JPH03169479A - Method for brazing aluminum material - Google Patents

Method for brazing aluminum material

Info

Publication number
JPH03169479A
JPH03169479A JP31235789A JP31235789A JPH03169479A JP H03169479 A JPH03169479 A JP H03169479A JP 31235789 A JP31235789 A JP 31235789A JP 31235789 A JP31235789 A JP 31235789A JP H03169479 A JPH03169479 A JP H03169479A
Authority
JP
Japan
Prior art keywords
brazing
furnace
atmosphere
gas
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31235789A
Other languages
Japanese (ja)
Inventor
Shoichi Sato
昭一 佐藤
Shuichi Murooka
室岡 秀一
Yasuhiro Osame
康弘 納
Tomoko Arai
荒井 智子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP31235789A priority Critical patent/JPH03169479A/en
Publication of JPH03169479A publication Critical patent/JPH03169479A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To simplify brazing process and to reduce the brazing cost by adjusting the inner part of a pre-treating furnace on the atmosphere containing chlorine series gas, pre-treating a joining member held in the atmosphere and then, brazing it in an atmosphere containing no flux of a brazing furnace heated to a prescribed temp. CONSTITUTION:As the coating process of suspension liquid and the drying process after coating are unnecessary at all, the brazing process can be simplified and the productivity can be improved. Furthermore, as the brazing is executed in the brazing furnace containing no flux medium after the pre-treatment in the pre-treating furnace containing the chlorine series gas or chlorine series fine powder particles, the pre-treating time can be set regardless of the brazing time and also the scale of pre-treating furnace can be set smaller than the brazing furnace and consumption of the chloride series gas or chloride series fine powder particles can be reduced and the brazing can be executed at low cost.

Description

【発明の詳細な説明】 産業上の利用分野 この発明はアルミニウム材のろう付方法、例えばろう付
仕様によるアルミニウム製熱交換器の製造に好適に用い
られるアルミニウム材のろう付方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for brazing aluminum materials, for example, a method for brazing aluminum materials suitably used in manufacturing aluminum heat exchangers according to brazing specifications.

なお、この明細書において、アルミニウムの語はその合
金を含む意味で用いる。
In this specification, the term aluminum is used to include its alloys.

従来の技術 例えば、自動車用ラジエーター、カークーラー用エバボ
レーター、コンデンサーその他電機、機械用のアルミニ
ウム製熱交換器やアルミニウム製の自動車用給気マニホ
ルド等をろう付によって製作する場合、真空ろう付の場
合を除き、塩化物系フラックスを用いて熱交換器構成部
材をろう付接合する方法が多く用いられている。
Conventional technology For example, when manufacturing radiators for automobiles, evaporators for car coolers, condensers, aluminum heat exchangers for other electrical appliances and machinery, and aluminum air supply manifolds for automobiles, etc., by brazing, vacuum brazing is used. However, in most cases, a method of brazing heat exchanger components using chloride-based flux is used.

従来、かかるフラックスろう付を行う場合、まず塩化物
系フラックスを水または溶剤中に懸濁させたのち、この
懸濁液を、接合すべきアルミニウム材の表面にスプレー
法、シャワー法、浸漬法等により塗布し、次いでこれを
予熱乾燥して水分を蒸発除去し、しかるのち非酸化性雰
囲気中で所定温度に加熱し、接合司ろう材を溶融してろ
う付を行っていた。
Conventionally, when performing flux brazing, a chloride-based flux is first suspended in water or a solvent, and then this suspension is applied to the surface of the aluminum material to be joined by a spray method, a shower method, a dipping method, etc. This was then preheated and dried to evaporate the moisture, and then heated to a predetermined temperature in a non-oxidizing atmosphere to melt the joining brazing material and perform brazing.

発明が解決しようとする課題 しかし、この方法では懸濁液の塗布作業や塗布後の乾燥
作業が必要であり、生産性が良くなかった。しかも、ア
ルミニウム接合部材が複雑な形状の場合には、自動フラ
ックス塗布が困難で、作業員が直接ハケ等で塗布する必
要があり、作業性が良くなかった。また、乾燥のための
乾燥炉が必要であることから設備が大型化する欠点もあ
った。さらに懸濁液の温度管理や塗布量の管理が面倒で
もあった。さらにまた、アルミニウム材へのフラックス
付着量が概して多いため、ろう付炉内が汚染されるとか
炉中で溶融したフラックスが滴下して炉内に蓄積される
事態を生じ、このため炉のクリーニング、オーバーホー
ルの頻度を多くせざるを得ないという問題もあった。さ
らにはまた、塩化物系フラックスを塗布してろう付を行
うと、溶融したフラックスとアルミニウムとの反応によ
りアルミニウム材の表面がエッチングされ、色調ムラや
光沢ムラを呈して外観体裁を損うという問題もあった。
Problems to be Solved by the Invention However, this method requires a suspension coating operation and a drying operation after coating, resulting in poor productivity. Moreover, when the aluminum bonding member has a complicated shape, it is difficult to apply flux automatically, and it is necessary for a worker to apply the flux directly with a brush or the like, resulting in poor workability. Furthermore, since a drying oven is required for drying, there is also the drawback that the equipment becomes large-sized. Furthermore, it was troublesome to control the temperature of the suspension and the amount of application. Furthermore, since the amount of flux that adheres to aluminum materials is generally large, the interior of the brazing furnace may be contaminated, or the flux that has melted in the furnace may drip and accumulate within the furnace, resulting in the need for cleaning the furnace. There was also the problem that overhauls had to be done more frequently. Furthermore, when brazing is performed by applying chloride-based flux, the surface of the aluminum material is etched due to the reaction between the molten flux and aluminum, resulting in uneven color tone and uneven gloss, which impairs the appearance. There was also.

さらにはまた、塩化物系フラックスを塗布してろう付を
行った場合、該ブラックスが腐食性を有するためろう付
後洗浄による残漬除去が必要であり、後処理工程に時間
がかかるという問題もあった。
Furthermore, when brazing is performed by applying chloride-based flux, since the flux is corrosive, it is necessary to remove residual residue by cleaning after brazing, and the post-treatment process takes time. There was also.

この発明はかかる問題を一挙に解決すべくなされたもの
であって、懸濁液の塗布工程や予熱乾燥工程が不要であ
り、しかもフラックスによるろう付炉の汚染等が少なく
、かつろう付後の洗浄工程を簡素化でき、またろう付後
のアルミニウム材表面の色調ムラや光沢ムラがほとんど
ないアルミニウム材のろう付方法の提供を目的とするも
のである。
This invention was made to solve these problems all at once; it eliminates the need for a suspension coating process or preheating drying process, reduces contamination of the brazing furnace by flux, and The object of the present invention is to provide a method for brazing aluminum materials that can simplify the cleaning process and that causes almost no uneven color tone or uneven gloss on the surface of the aluminum material after brazing.

課題を解決するための手段 上記目的を達成するために、発叫者は種々実験と研究を
重ねた結果、、ろう付前に、塩素系ガスや塩化物の微粉
末粒子を含む雰囲気中にアルミニウム接合部材を保持す
ることにより前処理を行い、その後に塩素系ガス等のフ
ラックス媒体を実質的に含まない通常の雰囲気中でろう
付を行うことで良好なろう付を行い得ることを見出し、
かかる知見に基いてこの発明を完成しえたものである。
Means for Solving the Problems In order to achieve the above objectives, the authors have conducted various experiments and research, and have found that, before brazing, aluminum is placed in an atmosphere containing chlorine-based gas and fine powder particles of chlorides. We have discovered that good brazing can be achieved by pre-treating the joining members by holding them, and then brazing in a normal atmosphere that does not substantially contain a flux medium such as chlorine-based gas,
This invention was completed based on this knowledge.

即ち、この発明は、前処理炉内を塩素系ガスまたは塩化
物系微粉末粒子を含む雰囲気に調整し、該雰囲気中にア
ルミニウム接合部材を保持することにより前処理を行っ
たのち、この前処理済みのアルミニウム接合部材を、実
質的にフラックス媒体を含まない雰囲気に調整したろう
付炉内に搬入し、該ろう付炉内で所定温度に加熱し、接
合用ろう材を溶融してろう付を行うことを特徴とするも
のである。
That is, in the present invention, the interior of the pretreatment furnace is adjusted to an atmosphere containing chlorine-based gas or chloride-based fine powder particles, and the aluminum bonding member is held in the atmosphere to perform the pretreatment. The finished aluminum bonding members are carried into a brazing furnace that has been adjusted to an atmosphere substantially free of flux media, heated to a predetermined temperature in the brazing furnace, and the brazing filler metal for bonding is melted to perform brazing. It is characterized by the fact that

まず、前処理炉内の雰囲気について説明すると、塩素系
ガスや塩化物系微粉末粒子はフラックス作用即ち接合部
の酸化皮膜を除去して次工程でのろう付時にろう材の濡
れ性、流動性を向上させる作用を発揮し、良好なろう付
を実現する役割を果すものである。ここに、塩素系ガス
とは塩索(CA2)ガス及び塩化物ガス(塩素と他の元
素との化合物のガス化したもの)の両方を含む意味であ
る。塩化物ガスの具体的組成は特に限定されることはな
い。しかし、アルミニウムのろう付温度が一般的に60
0℃前後であることから、好ましくは600℃以下でガ
ス化するものが良い。例えばNaCQガス、KCΩガス
、BaCJ22ガス等を好適に用いうる。
First, to explain the atmosphere inside the pretreatment furnace, chlorine-based gas and chloride-based fine powder particles act as a flux, which removes the oxide film on the joints and improves the wettability and fluidity of the brazing material during the next brazing process. It exhibits the effect of improving the brazing properties and plays the role of realizing good brazing. Here, the chlorine-based gas includes both chloride gas (CA2) gas and chloride gas (a gasified compound of chlorine and other elements). The specific composition of the chloride gas is not particularly limited. However, the brazing temperature of aluminum is generally 60
Since the temperature is around 0°C, it is preferable to use one that gasifies at 600°C or lower. For example, NaCQ gas, KCΩ gas, BaCJ22 gas, etc. can be suitably used.

かかる塩素系ガスは1種類のガスを用いても良く、ある
いは複数種類のガスの混合物でも良い。
As the chlorine-based gas, one type of gas may be used, or a mixture of multiple types of gases may be used.

一方、塩化物系微粉末拉子の場合もその具体的組成は特
に限定されることはない。例えばガス化していないNa
C(1、KCp、BaCp2等の各微粉末粒子を用いれ
ば良い。かかる塩化物系微粉末粒子もまた、1種類のも
のであっても良く、あるいは2種以上の塩化物の屁合で
あっても良い。塩素系ガスあるいは塩化物系微粉末粒子
を含む前処理炉内の雰囲気は非酸化性雰囲気とするのが
良い。一般的にはN2、A「、Heガス等の不活性ガス
雰囲気に塩素系ガスや塩化物系微粉末粒子が含まれた雰
囲気とする。かかる炉内雰囲気の温度は、塩素系ガスを
用いる場合はろう材の融点以下でかつ塩素系ガスがガス
状態を保持しうる温度以上例えば500〜600℃に保
持しておく必要がある。一方、塩化物系微粉末粒子を用
いる場合には、該粒子がガス化しない温度に設定すべき
であり、例えば常温〜500℃程度に設定する。雰囲気
中の塩素系ガスや塩化物系微粉末粒子の含有量は良好な
フラックス作用を発揮させるためには塩素系ガス総tO
.1〜10000ppm程度、塩化物系微粉末粒子総量
二0.1〜10g/ri程度に設定するのが良い。0.
1ppn+未満あるいは0,1g/=未満では少なすぎ
て良好なフラックス作用を発揮できない虞れがあり、1
0000ppmあるいは10g/mを超えてもフラック
ス効果が飽和し、却って経済的な無駄となる。特に好ま
しくは塩素系ガス:1〜2000ppm,塩化物系微粉
末粒子:1〜7g/TItが良い。また前処理炉内の雰
囲気中に水分や酸素は存在しないのが望ましいが、H2
 0: IOOOOppII+程度以下、02 : 1
0000pp+n程度以下の混入量であればろう付性に
ほとんど影響を与えることはない。これらが10000
pplIを超えるとアルミニウム材の表面酸化膜が厚く
なり良好なろう付を妨げる虞れがある。
On the other hand, the specific composition of the chloride-based fine powder is not particularly limited. For example, ungasified Na
Fine powder particles such as C(1, KCp, BaCp2, etc.) may be used. Such chloride-based fine powder particles may also be of one type, or may be a combination of two or more types of chlorides. The atmosphere in the pretreatment furnace containing chlorine-based gas or chloride-based fine powder particles is preferably a non-oxidizing atmosphere. Generally, an inert gas atmosphere such as N2, A', He gas, etc. The atmosphere in the furnace contains chlorine-based gas and chloride-based fine powder particles.If chlorine-based gas is used, the temperature of the atmosphere in the furnace must be below the melting point of the brazing material and at a temperature where the chlorine-based gas maintains its gas state. On the other hand, when using chloride-based fine powder particles, the temperature should be set at a temperature at which the particles do not turn into gas, such as room temperature to 500°C. The content of chlorine-based gas and chloride-based fine powder particles in the atmosphere must be set at a level below the total tO of chlorine-based gas in order to exhibit a good flux effect.
.. It is preferable to set the amount to about 1 to 10,000 ppm, and the total amount of chloride-based fine powder particles to about 20.1 to 10 g/ri. 0.
If it is less than 1 ppn+ or less than 0.1 g/=, it may be too small to exhibit a good flux effect;
Even if it exceeds 0,000 ppm or 10 g/m, the flux effect will be saturated and it will be an economic waste. Particularly preferably, chlorine gas: 1 to 2000 ppm and chloride fine powder particles: 1 to 7 g/TIt. It is also desirable that no moisture or oxygen exists in the atmosphere inside the pretreatment furnace, but H2
0: IOOOOppII+ level or less, 02: 1
If the mixed amount is about 0,000 pp+n or less, it will hardly affect the brazing properties. These are 10000
If it exceeds pplI, the surface oxide film of the aluminum material will become thick, which may hinder good brazing.

前処理炉内の雰囲気を塩素系ガスあるいは塩化物系微粉
末粒子を含む雰囲気に調整するための手段は特に限定さ
れないが、塩素系ガスの場合、例えば炉外で不活性ガス
と塩素系ガスを混合したのち、この混合ガスを前処理炉
内に導入する方法を挙げうる。この場合、常温で液体あ
るいは固体の塩化物は予め加熱ガス化しておくことが必
要である。また、他の方法として、固体あるいは液体の
塩化物を収容した容器を前処理炉内に配置して加熱する
ことにより塩化物をガス化させる方法を挙げうる。一方
、塩化物系微粉末粒子の場合は例えば微粉末状にした塩
化物を不活性ガスとともに送給するとか、熱対流、撹拌
ファン、振動機等で炉内雰囲気中に浮遊させるとか、あ
るいはこれらを適宜組合せた方法を挙げうる。また塩化
物系微粉末粒子を収容した容器を炉内に配置し、熱対流
等により浮遊させる方法でも良い。いずれの場合も塩化
物系微粉末粒子は、雰囲気中への浮遊を促進すべく50
μm以下の粒径としておくのが良い。なお、不活性ガス
の流量は、塩素系ガスや塩化物系微粉末粒子を均一に撹
拌するため、炉内流速として0.  1〜1 0cm/
 s e cに設定するのが良い。
The means for adjusting the atmosphere in the pretreatment furnace to an atmosphere containing chlorine-based gas or chloride-based fine powder particles is not particularly limited. A method may be mentioned in which, after mixing, this mixed gas is introduced into a pretreatment furnace. In this case, it is necessary to heat and gasify the chloride, which is liquid or solid at room temperature, in advance. Another method is to gasify the chloride by placing a container containing solid or liquid chloride in a pretreatment furnace and heating it. On the other hand, in the case of chloride-based fine powder particles, for example, finely powdered chloride may be fed together with an inert gas, or suspended in the furnace atmosphere using thermal convection, a stirring fan, a vibrator, etc., or these methods may be used. Examples of methods include appropriate combinations of the following. Alternatively, a method may be used in which a container containing fine chloride powder particles is placed in a furnace and suspended by thermal convection or the like. In either case, the chloride-based fine powder particles are
It is preferable to set the particle size to less than μm. In addition, the flow rate of the inert gas is set to 0.0% as the flow rate in the furnace in order to uniformly stir the chlorine-based gas and chloride-based fine powder particles. 1~10cm/
It is best to set it to sec.

上記のようにして塩素系ガス含有雰囲気あるいは塩化物
系微粉末粒子含有雰囲気に調整した前処理炉に、アルミ
ニウム接合部材を搬入して該雰囲気中に保持すことによ
り前処理を行う。
The aluminum bonding member is carried into a pretreatment furnace adjusted to an atmosphere containing chlorine-based gas or chloride-based fine powder particles as described above, and is held in the atmosphere for pretreatment.

前処理の時間は1分程度で良いが、もとよりそれ以上あ
るいはそれ以下であっても良い。
The pretreatment time may be about 1 minute, but may be longer or shorter.

上記前処理を終えたアルミニウム接合部材は、次いでこ
れをろう付炉に搬入する。ろう付炉の雰囲気は塩素系ガ
スや塩化物系微粉末粒子等のフラックス媒体を実質的に
含まない例えばN2ガス雰囲気等の不活性ガス雰囲気に
調整する。
The aluminum bonding member that has undergone the above pretreatment is then transported to a brazing furnace. The atmosphere in the brazing furnace is adjusted to be an inert gas atmosphere, such as an N2 gas atmosphere, which does not substantially contain a flux medium such as chlorine-based gas or chloride-based fine powder particles.

ここに、「実質的に」とは不可避的に微量の塩素系ガス
や塩化物系微粉末粒子等が含まれる場合を許容する趣旨
である。この雰囲気中でアルミニウム接合部材よりも融
点の低いアルミニウムろう材を用いて580〜630℃
程度の温度に加熱することによりろう材を溶融し、良好
なろう付接合が達成される。このように、前処理段階で
塩素系ガスあるいは塩化物系微粉末粒子の含有雰囲気中
にアルミニウム接合部材を保持するだけで良好なろう付
が達成できるのは、塩素系ガスの場合はおそらくは該ガ
スが前処理の段階でフラックス作用を発揮してアルミニ
ウム接合部材の表面酸化膜が既に除去されているからと
考えられる。また、塩化物系微粉末粒子の場合はおそら
くは前処理によって該粒子がアルミニウム接合部材の表
面に付着し、これがそのままろう付炉に運ばれてフラッ
クス作用を発揮するからと考えられる。なお、ろう材に
はSi含有量約4.5 〜13.5vt%程度のAQ−
Si系合金が用いられるのが普通であり、該ろう材は作
業性の点から、通常、接合されるべき部材の少なくとも
一方のアルミニウム材にクラッドして使用されるのが望
ましい。
Here, "substantially" means to allow the case where trace amounts of chlorine-based gas, chloride-based fine powder particles, etc. are unavoidably included. In this atmosphere, using an aluminum brazing material whose melting point is lower than that of the aluminum bonding material,
By heating to a certain temperature, the brazing material is melted and a good brazed joint is achieved. In this way, good brazing can be achieved simply by holding the aluminum bonding member in an atmosphere containing chlorine-based gas or chloride-based fine powder particles in the pretreatment stage. It is thought that this is because the surface oxide film of the aluminum bonding member has already been removed by exerting a fluxing effect during the pretreatment stage. Further, in the case of chloride-based fine powder particles, it is thought that the particles adhere to the surface of the aluminum bonding member due to pretreatment, and are transported as they are to the brazing furnace where they exert a fluxing effect. The brazing filler metal contains AQ-1 with a Si content of about 4.5 to 13.5 vt%.
A Si-based alloy is usually used, and from the viewpoint of workability, it is usually desirable to use the brazing filler metal as a cladding material on at least one of the aluminum materials of the members to be joined.

また、前処理炉とろう付炉との関係はこの発明の効果に
影響を及ぼす事項ではなく、第1図に示すような連続式
に構成しても良く、第2図に示すようなバッチ式に構或
しても良い。第1図の連続式のものにおいて、(1)は
前処理炉、(2)はろう付炉、(3)は不活性ガス供給
器、(4)は塩素系ガスまたは塩化物系微粉末粒子発生
器であり、塩素系ガスまたは塩化物系微粉末粒子は不活
性ガスに混入されて前処理炉(1)へ導入されるものと
なされ、要すれば均一撹拌用のファン等により前処理炉
(1)に均一に浮遊分散するものとなされている。(5
)はアルミニウム接合部材であり、アルミニウム接合部
材(5)はコンベア等で前処理炉(1)からろう付炉(
2)へと連続的に搬入されるものとなされている。また
ろう付炉(2)に供給される不活性ガスの圧力により、
前処理炉(1)からのろう付炉(2)への塩素系ガスや
塩化物系微粉末粒子の混入が防止されるものとなされて
いる。一方、第2図に示すバッチ式のものにおいて、(
1′)は前処理炉、(2′)はろう付炉、(3’)(3
”)は不活性ガス供給器、(4′)は塩素系ガスまたは
塩化物系微粉末粒子発生器、(5′)はアルミニウム接
合部材であり、前処理炉(1′)で前処理されたアルミ
ニウム接合部材は一旦取出されたのち、別途ろう付炉(
2′)に搬入されるものとなされている。この場合、前
処理を終えたアルミニウム接合部材(5′)はろう付炉
(2′)に搬入されるまでの間、表面酸化皮膜の形成を
可及的抑制すべく非酸化性雰囲気中で取扱われるのが望
ましい。
Furthermore, the relationship between the pretreatment furnace and the brazing furnace is not a matter that affects the effects of the present invention, and it may be constructed in a continuous type as shown in Figure 1, or in a batch type as shown in Figure 2. It may be set to In the continuous type shown in Figure 1, (1) is a pretreatment furnace, (2) is a brazing furnace, (3) is an inert gas supply device, and (4) is a chlorine-based gas or chloride-based fine powder particles. The chlorine-based gas or chloride-based fine powder particles are mixed with an inert gas and introduced into the pre-treatment furnace (1). (1) It is designed to be uniformly suspended and dispersed. (5
) is an aluminum bonding member, and the aluminum bonding member (5) is transported from the pretreatment furnace (1) to the brazing furnace (
2). In addition, due to the pressure of the inert gas supplied to the brazing furnace (2),
It is designed to prevent chlorine-based gas and chloride-based fine powder particles from entering the brazing furnace (2) from the pretreatment furnace (1). On the other hand, in the batch type shown in Figure 2, (
1') is a pretreatment furnace, (2') is a brazing furnace, (3') (3
”) is an inert gas supply device, (4′) is a chlorine-based gas or chloride-based fine powder particle generator, and (5′) is an aluminum bonding member, which was pretreated in a pretreatment furnace (1′). Once the aluminum joint parts are taken out, they are placed in a separate brazing furnace (
2'). In this case, the pretreated aluminum bonding member (5') is handled in a non-oxidizing atmosphere to suppress the formation of a surface oxide film as much as possible until it is delivered to the brazing furnace (2'). It is desirable to be

発明の効果 この発明は上述の次第で、前処理炉内を塩素系ガスある
いは塩化物系微粉末粒子を含む雰囲気に調整し、該雰囲
気中にアルミニウム接合部材を保持することにより前処
理を行ったのち、前処理済みのアルミニウム接合部材を
、実質的にフラックス媒体を含まない雰囲気に調整した
ろう付炉内に搬入し、該ろう付炉内で所定温度に加熱し
、接合用ろう材を溶融してろう付を行うことを特徴とす
るものである。従って、まず、従来法のようなアルミニ
ウム接合部材への懸濁液の塗布の必要から生ずる不都合
をすべてM決しうる。即ち、懸濁演の塗布工程、塗布後
の乾燥工程が一切不要となるから、ろう付工程の簡略化
を図ることができ生産性を向上しうる。しかも、乾燥炉
が不要となるから設備の小型化を図りうる。しかもまた
、繁雑な懸濁液の温度管理や塗布量の管理等を不要とな
しえ、ろう付作業全体の効率化を図りうる。さらに、フ
ラックスとして作用する塩素系ガスや塩化物系微粉末粒
子の量は、従来の塗布方式の場合のフラックス量に較べ
てはるかに少量で良いから経済的に有利であるのに加え
て、前処理炉内の汚染が少なく、しかも溶融したフラッ
クスが炉内に滴下して炉内に蓄積される事態も生じない
から、クリーニング、オーバーホールの頻度が少なくて
済む。さらには、塗布法による場合に較べてアルミニウ
ム材表面へのフラックスの付着量がはるかに少なくなる
から、溶融したフラックスとアルミニウムとの反応によ
りアルミニウム材の表面がエッチングされ、色調ムラや
光沢ムラを呈して外観体裁を損うという問題もなく、清
浄で外観体裁に優れた高品質のろう付品の提供が可能と
なる。かつろう付後のフラックス残渣も少なくなるから
、残渣除去のための洗浄工程を省略ないし簡略化できる
Effects of the Invention As described above, the present invention performs pretreatment by adjusting the inside of the pretreatment furnace to an atmosphere containing chlorine-based gas or chloride-based fine powder particles, and holding the aluminum bonding member in the atmosphere. Thereafter, the pretreated aluminum bonding members are transported into a brazing furnace that has been adjusted to an atmosphere that does not substantially contain a flux medium, and heated to a predetermined temperature in the brazing furnace to melt the bonding brazing material. It is characterized by performing brazing. Therefore, first of all, all the disadvantages resulting from the necessity of applying a suspension to the aluminum joint members as in the conventional method can be eliminated. That is, since the suspension coating process and the drying process after coating are completely unnecessary, the brazing process can be simplified and productivity can be improved. Furthermore, since a drying oven is not required, the equipment can be downsized. Moreover, complicated temperature control of the suspension, control of the amount of application, etc. can be made unnecessary, and the efficiency of the entire brazing work can be improved. Furthermore, the amount of chlorine-based gas and chloride-based fine powder particles that act as a flux can be much smaller than that required in conventional coating methods, which is economically advantageous. Since there is less contamination in the processing furnace and there is no possibility of molten flux dripping into the furnace and accumulating in the furnace, the frequency of cleaning and overhauling can be reduced. Furthermore, since the amount of flux attached to the surface of the aluminum material is much smaller than when using the coating method, the surface of the aluminum material is etched due to the reaction between the molten flux and aluminum, resulting in uneven color tone and uneven gloss. This makes it possible to provide high-quality brazed products that are clean and have an excellent appearance without the problem of spoiling the appearance. Since the flux residue after brazing is also reduced, the cleaning process for removing the residue can be omitted or simplified.

また塩化物は比較的低い温度での溶融、ガス化が可能で
あるため、アルミニウム展伸材はもとより融点の低い鋳
物材のろう付にも本発明を好適に用いることができる。
Further, since chlorides can be melted and gasified at relatively low temperatures, the present invention can be suitably used for brazing not only aluminum wrought materials but also cast materials with a low melting point.

加えてこの発明では、塩素系ガスあるいは塩化物系微粉
末粒子を含む雰囲気の前処理炉で前処理を行ったのち、
これらフラックス媒体を含まない雰囲気のろう付炉でろ
う付を行うものであるから、ろう付時間とは無関係に前
処理時間を設定することができるとともに、連続炉等に
あっては前処理炉の大きさをろう付炉よりも小さく設定
でき、従ってろう付炉を塩素系ガスあるいは塩化物系微
粉末粒子含有雰囲気とする場合に較べて塩素系ガスや塩
化物系微粉末粒子の使用量をさらに少なくでき低コスト
のろう付が可能となる。しかも、ろう付炉に対しては塩
素系ガスや塩化物系微粉末粒子を使用しないから、ろう
付炉の汚損、損傷を招く虞れは全くなく、ろう付炉のク
リーニング等はこれを不要となしえ、僅かにろう付炉よ
りも簡易な前処理炉のクリーニング等で済むこととなり
、作業性、経済性等の面で有利となしうる。
In addition, in this invention, after pretreatment is performed in a pretreatment furnace with an atmosphere containing chlorine-based gas or chloride-based fine powder particles,
Since brazing is performed in a brazing furnace with an atmosphere that does not contain these flux media, the pretreatment time can be set independently of the brazing time, and in the case of continuous furnaces, the pretreatment furnace The size can be set smaller than that of a brazing furnace, and therefore the amount of chlorine gas or chloride fine powder particles used can be further reduced compared to when the brazing furnace has an atmosphere containing chlorine gas or chloride fine powder particles. This makes it possible to perform brazing at a low cost. Moreover, since chlorine-based gas and chloride-based fine powder particles are not used in the brazing furnace, there is no risk of contamination or damage to the brazing furnace, and there is no need to clean the brazing furnace. No, the cleaning of the pretreatment furnace is slightly simpler than that of the brazing furnace, which is advantageous in terms of workability, economy, etc.

実施例 次にこの発明の実施例を示す。Example Next, examples of this invention will be shown.

(実施例1) 前処理炉としての電気炉に、N2ガス及びArガスとと
もに595℃で加熱ガス化したNaCfl:30ppm
及びKC旦:301)I)Qlを導入した。
(Example 1) NaCfl: 30 ppm was heated and gasified at 595° C. with N2 gas and Ar gas in an electric furnace as a pretreatment furnace.
and KC Dan: 301) I) Ql was introduced.

次に、肉厚0.75MのAl 100押出チューブ材と
、A3003合金を心材としA塁−10%St合金を皮
材としたクラッド率9%、厚さ0.15mの両面プレー
ジングシ一トよりなるフィン材とをコルゲート型熱交換
器に組立て、この組立物を上記前処理炉へ搬入し30秒
間保持した。
Next, it consists of an extruded Al 100 tube material with a wall thickness of 0.75M and a double-sided plating sheet with a cladding ratio of 9% and a thickness of 0.15m, with A3003 alloy as the core material and A base-10% St alloy as the skin material. The fin materials were assembled into a corrugated heat exchanger, and this assembly was carried into the pretreatment furnace and held for 30 seconds.

次に、上記組立物を前処理炉から取出したのち、直ちに
、N2ガス及びArガスの混合雰囲気に調整したろう付
炉へ搬入し、605℃で5分間加熱してろう付を行った
。なお、前処理炉、ろう付炉ともに炉内の水分量は10
0ppm,02濃度は40ppmであった。
Next, after the assembly was taken out of the pretreatment furnace, it was immediately carried into a brazing furnace adjusted to a mixed atmosphere of N2 gas and Ar gas, and brazed by heating at 605° C. for 5 minutes. In addition, the moisture content in both the pretreatment furnace and brazing furnace is 10
The 0ppm, 02 concentration was 40ppm.

(実施例2) 400℃の前処理炉内に、N2ガスとNaC塁微粉末粒
子3 g/ rd及びKiの微粉末粒子2g/Trtを
導入し、熱対流により微粉末粒子を浮上させた。この前
処理炉に実施例1と同じ組立物を搬入し1分間保持した
のち、直ちに、N2ガス及びA『ガスの混合雰囲気に調
整したろう付炉へ搬入し、実施例1と同一条件でろう付
を行った。なお、前処理炉、ろう付炉ともに炉内の水分
量は50ppIISO2a度は10ppl1であった。
(Example 2) N2 gas, 3 g/rd of NaC powder particles, and 2 g/Trt of Ki powder particles were introduced into a pretreatment furnace at 400° C., and the fine powder particles were floated by thermal convection. After carrying the same assembly as in Example 1 into this pretreatment furnace and holding it there for 1 minute, it was immediately carried into a brazing furnace adjusted to a mixed atmosphere of N2 gas and A gas, and brazed under the same conditions as in Example 1. I followed up. The moisture content in both the pretreatment furnace and the brazing furnace was 50 ppI, and the ISO2a degree was 10 ppl1.

(実施例3) 前処理炉内にN2ガスとCn2ガス3001)I)mと
を混合導入した。この前処理炉に実施例1と同じ組立物
を搬入し1分間保持したのち、直ちに、N2ガス雰囲気
に調整したろう付炉へ搬入し、実施例1と同一条件でろ
う付を行った。
(Example 3) N2 gas and Cn2 gas 3001)I)m were mixed and introduced into the pretreatment furnace. The same assembly as in Example 1 was carried into this pretreatment furnace and held for 1 minute, and then immediately carried into a brazing furnace adjusted to an N2 gas atmosphere, where brazing was performed under the same conditions as in Example 1.

なお、前処理炉、ろう付炉ともに炉内の水分量は60p
pm,02濃度は2 0 ppm+であった。
In addition, the moisture content in both the pretreatment furnace and brazing furnace is 60p.
The pm,02 concentration was 20 ppm+.

(実施例4) 前処理炉に振動機と撹拌用ファンを設けて、常温下でB
a(122の微粉末粒子を振動させかつ撹拌することに
より、該微粉末粒子が混合したN2ガス雰囲気を形成し
た。このときの雰囲気中のBa(122微粉末粒子の含
有量は7g/尻であった。この前処理炉に実施例1と同
じ組立物を搬入し30秒間保持したのち、直ちに、N2
ガス雰囲気に調整したろう付炉へ搬入し、実施例1と同
一条件でろう付を行った。なお、前処理炉、ろう付炉と
もに炉内の水分量は701)I)II SO2濃度は2
 0 ppi+であった。
(Example 4) A pretreatment furnace was equipped with a vibrator and a stirring fan, and B was heated at room temperature.
By vibrating and stirring the fine powder particles of a(122), a N2 gas atmosphere in which the fine powder particles were mixed was formed.The content of Ba(122 fine powder particles in the atmosphere at this time was 7 g/min) The same assembly as in Example 1 was carried into this pretreatment furnace, held for 30 seconds, and then immediately filled with N2
It was carried into a brazing furnace adjusted to a gas atmosphere, and brazed under the same conditions as in Example 1. In addition, the moisture content in both the pretreatment furnace and brazing furnace is 701) I) II The SO2 concentration is 2
It was 0 ppi+.

(比較例1) NaCffとK(12を主成分とする塩化物系フラック
スを水に懸濁させて5wt%懸濁岐を作成した。そして
、この懸濁液中に実施例1と同じ組立物を浸漬してフラ
ックスを塗布したのち乾燥した。
(Comparative Example 1) A chloride-based flux containing NaCff and K (12 as main components) was suspended in water to create a 5 wt% suspension.The same assembly as in Example 1 was added to this suspension. was dipped, coated with flux, and then dried.

次いで、上記ブラックス塗布組立物を直ちに水分量1 
0 0ppn+ S02濃度5ppIIlのN2ガス雰
囲気のろう付炉に搬入し、610℃で5分間加熱してろ
う付を行った。
Next, the above brax coated assembly is immediately reduced to a moisture content of 1
00ppn+ S02 concentration was carried into a brazing furnace with an N2 gas atmosphere of 5ppIIl, and brazing was performed by heating at 610° C. for 5 minutes.

上記により得た各ろう付品につき、ろう付性、外観状態
を目視観察するとともに、表面処理性の評価を行った。
For each of the brazed products obtained above, the brazing properties and external appearance were visually observed, and the surface treatment properties were evaluated.

表面処理性は、各ろう付品の平板部にスプレー塗装を施
したのち、塗膜面に1咽角のマス目をけがいてテープ剥
離試験を実施し塗膜の残ったマス目の数で評価した(碁
盤目試験)。それらの結果を第1表に示す。
Surface treatment properties are evaluated by spray painting the flat plate part of each brazed product, then marking squares of one angle on the coating surface and performing a tape peeling test, and determining the number of squares where the coating film remains. (checkerboard test). The results are shown in Table 1.

[以下余白コ 第 1 表 (注1) (注2) (注3) Q・・・フィン接合率100% ×・・・フィン接合率90%未満 0・・・フラックスの残留は目硯で確認できず、外観は
極めて清浄 ×・・・フラックスの残留が目視で認められる塗膜の残
ったマス目数/全マス目数 また、ろう付品の表面光沢を目視観察したところ、実施
例1〜4では全体にわたってムラなく表面光沢があった
のに対し、比較例では光沢ムラが認められた。
[The following margins are Table 1 (Note 1) (Note 2) (Note 3) Q...Fin bonding rate 100% ×...Fin bonding rate less than 90% 0...Flux residue is confirmed with an inkstone No, the appearance is extremely clean ×...Number of remaining squares/total number of squares of the coating film where residual flux is visually observed.Furthermore, visual observation of the surface gloss of the brazed product revealed that Examples 1 to 3 In contrast to Sample No. 4, which had an even surface gloss over the entire surface, uneven gloss was observed in Comparative Example.

以上の結果から、本発明によれば少量の塩素系ガスある
いは塩化物系微粉末粒子にもかかわらず良好なろう付が
達威されたばかりか、得られたろう付品はその表面状態
も良好であることを確認しえた。
From the above results, according to the present invention, not only good brazing was achieved despite a small amount of chlorine-based gas or chloride-based fine powder particles, but also the obtained brazed product had a good surface condition. I was able to confirm that.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はいずれもこの発明を実施する一例とし
てのろう付設備の概略構或を示すブロック図である。 (1)(1’)・・・前処理炉、(2)(2’)・・・
ろう付炉、(5)(5’)・・・アルミニウム接合部材
。 以上
FIGS. 1 and 2 are block diagrams showing a schematic structure of brazing equipment as an example of carrying out the present invention. (1) (1')...Pretreatment furnace, (2) (2')...
Brazing furnace, (5) (5')...Aluminum joining member. that's all

Claims (2)

【特許請求の範囲】[Claims] (1)前処理炉内を塩素系ガスを含む雰囲気に調整し、
該雰囲気中にアルミニウム接合部材を保持することによ
り前処理を行ったのち、この前処理済みのアルミニウム
接合部材を、実質的にフラックス媒体を含まない雰囲気
に調整したろう付炉内に搬入し、該ろう付炉内で所定温
度に加熱し、接合用ろう材を溶融してろう付を行うこと
を特徴とするアルミニウム材のろう付方法。
(1) Adjust the inside of the pretreatment furnace to an atmosphere containing chlorine gas,
After performing pretreatment by holding the aluminum bonding member in the atmosphere, the pretreated aluminum bonding member is carried into a brazing furnace adjusted to an atmosphere that does not substantially contain a flux medium, and A method for brazing aluminum materials, characterized by heating to a predetermined temperature in a brazing furnace, melting a joining brazing filler metal, and performing brazing.
(2)前処理炉内を塩化物系微粉末粒子を含む雰囲気に
調整し、該雰囲気中にアルミニウム接合部材を保持する
ことにより前処理を行ったのち、この前処理済みのアル
ミニウム接合部材を、実質的にフラックス媒体を含まな
い雰囲気に調整したろう付炉内に搬入し、該ろう付炉内
で所定温度に加熱し、接合用ろう材を溶融してろう付を
行うことを特徴とするアルミニウム材のろう付方法。
(2) Pretreatment After pretreatment is performed by adjusting the atmosphere in the furnace to include chloride-based fine powder particles and holding the aluminum bonding member in the atmosphere, the pretreated aluminum bonding member is Aluminum is carried into a brazing furnace adjusted to an atmosphere that does not substantially contain a flux medium, heated to a predetermined temperature in the brazing furnace, and brazed by melting a joining brazing material. How to braze materials.
JP31235789A 1989-11-30 1989-11-30 Method for brazing aluminum material Pending JPH03169479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31235789A JPH03169479A (en) 1989-11-30 1989-11-30 Method for brazing aluminum material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31235789A JPH03169479A (en) 1989-11-30 1989-11-30 Method for brazing aluminum material

Publications (1)

Publication Number Publication Date
JPH03169479A true JPH03169479A (en) 1991-07-23

Family

ID=18028275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31235789A Pending JPH03169479A (en) 1989-11-30 1989-11-30 Method for brazing aluminum material

Country Status (1)

Country Link
JP (1) JPH03169479A (en)

Similar Documents

Publication Publication Date Title
US3667111A (en) Process for fluxing and brazing parts made of aluminium or aluminium alloy
US6047876A (en) Process of using an active solder alloy
US6344237B1 (en) Method of depositing flux or flux and metal onto a metal brazing substrate
CS218556B2 (en) Method of joining the aluminium components
JPH07303858A (en) Method for applying slurry for brazing
US3844027A (en) Copper brazing of matrix structures
US5244144A (en) Method for brazing aluminum materials
JPH03169479A (en) Method for brazing aluminum material
JPH0569631B2 (en)
JPH0579434B2 (en)
US3831263A (en) Method of soldering
JPH03146264A (en) Brazing method for aluminum material
NO176484B (en) A flux adhesive aluminum based component and process for its manufacture
US2805178A (en) Welding flux composition
JPH03169478A (en) Method for brazing aluminum material
JP2747344B2 (en) Aluminum brazing method
JPH07303983A (en) Aluminum alloy material for non-corrosion flux brazing and brazing method thereof
CA2023786C (en) Method of brazing aluminium materials
JPH05185206A (en) Continuous brazing furnace for gaseous flux brazing of aluminum material
JPH04111993A (en) Flux coated powder brazing material and production thereof and brazing method using this brazing material
JPH03146262A (en) Brazing method for aluminum material
JPH03146261A (en) Brazing method for aluminum material
JPH0751274B2 (en) Brazing method for aluminum materials
JPS6037294A (en) Brazing method of aluminum and alloy thereof
JPS6037292A (en) Brazing method of aluminum and alloy thereof