JPH03169155A - Drive circuit for laser diode - Google Patents

Drive circuit for laser diode

Info

Publication number
JPH03169155A
JPH03169155A JP1308552A JP30855289A JPH03169155A JP H03169155 A JPH03169155 A JP H03169155A JP 1308552 A JP1308552 A JP 1308552A JP 30855289 A JP30855289 A JP 30855289A JP H03169155 A JPH03169155 A JP H03169155A
Authority
JP
Japan
Prior art keywords
pulse
correction
time constant
current
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1308552A
Other languages
Japanese (ja)
Inventor
Motohiro Shoji
元広 東海林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1308552A priority Critical patent/JPH03169155A/en
Publication of JPH03169155A publication Critical patent/JPH03169155A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain the correction at pulse drive in matching with an element characteristic of a laser diode by varying a leading differentiating time constant and a trailing differentiating time constant of an input signal so as to differentiate a drive pulse, generating the leading correction current and subtracting the current from the drive current. CONSTITUTION:One time constant is used both for a differentiating circuit charge characteristic and a discharge characteristic in a conventional drive circuit, and when a time constant is selected to correct a long overshoot, in the case of a short off-pulse, the correction current is in mismatching with the overshoot of the pulse. Then the time constant is made different from the leading and the trailing of a differentiating circuit 21 to select the correction time constant effecting on the time of the overshoot of a correction circuit 22 and the correction time constant with respect to the pulse pattern effect differently. Thus, in matching with the long overshoot for the leading time constant, since the correction current is matched with the pulse overshoot after short-off by means of the trailing time constant, the pulse drive in matching with the characteristic of the laser diode is corrected.

Description

【発明の詳細な説明】 〔目次〕 概要 産業上の利用分野 従来の技術(第4図乃至第6図) 発明が解決しようとする課題 課題を解決するための手段(第1図) 作用 実施例 (a)  一実施例の説明(第2図、第3図)(b) 
 他の実施例の説明 発明の効果 〔概要〕 レーザプリンタ等の発光源として用いられるレーザダイ
オードの駆動回路に関し、 レーザダイオードの素子特性に合ったパルス駆動時の補
正を行うことを目的とし、 レーザダイオードを駆動するため、駆動パルスに応じて
駆動電流を発生する信号電流源と、駆動パルスの立上り
に応じて立上り補正電流を発生し、該駆動電流から差し
引き、該レーザダイオードの駆動電流を調整するパルス
特性補正回路とを有するレーザダイオードの駆動回路に
おいて、該パルス特性補正回路は、入力信号の立上りの
微分時定数と立下りの微分時定数を変えて該駆動パルス
を微分する微分回路と、該微分回路の微分出力から立上
り補正t流を発生し、該駆動電流から差し引く補正回路
とを有する。
[Detailed description of the invention] [Table of contents] Overview Industrial field of application Prior art (Figures 4 to 6) Means for solving the problems to be solved by the invention (Figure 1) Working examples (a) Description of one embodiment (Figures 2 and 3) (b)
Description of other embodiments Effects of the invention [Summary] Regarding a drive circuit for a laser diode used as a light emitting source in a laser printer, etc., the purpose of the present invention is to perform correction during pulse drive in accordance with the element characteristics of the laser diode. A signal current source that generates a drive current according to the drive pulse, and a pulse that generates a rising correction current according to the rise of the drive pulse and subtracts it from the drive current to adjust the drive current of the laser diode. In a laser diode drive circuit having a characteristic correction circuit, the pulse characteristic correction circuit includes a differentiating circuit that differentiates the drive pulse by changing a differential time constant of the rising edge and a differential time constant of the falling edge of the input signal; It has a correction circuit that generates a rising correction t current from the differential output of the circuit and subtracts it from the drive current.

〔産業上の利用分野〕[Industrial application field]

本発明は、レーザプリンタ等の発光源として用いられる
レーザダイオードの駆動回路に関する。
The present invention relates to a driving circuit for a laser diode used as a light emitting source in a laser printer or the like.

レーザダイオードは、発光源としてレーザプリンタ等で
広く利用されている。
Laser diodes are widely used as light emitting sources in laser printers and the like.

一般にレーザダイオードは、ビデオ信号等のパルス信号
によって発光駆動されるが、パルス駆動すると、素子の
温度特性等により一定電流で駆動しても、順電流に対す
る光出力はオーバーシュートの過渡応答ができる。
Generally, a laser diode is driven to emit light by a pulse signal such as a video signal, but when driven by a pulse, even if the laser diode is driven with a constant current due to the temperature characteristics of the element, the optical output can have a transient response of overshoot to the forward current.

このパルス応答特性を補正し、一定出力の光を得ること
が望まれている。
It is desired to correct this pulse response characteristic and obtain light with a constant output.

〔従来の技術〕[Conventional technology]

第4図は従来技術の構戒図、第5図及び第6図は従来技
術の説明図である。
FIG. 4 is a composition diagram of the prior art, and FIGS. 5 and 6 are explanatory diagrams of the prior art.

第6図(A)に示すように、レーザダイオードをビデオ
信号のようなパルス信号で駆動すると、レーザダイオー
ドには順方向電流I,が流れ、光出力はパルス信号の立
上りでオーバーシュートの過渡応答(図の斜線部)が出
る. この過渡応答は、レーザダイオードを余分に光らせ、レ
ーザプリンタでは、その部分の濃度が濃くなり、濃淡ム
ラが生じる。
As shown in Figure 6 (A), when a laser diode is driven with a pulse signal such as a video signal, a forward current I flows through the laser diode, and the optical output exhibits a transient response that overshoots at the rise of the pulse signal. (The shaded area in the figure) appears. This transient response causes the laser diode to emit extra light, and in the laser printer, the density in that area becomes high, causing uneven shading.

このため、第4図に示すような駆動回路で第5図に示す
ような補正を行っていた。
For this reason, corrections as shown in FIG. 5 have been performed using a drive circuit as shown in FIG.

即ち、第4図に示すように、レーザダイオードLDに信
号電流源1を設け、アラーム信号が上がっていない条件
で、ビデオ信号をアンドゲートANDを通過させ、抵抗
r4、r5でレベル調整し、工旦フタが抵抗r3接地さ
れたトランジスタQcのベースに人力して、定電流Ic
を流す。
That is, as shown in Fig. 4, a signal current source 1 is provided in the laser diode LD, and under the condition that the alarm signal is not raised, the video signal is passed through an AND gate, the level is adjusted with resistors r4 and r5, and the processing is performed. Once the lid is connected to the base of the transistor Qc which is grounded to the resistor r3, a constant current Ic is applied.
flow.

一方、パルス特性補正のため、パルス特性補正回路2が
設けられており,、ビデオ信号を反転する反転回路20
と、反転信号を微分す微分回路21と、微分信号により
補正電流1bを発生する補正回路22とを有している。
On the other hand, a pulse characteristic correction circuit 2 is provided to correct the pulse characteristics, and an inversion circuit 20 for inverting the video signal.
, a differentiation circuit 21 that differentiates an inverted signal, and a correction circuit 22 that generates a correction current 1b based on the differential signal.

ビデオ信号は反転回路20のNANDゲートNANDで
抵抗R●を介し入力されるハイレベル入力とNANDが
とられ、反転信号Vaとなり、抵抗Rl,R!でレベル
調整され、微分回路21に入力する。
The video signal is NANDed with the high level input input via the resistor R● by the NAND gate NAND of the inverting circuit 20, and becomes an inverted signal Va, which is generated by the resistors Rl, R! The level is adjusted by , and the signal is input to the differentiation circuit 21 .

微分回路21は、コンデンサCIと抵抗R3からなり、
反転信号Vaがハイレベルの時、基準電圧Vccを基準
にして放電し、反転信号Vaがローレベルの時、Vcc
より充電され、電位はVxの如くなる。
The differentiating circuit 21 consists of a capacitor CI and a resistor R3,
When the inverted signal Va is at a high level, discharge is performed based on the reference voltage Vcc, and when the inverted signal Va is at a low level, the discharge is performed based on the reference voltage Vcc.
It is further charged and the potential becomes Vx.

この充電時に、補正回路22のトランジスタQIに抵抗
R4を介し、ダイオードD1方向に充電電流と同じの補
正電流1bが流れる。
During this charging, a correction current 1b, which is the same as the charging current, flows through the transistor QI of the correction circuit 22 in the direction of the diode D1 through the resistor R4.

この補正t流1bは、レーザダイオードLDの駆動電流
I,に加えられて、定電流Icとなって信号電流源1へ
流れるので、駆動電流■1は第5図のように補正電流r
b分定電vLI cから差し引いた形となる. これによって、駆動電流■,はビデオ信号の立上りで円
滑されるので、第5図のように光出力Pのビデオ信号立
上り部分のオーバーシュートを防止できる。
This correction t current 1b is added to the drive current I of the laser diode LD and becomes a constant current Ic flowing to the signal current source 1, so that the drive current 1 is changed to the correction current r as shown in FIG.
It is obtained by subtracting the b-minute constant voltage vLI from c. As a result, the driving current (2) is smoothed by the rising edge of the video signal, so that overshoot of the optical output P at the rising edge of the video signal can be prevented as shown in FIG.

尚、レーザダイオードLDの光は、抵抗r2に接続され
たフォトダイオードPDで受光され、アンプAMPで増
幅され、モニター出力vHとして出力され、図示しない
レーザダイオードLDの自動パワー制御に供される。
Note that the light from the laser diode LD is received by a photodiode PD connected to a resistor r2, amplified by an amplifier AMP, and output as a monitor output vH, which is provided for automatic power control of the laser diode LD (not shown).

このようにして、レーザダイオードLDのオーバーシュ
ートの過渡応答が微分形状をなしていることから、微分
回路21を利用して微分出力の補正電流rbで電流補正
している。
In this way, since the transient response of the overshoot of the laser diode LD has a differential shape, the current is corrected using the differential output correction current rb using the differentiating circuit 21.

従って、補正電流1bの大きさ及び形状は、微分回路2
1の時定数Cl,R3によって一義的に決定されていた
Therefore, the magnitude and shape of the correction current 1b are determined by the differentiating circuit 2.
It was uniquely determined by the time constants Cl and R3 of 1.

(発明が解決しようとする課B) ところで、レーザダイオードLDのオーバーシュートの
大きさは、レーザダイオードLDの温度特性等によって
変化し、レーザダイオードLDの温度が低い程光出力が
大となり、温度が高い程光出力が小となる。
(Problem B to be solved by the invention) By the way, the magnitude of the overshoot of the laser diode LD changes depending on the temperature characteristics of the laser diode LD, etc., and the lower the temperature of the laser diode LD, the higher the optical output becomes. The higher the value, the lower the light output.

このため、ビデオ信号がオフの後直ちにオンされた場合
、(例えば、第6図(A)のパルスCとバルスd)には
、オーバーシュート量は大きめに出て、ビデオ信号のオ
フの期間が長く、次にオンの信号が入力された場合(例
えば、第6図(A)のバルスb(!:C)では、オーバ
ーシュート量が小さめに出る。
Therefore, if the video signal is turned on immediately after being turned off (for example, pulses C and D in FIG. 6(A)), the amount of overshoot will be large, and the off period of the video signal will be When a long and then on signal is input (for example, at pulse b (!:C) in FIG. 6(A)), the amount of overshoot will be small.

補正電流1bは微分の時定数C1、R3によって決定さ
れるが、第6図(A)、第5図のパルスCの如く比較的
長いパルスを想定し、従って長いオーバーシュートを想
定し、補正時間を長くするため、微分回路2■の時定数
01、R3を大きくして行わなければならなかった。
The correction current 1b is determined by the differential time constants C1 and R3, but assuming a relatively long pulse like pulse C in FIG. 6(A) and FIG. 5, and therefore a long overshoot, the correction time In order to make the time constant 01 and R3 of the differentiating circuit 2■ longer, it was necessary to increase the time constant 01 and R3.

このようにすると、ビデオ信号がオフ後直ちにオン信号
が入力される第5図のバルスdの場合には、第6図(B
)のようにバルスCのオフ後電位Vxは、Vccより大
きくなり、CiRaの時定数でVccに落ち着こうとす
るが、Vccに落ち着く以前の高い電位でパルスdが到
来し、VcC以下に振られ、この時の振られるレベル量
は一定であるから、第5図のように補正電流1bが小さ
くなり、光出力Pのオーバーシュート量が大きめに出て
しまうという問題があった。
In this way, in the case of pulse d in FIG. 5, in which an on signal is input immediately after the video signal is turned off, in the case of pulse d in FIG.
), the potential Vx after turning off the pulse C becomes larger than Vcc and tries to settle down to Vcc with the time constant of CiRa, but before it settles down to Vcc, the pulse d arrives at a high potential and is swung below Vcc, Since the amount of level oscillated at this time is constant, there is a problem that the correction current 1b becomes small as shown in FIG. 5, and the amount of overshoot of the optical output P becomes large.

逆に、パルス間隔が短い場合のオーバーシュートを補正
するよう、時整数を決めると、長いオーバーシュートを
補正しきれないという問題がある。
Conversely, if the time integer is determined to compensate for overshoot when the pulse interval is short, there is a problem in that long overshoot cannot be fully compensated for.

即ち、従来技術では、時定数CI、R3をあるパルスパ
ターンで決定してしまうと、早い変化の又は長いパルス
パターンに対しては、パターン効果により、補正量が小
となって、オーバーシュートを充分補正できないという
問題があった。
That is, in the conventional technology, if the time constants CI and R3 are determined by a certain pulse pattern, the amount of correction becomes small due to the pattern effect for fast-changing or long pulse patterns, making it difficult to sufficiently prevent overshoot. There was a problem that it could not be corrected.

従って、本発明は、レーザダイオードの素子特性に合っ
たパルス駆動時の補正を行うことのできるレーザダイオ
ードの駆動回路を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a laser diode drive circuit that can perform correction during pulse drive in accordance with the device characteristics of the laser diode.

〔課題を解決するための手段〕[Means to solve the problem]

第l図は本発明の原理図である。 FIG. 1 is a diagram of the principle of the present invention.

本発明は、第1図(A)に示すように、レーザダイオー
ドLDを駆動するため、駆動パルスに応じて駆動電流を
発生する信号電流源1と、駆動パルスの立上りに応じて
立上り補正電流を発生し、該駆動電流から差し引き、該
レーザダイオードLDの駆動電流を調整するパルス特性
補正回路2とを有するレーザダイオードの駆動回路にお
いて、該パルス特性補正回路2は、入力信号の立上りの
微分時定数と立下りの微分時定数を変えて該駆動パルス
を微分する微分回路21と、該微分回路21の微分出力
から立上り補正電流を発生し、該駆動電流から差し引く
補正回路22とを有するものである。
As shown in FIG. 1(A), in order to drive a laser diode LD, the present invention includes a signal current source 1 that generates a drive current in response to a drive pulse, and a signal current source 1 that generates a rise correction current in response to the rise of the drive pulse. In the laser diode drive circuit, the pulse characteristic correction circuit 2 includes a pulse characteristic correction circuit 2 that generates a pulse, subtracts it from the drive current, and adjusts the drive current of the laser diode LD. and a differentiating circuit 21 that differentiates the driving pulse by changing the differential time constant of the falling edge, and a correcting circuit 22 that generates a rising edge correction current from the differential output of the differentiating circuit 21 and subtracts it from the driving current. .

〔作用〕[Effect]

従来は、微分回路21の充電特性、放電特性とも1つの
時定数で決定されており、このため放電特性がパルスパ
ターンの間隔に対して制御可能でなく、次のパルスの立
上りで、パターン効果に従ってパターン間隔によって一
義的に充電時のピークが決定されていた。このため、前
述のように、長いオーバーシュートを補正するよう時定
数を合わせると、短いオフ後パルスの場合補正電流がそ
のパルスのオーバーシュートと合わないという現象が生
じていた.そこで、本発明では、微分回路21の立上り
と立下りの時定数を変えて、オーバーシュートの時間に
影響する補正時定数と、パルスパターン効果に対する補
正時定数を変えるようにした。
Conventionally, both the charging and discharging characteristics of the differentiating circuit 21 are determined by one time constant, and for this reason, the discharging characteristics cannot be controlled with respect to the pulse pattern interval, and at the rise of the next pulse, the discharge characteristics are determined according to the pattern effect. The peak during charging was uniquely determined by the pattern interval. For this reason, as mentioned above, when the time constant was adjusted to correct a long overshoot, a phenomenon occurred in which the correction current did not match the overshoot of the pulse in the case of a short post-off pulse. Therefore, in the present invention, the rise and fall time constants of the differentiating circuit 21 are changed to change the correction time constant that affects the overshoot time and the correction time constant for the pulse pattern effect.

これによって、例えば第1図(B)のように、立上り時
定数を長いオーバーシュートに合わせて、立下り時定数
によって短いオフ後のパルスのオーバーシュートにも補
正電流を合わせることができるようになった。
As a result, as shown in Fig. 1 (B), for example, the rise time constant can be adjusted to a long overshoot, and the fall time constant can be used to adjust the correction current to a short overshoot of the pulse after turning off. Ta.

このため、レーザダイオード素子の特性に合ったパルス
駆動時の補正が可能となった。
Therefore, it has become possible to make corrections during pulse driving that match the characteristics of the laser diode element.

〔実施例〕〔Example〕

(al  一実施例の説明 第2図は本発明の一実施例構或図である。 (al Explanation of one embodiment FIG. 2 is a diagram showing the structure of an embodiment of the present invention.

図中、第4図で示したものと同一のものは同一の記号で
示してある。
In the figure, the same parts as those shown in FIG. 4 are indicated by the same symbols.

第2図の構或では、微分回路21において、抵抗R3と
並列に抵抗RsとダイオードD2を直列接続した回路を
追加した。
In the structure shown in FIG. 2, a circuit in which a resistor Rs and a diode D2 are connected in series in parallel with the resistor R3 is added to the differentiating circuit 21.

従って、微分回路21のコンデサンC1の充電は、抵抗
R3を介し、放電は、抵抗R3、ダイオードD1、抵抗
R5を介して行われる。
Therefore, charging of the capacitor C1 of the differentiating circuit 21 is performed through the resistor R3, and discharging is performed through the resistor R3, the diode D1, and the resistor R5.

これによって、充電時定数はCiR3により決定され、
放電時定数はR9、Rs,Clによって決定される. 第3図は本発明の一実施例説明図である。
As a result, the charging time constant is determined by CiR3,
The discharge time constant is determined by R9, Rs, and Cl. FIG. 3 is an explanatory diagram of an embodiment of the present invention.

充電時の時定数ci、R3をバルスCの長いオーバーシ
ュートを補正するように合わせたとすると、放電時の時
定数CI、R3、R5は、短いオフ後オンとなるバルス
dのオーバーシュートを補正するように合わせられる。
If the time constants ci, R3 during charging are set to correct the long overshoot of pulse C, the time constants CI, R3, R5 during discharging correct the overshoot of pulse d, which turns on after a short off. It can be adjusted as follows.

即ち、第3図のように放電時の時定数C1、R3、R5
によって放電特性(減衰特性)を急峻にし、パルスdの
立上り時の充電ピーク値Vxをより小にし、補正電流I
b’のピークを大にして、パルス間隔が短い場合のオー
バーシュート量を補正できるよう補正電流1b’を制御
している。
That is, as shown in FIG. 3, the time constants C1, R3, and R5 during discharging
to make the discharge characteristic (attenuation characteristic) steeper, to make the charging peak value Vx at the rising edge of pulse d smaller, and to make the correction current I
The correction current 1b' is controlled so as to increase the peak of b' and correct the amount of overshoot when the pulse interval is short.

これによって、充電時定数をパルスCのような長いオー
バーシュートに合わせても、放電時定数の変化によって
、バルスdのような短いオフ後オンとなるパルスのオー
バーシュートを補正できる形状の補正電流Ib’を発生
できる。
As a result, even if the charging time constant is adjusted to a long overshoot such as pulse C, the correction current Ib has a shape that can compensate for the overshoot of a pulse that turns on after a short turn off, such as pulse d, by changing the discharge time constant. ' can be generated.

従って、第3図のように、光出力Pにオーバーシュート
が見られず、長いパルス、短い間隔のパルスのオーバー
シュートの両方を補正することができる. (bl  他の実施例の説明 上述の実施例では、オーバーシュートに対する補正時間
を長くし、バルスCに合わせ、ビデオ信号のパターン効
果に対する補正量を変化させているが、第2図のダイオ
ードD2の極性を逆にすれば、オーバーシュートに,対
する補正時間を短くし、ビデオ信号のパターン効果に対
する補正の時定数を長くすることもできる。
Therefore, as shown in FIG. 3, no overshoot is observed in the optical output P, and both the overshoot of long pulses and short-interval pulses can be corrected. (bl Description of Other Embodiments In the above embodiment, the overshoot correction time is lengthened and the amount of correction for the pattern effect of the video signal is changed in accordance with the pulse C. By reversing the polarity, it is possible to shorten the correction time for overshoot and lengthen the time constant for correction for video signal pattern effects.

又、上述の実施例では、ビデオ信号を反転して微分して
いるが、反転しなくてもよい、駆動信号(バルス)はビ
デオ信号に限られない。
Further, in the above-described embodiment, the video signal is inverted and differentiated, but the drive signal (pulse) is not limited to the video signal and does not need to be inverted.

以上本発明を実施例により説明したが、本発明は本発明
の主旨に従い種々の変形が可能であり、本発明からこれ
らを排除するものではない。
Although the present invention has been described above using examples, the present invention can be modified in various ways according to the gist of the present invention, and these are not excluded from the present invention.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に、本発明によれば、パターン効果に対
する補正時定数と、オーバーシュートの時間に対する補
正時定数を変えることにより、レーザダイオードのオー
バーシュート特性に合ったパルス駆動時の補正が可能と
なるという効果を奏する。
As explained above, according to the present invention, by changing the correction time constant for pattern effects and the correction time constant for overshoot time, it is possible to perform correction during pulse driving that matches the overshoot characteristics of the laser diode. It has the effect of becoming.

4

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理図、 第2図は本発明の一実施例構或図、 第3図は本発明の一実施例説明図、 第4図は従来技術の構威図、 第5図及び第6図は従来技術の説明図である。 図中、 2 2 L 1一信号電流源、 2・−バルス特性補正回路、 1一微分回路、 2−・補正回路、 D・−−−−レーザダイオード。 Figure 1 is a diagram of the principle of the present invention. FIG. 2 is a schematic diagram of an embodiment of the present invention; FIG. 3 is an explanatory diagram of one embodiment of the present invention; Figure 4 is a structural diagram of the conventional technology. FIGS. 5 and 6 are explanatory diagrams of the prior art. In the figure, 2 2 L 1-signal current source; 2.-pulse characteristic correction circuit, 1-differential circuit, 2-・Correction circuit, D・---Laser diode.

Claims (1)

【特許請求の範囲】 レーザダイオード(LD)を駆動するため、駆動パルス
に応じて駆動電流を発生する信号電流源(1)と、 駆動パルスの立上りに応じて立上り補正電流を発生し、
該駆動電流から差し引き、該レーザダイオード(LD)
の駆動電流を調整するパルス特性補正回路(2)とを有
するレーザダイオードの駆動回路において、 該パルス特性補正回路(2)は、 入力信号の立上りの微分時定数と立下りの微分時定数を
変えて該駆動パルスを微分する微分回路(21)と、 該微分回路(21)の微分出力から立上り補正電流を発
生し、該駆動電流から差し引く補正回路(22)とを有
することを 特徴とするレーザダイオードの駆動回路。
[Claims] In order to drive a laser diode (LD), a signal current source (1) that generates a drive current according to a drive pulse; a signal current source (1) that generates a rising correction current according to the rising edge of the driving pulse;
Subtracted from the drive current, the laser diode (LD)
In a laser diode drive circuit having a pulse characteristic correction circuit (2) that adjusts the drive current of the input signal, the pulse characteristic correction circuit (2) changes the differential time constant of the rising edge and the differential time constant of the falling edge of the input signal. A differentiating circuit (21) for differentiating the driving pulse using the differentiating circuit (21), and a correcting circuit (22) for generating a rising correction current from the differential output of the differentiating circuit (21) and subtracting it from the driving current. Diode drive circuit.
JP1308552A 1989-11-28 1989-11-28 Drive circuit for laser diode Pending JPH03169155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1308552A JPH03169155A (en) 1989-11-28 1989-11-28 Drive circuit for laser diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1308552A JPH03169155A (en) 1989-11-28 1989-11-28 Drive circuit for laser diode

Publications (1)

Publication Number Publication Date
JPH03169155A true JPH03169155A (en) 1991-07-22

Family

ID=17982408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1308552A Pending JPH03169155A (en) 1989-11-28 1989-11-28 Drive circuit for laser diode

Country Status (1)

Country Link
JP (1) JPH03169155A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0724784A4 (en) * 1992-03-02 1994-12-02 Ecrm Method and apparatus for stabilizing laser diode energy output
JP2007042955A (en) * 2005-08-04 2007-02-15 Sumitomo Electric Ind Ltd Optical transmitting sub-assembly and optical transmitting module provided with it
JP2012123369A (en) * 2010-11-17 2012-06-28 Canon Inc Image forming apparatus
JP2012148508A (en) * 2011-01-20 2012-08-09 Canon Inc Image forming apparatus
CN107546570A (en) * 2016-06-27 2018-01-05 株式会社三丰 Current control device and laser device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6386590A (en) * 1986-09-30 1988-04-16 Ricoh Co Ltd Output control equipment of semiconductor laser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6386590A (en) * 1986-09-30 1988-04-16 Ricoh Co Ltd Output control equipment of semiconductor laser

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0724784A4 (en) * 1992-03-02 1994-12-02 Ecrm Method and apparatus for stabilizing laser diode energy output
EP0724784A1 (en) * 1992-03-02 1996-08-07 Ecrm Incorporated Method and apparatus for stabilizing laser diode energy output
JP2007042955A (en) * 2005-08-04 2007-02-15 Sumitomo Electric Ind Ltd Optical transmitting sub-assembly and optical transmitting module provided with it
JP2012123369A (en) * 2010-11-17 2012-06-28 Canon Inc Image forming apparatus
JP2012148508A (en) * 2011-01-20 2012-08-09 Canon Inc Image forming apparatus
CN107546570A (en) * 2016-06-27 2018-01-05 株式会社三丰 Current control device and laser device
CN107546570B (en) * 2016-06-27 2022-01-14 株式会社三丰 Current control device and laser device

Similar Documents

Publication Publication Date Title
US4894816A (en) Optical information recording apparatus
US4959557A (en) Negative feedback circuit to control the duty cycle of a logic system clock
EP0845863B1 (en) Pulse-width controller
US4835780A (en) Semiconductor laser output control circuit
US4888777A (en) Semiconductor laser control apparatus
JPH03169155A (en) Drive circuit for laser diode
JP2718707B2 (en) Control circuit for laser printer
US4745609A (en) Stabilized laser device
US7068691B2 (en) Directly modulated optical module and method for driving semiconductor laser included therein
US4700057A (en) Light source with power stabilizer having temperature compensation
JPS63143887A (en) Semiconductor laser driving circuit
US3879687A (en) High speed light beam modulator
JP4224001B2 (en) LED drive circuit
US20060214091A1 (en) Circuit for analyzing a reflected signal
EP0652615A2 (en) A laser power monitor circuit used in a magneto-optical disk device
US20040190572A1 (en) Drive circuit for laser diode
EP0700746A4 (en) Laser liquid crystal marker and method for judging deterioration of liquid crystal
JPS58100245A (en) Controller for quantity of light of optical recording and reproducing device
US5663826A (en) Transmission type liquid crystal mask marker
EP0307988B1 (en) Oscillator circuit comprising an amplitude controller
JPS63213983A (en) Device for controlling output of semiconductor laser
US20060182158A1 (en) Information recording reproduction apparatus and information reproduction method
JP3428966B2 (en) Exposure control device
GB2102564A (en) Pyrometer signal processing
JPH0132372Y2 (en)