristics of the capacitive sensor for the workpiece surface shape. Sometimes, a button is added to the teaching operation box so that the operator can select the registered control height and specify it in the machining program. Follow-up control is executed according to the control height specified on the processing program.

[発明の実施例] この発明は三次元レーザ加工装置における静電容量セン
サの高さ追従制御に関するものであり、加工装置は、何
ら従来と変わりがないので、ここでは加工装置の説明は
省略する。
[Embodiments of the Invention] This invention relates to height tracking control of a capacitance sensor in a three-dimensional laser processing device, and since the processing device is no different from the conventional one, a description of the processing device will be omitted here. .

第1図、第2図のフローチャート図、及び第3図、第4
図、第5図を参照しながらこの発明の一実施例について
説明する。
Flowchart diagrams in Figures 1 and 2, and Figures 3 and 4.
An embodiment of the present invention will be described with reference to FIGS.

ワークの形状によっては第3図に示す平面形状、凸R形
状、凹R形状の3種類があげられるが、そのそれぞれの
場合の高さデータをh+.l−z.hユとする。作業者
がティーチング中においてワークの形状をそれぞれSE
NSEI、S E N S E II、SENSEII
Iとして選択すれば、制御高さはワーク形状に応じて3
種類選ぶことができる。制御高さh1の値は従来通りの
静電容量の検出値でよいが、制御高さh2.h,+は実
際に平面形状の場合とでずれる静電容量分を予め測定し
ておき、単にそのずれ分を実際の静電容量値に加減算し
てやる事で求める。つまり制御高さh..hユの値を故
意に変化させてやるのである。
Depending on the shape of the workpiece, there are three types shown in Fig. 3: planar shape, convex R shape, and concave R shape, and the height data for each case is h+. l-z. Let's say hyu. During teaching, the worker can check the shape of the workpiece separately.
NSEI, S E N S E II, SENSE II
If selected as I, the control height will be 3 depending on the workpiece shape.
You can choose the type. The value of the control height h1 may be a conventional capacitance detection value, but the control height h2. h,+ is obtained by measuring in advance the amount of capacitance that actually deviates from the case of a planar shape, and simply adding or subtracting the amount of deviation from the actual capacitance value. In other words, the control height h. .. The value of hyu is intentionally changed.

次に、第2図は加工プログラムに高さデータを入力する
フローチャート図である。ティーチング開始(ステップ
SL)後,作業者がワークが平直形状かどうか判別する
(ステップS2)。平面部分ならSENSEIをプログ
ラムに登録する(ステップS3)。次に凹R形状かどう
か判別し(ステップS4)凹R形状ならば.SENSE
IIをプログラムに登録する(ステップS5)。凸R形
状ならばSENSEmをプログラムに登録する(ステッ
プS6)。これをティーチング終了まで行う(ステップ
S7)。
Next, FIG. 2 is a flowchart for inputting height data into the machining program. After starting teaching (step SL), the operator determines whether the workpiece has a flat or straight shape (step S2). If it is a flat part, SENSEI is registered in the program (step S3). Next, it is determined whether it is a concave R shape (step S4) and if it is a concave R shape. SENSE
II is registered in the program (step S5). If it is a convex R shape, SENSEm is registered in the program (step S6). This is continued until the end of teaching (step S7).

第1図はワークの加工中における高さの追従制御のフロ
ーチャートである。加工プログラムにより加工が開始さ
れ(ステップS8).NC装置は高さ制御においてSE
NSEI.SENSEII、SENSEIIIの判別を
行う(ステップS9)。次にNC装置は選択した状態で
の制御高さを設定する(ステップSIO).SENSE
I (平面形状)ならばh=hl .SENSEII 
(凸R形状)ならばh=h..SENSEIII (凹
R形状)ならばhh,と設定する。これら各データのも
とに高さ制御をし(ステップSll).加工終了まで上
記の制御を行う(ステップS 12)。加工終了後、h
=1+ +にリセットしてる<(ステップS13)。
FIG. 1 is a flowchart of height follow-up control during processing of a workpiece. Machining is started according to the machining program (step S8). NC device is SE in height control
NSEI. SENSEII and SENSEIII are determined (step S9). Next, the NC device sets the control height in the selected state (step SIO). SENSE
If I (planar shape), h=hl. SENSE II
(Convex R shape) then h=h. .. If it is SENSE III (concave R shape), set it as hh. The height is controlled based on each of these data (step Sll). The above control is performed until the machining is completed (step S12). After processing, h
It is reset to =1+ + (step S13).

第4図、第5図は、本発明を用いて加工プログラムでワ
ークW(断面図)を加工した際の曲面形状部での加工ヘ
ッド(1)の様子である。第4図はワークWが凸R形状
、第5図はワークWが凹只形状である場合を示すが、ど
ちらもワークWからの一定高さ(A)に、加工ヘッド(
1)の実際の動きは近ずく(B)。
FIGS. 4 and 5 show the state of the processing head (1) at a curved surface portion when a workpiece W (cross-sectional view) is processed using a processing program using the present invention. Fig. 4 shows a case where the workpiece W has a convex round shape, and Fig. 5 shows a case where the workpiece W has a concave round shape. In both cases, the processing head (
The actual movement of 1) is coming soon (B).

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、ティーチング中にワ
ーク形状に応じて静電容量センサの設定高さを選択でき
るので、曲面形状部において加工不良が発生しにくくな
るという効果がある。
As described above, according to the present invention, since the set height of the capacitance sensor can be selected during teaching according to the shape of the workpiece, there is an effect that machining defects are less likely to occur in curved portions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による加工中における高“
さの追従制御のフローチャート図である。 第2図はティーチング中に上記ワークの形状により条件
を変えてプログラムに登録するためのフローチャート、
第3図はワーク形状を示す斜視図であるウ第4図、第5
図はこの発明を用いた場合の加工ヘッド(1)の動きを
示した側面図である。 また、第6図は従来の三次元レーザ加工装置の構成図で
ある。第7図、第8図は従来の高さ追従制御による加工
ヘッド(1)の動きを示した側面図である。 図において、(1)は加工ヘッド、(7)は静電容積式
センサ. (illはアーム、(l2)はNC装置、(
13)はティーチングボックス、Kは加工線、Wはワー
ク、AはワークWからの一定高さ、Bは静電容積式セン
サ(7)による加工ヘッド部の軌跡を表す。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 shows the height of "
FIG. 3 is a flowchart of follow-up control. Figure 2 is a flowchart for changing the conditions according to the shape of the workpiece and registering them in the program during teaching.
Figure 3 is a perspective view showing the shape of the workpiece;
The figure is a side view showing the movement of the processing head (1) when this invention is used. Further, FIG. 6 is a configuration diagram of a conventional three-dimensional laser processing apparatus. FIGS. 7 and 8 are side views showing the movement of the processing head (1) under conventional height follow-up control. In the figure, (1) is a processing head, and (7) is a capacitance sensor. (ill is arm, (l2) is NC device, (
13) represents a teaching box, K represents a machining line, W represents a workpiece, A represents a constant height from the workpiece W, and B represents a locus of the machining head section detected by the electrostatic capacitive sensor (7). In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 加工対象のワークに対し加工ヘッドを三次元方向に相対
的に移動可能な状態で支持しているレーザ加工装置の上
記加工ヘッドの先端からワークまでの高さをあらかじめ
設定した値に保持する三次元レーザ加工装置の追従制御
方法において設定高さを一つの加工プログラムの中で曲
面形状に応じて選択できることを特徴とする三次元レー
ザ加工装置の追従制御方法。
A three-dimensional machine that maintains the height from the tip of the processing head to the workpiece at a preset value in a laser processing device that supports the processing head so that it can move relative to the workpiece in three-dimensional directions. A follow-up control method for a three-dimensional laser processing device, characterized in that a set height can be selected according to a curved surface shape within one processing program.
JP1307247A 1989-11-27 1989-11-27 Follow-up control method for three-dimensional laser beam machine Pending JPH03169490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1307247A JPH03169490A (en) 1989-11-27 1989-11-27 Follow-up control method for three-dimensional laser beam machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1307247A JPH03169490A (en) 1989-11-27 1989-11-27 Follow-up control method for three-dimensional laser beam machine

Publications (1)

Publication Number Publication Date
JPH03169490A true JPH03169490A (en) 1991-07-23

Family

ID=17966804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1307247A Pending JPH03169490A (en) 1989-11-27 1989-11-27 Follow-up control method for three-dimensional laser beam machine

Country Status (1)

Country Link
JP (1) JPH03169490A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227769A (en) * 2006-02-24 2007-09-06 Denso Corp Method of dicing semiconductor wafer
JP2012517900A (en) * 2009-02-18 2012-08-09 グラッシ・ファブリツィオ Head for precision machining of a three-dimensional body continuously and machining apparatus equipped with the head
CN112404743A (en) * 2020-07-17 2021-02-26 大族激光科技产业集团股份有限公司 Corner cutting method and system of laser pipe cutting machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227769A (en) * 2006-02-24 2007-09-06 Denso Corp Method of dicing semiconductor wafer
JP2012517900A (en) * 2009-02-18 2012-08-09 グラッシ・ファブリツィオ Head for precision machining of a three-dimensional body continuously and machining apparatus equipped with the head
CN112404743A (en) * 2020-07-17 2021-02-26 大族激光科技产业集团股份有限公司 Corner cutting method and system of laser pipe cutting machine

Similar Documents

Publication Publication Date Title
EP0743130B1 (en) Robotic movement of object over a workpiece surface
WO1989006174A1 (en) Laser device for three-dimensional machining
JPH02105543A (en) Method and apparatus for correcting reproducible positioning error
JP2000198047A (en) Machine tool
JP4799472B2 (en) Measuring method and apparatus for tool edge position, workpiece processing method and machine tool
JPH03169490A (en) Follow-up control method for three-dimensional laser beam machine
JPH07124849A (en) Correcting device for tool mounting position in machine tool and its correcting method
JP3174707B2 (en) Laser processing method and laser processing apparatus
JP2577256B2 (en) Control method of cutting machine
JP2581725B2 (en) Three-dimensional shape processing laser device
JPH03110087A (en) Follow-up control method for three-dimensional laser beam machine
JP3868579B2 (en) Laser processing method and apparatus
JPH058604U (en) Interference check device
JPH09308980A (en) Copying control device of laser beam cutting machine and its method
JP2536597B2 (en) Electric discharge machine
JP2005081434A (en) Numerical control apparatus
JP3520631B2 (en) Laser processing machine
JPH0515988A (en) Gap control method for laser beam machine
JPH07260423A (en) Noncontact distance measuring method
JP2507412B2 (en) Machining line teaching method
JPS641269B2 (en)
JPH08348B2 (en) Numerically controlled machine tool with measuring function
JP2672953B2 (en) Boundary line automatic sensing method
JPH0655407A (en) Collision prevention device of machine tool
JPS63134147A (en) Numerically controlled machine tool with measuring function