JPH03168388A - Vacuum pump - Google Patents

Vacuum pump

Info

Publication number
JPH03168388A
JPH03168388A JP1305148A JP30514889A JPH03168388A JP H03168388 A JPH03168388 A JP H03168388A JP 1305148 A JP1305148 A JP 1305148A JP 30514889 A JP30514889 A JP 30514889A JP H03168388 A JPH03168388 A JP H03168388A
Authority
JP
Japan
Prior art keywords
groove
screw
angle
exhaust
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1305148A
Other languages
Japanese (ja)
Other versions
JPH0692799B2 (en
Inventor
Ryuichi Sakamoto
隆一 坂本
Shunsuke Yoshida
俊介 吉田
Shiro Igarashi
史郎 五十嵐
Takao Matsumoto
隆夫 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP1305148A priority Critical patent/JPH0692799B2/en
Publication of JPH03168388A publication Critical patent/JPH03168388A/en
Publication of JPH0692799B2 publication Critical patent/JPH0692799B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/044Holweck-type pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

PURPOSE:To accommodate a vacuum pump to usage in a wide-range from a medium vacuum area to a high vacuum area by making the screw angle of a deep groove located on an suction port side large and the screw angle of a shallow groove located on an exhaust port side small. CONSTITUTION:The inlet portion of a screw groove 4 located on a suction port 2 side is formed as a deep groove 41 which has the depth 1/3 or more the size of a rotary inner cylinder 5, and a space between the deep groove 41 and a shallow groove 42 on an exhaust port 3 side in the screw groove 4 is formed in such a shape as groove depth along a continuous curve. The screw angle of the deep groove 41 is made large and the screw angle of the shallow groove 42 is made small, to complete continuous angle-variation connection between the deep groove 41 and the shallow groove 42. In this way, as the screw angle of the screw groove at the inlet portion located on the suction port 2 side is made large, shift to large exhaust flow and large exhaust speed can be achieved. Also, the screw angle of the screw groove at an outlet portion located on the exhaust portion 3 side is made small and these inlet and outlet are connected to each other with continuous groove depth and screw angle, so that it is possible to ensure high compression ratio and exhaust performance in a medium vacuum area.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、一方にネジ構を形成する回転内筒及び静止外
筒をもったネジ清型ボンプ要素を備え、10〜10−8
Torr程度の中、高真空域での排気に適する真空ポン
プに関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention comprises a threaded pump element having a rotating inner cylinder and a stationary outer cylinder forming a threaded structure on one side,
This invention relates to a vacuum pump suitable for evacuation in a medium to high vacuum range of around Torr.

(従来の技術) 従来、特公昭47−3344Et号公報等で古くから知
られているように、この種ネジ溝型ポンブ要素は、lT
orr程度のすべり流域から粘性流域と呼ばれる中真空
域で優れた排気特性を有することから、動翼と静翼とを
もつターボ分子ポンプの下流段に併川され、所謂複合型
の真空ポンプとして広く利用されている。又、実公昭8
0−9439号公報等で知られているように、ネジ溝型
ポンプ要素単独で中真空域を排気するポンプとして最近
実用化されつつある。
(Prior Art) As has been known for a long time from Japanese Patent Publication No. 47-3344Et, etc., this type of thread groove type pump element is
Because it has excellent exhaust characteristics in the medium vacuum region, which is called the viscous region and the slip region of about 1.2 to 3.5 orr. It's being used. Also, Jiko Sho 8
As is known from Japanese Patent No. 0-9439, etc., a thread groove type pump element alone has recently been put into practical use as a pump for evacuating a medium vacuum region.

(発明が解決しようとする課題) しかし、上記従来のものは、いずれも、中真空域での排
気を対象とし、そのネジ溝深さは、吸気側の入口部と排
気側の出口部とで多少の傾斜を持ってはいても極めて浅
い深さとされ、しかも、そのネジ角は15″〜206程
度の角度で吸気側から排気側にかけて同一角度に形成さ
れており、このため、高真空域で使用すると、圧倒的に
排気流量が不足して排気速度が劣ると共にネジ構の出入
口間に大きな圧縮比を確保できず、事実上使用できない
問題がある。
(Problem to be Solved by the Invention) However, all of the above conventional devices are intended for exhaust in a medium vacuum region, and the depth of the thread groove is different between the inlet on the intake side and the outlet on the exhaust side. Although it has a slight inclination, it is extremely shallow in depth, and the screw angle is approximately 15" to 206", and is formed at the same angle from the intake side to the exhaust side. When used, there is a problem that the exhaust flow rate is overwhelmingly insufficient, the exhaust speed is inferior, and a large compression ratio cannot be secured between the inlet and outlet of the screw structure, making it practically unusable.

本発明では、各種の実験的考察に基づいて、ネジ満の深
さ及びネジ角を工夫することにより、高真空域での大俳
気速度化と高圧縮比の確保とを可能にすると共に、中真
空域での排気性能をも従来と遜色なく確保でき、中真空
域から高真空域にわたる広い範囲での使用に適する真空
ポンプを提供することを目的とする。
In the present invention, by devising the thread depth and thread angle based on various experimental considerations, it is possible to achieve high air flow speed and ensure a high compression ratio in a high vacuum region, and The purpose of the present invention is to provide a vacuum pump that can ensure evacuation performance in a medium vacuum region comparable to that of conventional vacuum pumps and is suitable for use in a wide range from medium vacuum regions to high vacuum regions.

(課題を解決するための手段) そこで、本発明では、上記目的を達成するため、吸気口
(2)と排気口(3)との間に、回転内筒(5)と静止
外筒(6)を備え、一方にネジ満(4)を形成したネジ
溝型ポンブ要素(7)を配設した真空ポンプにおいて、
前記吸気口(2)側に位置する前記ネジ溝(4)の入口
部を、前記回転内筒(5)の径の約3分のl以上の深さ
をもつ深jilt ( 4 1 )に形成して、該深i
:2? ( 4 1 )と前記ネジ構(4)における前
記排気口(3)側の浅溝(42)との間を、運続した曲
線に沿う溝深さ形状に形成すると共に、前記深T+1¥
 ( 4 1 )のネジ角を大きく、前記浅’779 
( 4 2 )のネジ角を小さくして、これら深溝(4
1)と& ?i’1¥(42)との間を辻続的な角度変
化で連結することにした。
(Means for Solving the Problem) Therefore, in the present invention, in order to achieve the above object, a rotating inner cylinder (5) and a stationary outer cylinder (6) are provided between the intake port (2) and the exhaust port (3). ) and a threaded pump element (7) with a threaded groove (4) formed on one side,
The entrance portion of the threaded groove (4) located on the side of the intake port (2) is formed to have a depth of about 1/3 or more of the diameter of the rotating inner cylinder (5). Then, the depth i
:2? (4 1) and the shallow groove (42) on the exhaust port (3) side of the screw mechanism (4) is formed into a groove depth shape that follows the continuous curve, and the depth T + 1 yen.
Increase the thread angle of (4 1) and make the shallow '779
By reducing the thread angle of (4 2), these deep grooves (4
1) and & ? I decided to connect it with i'1 ¥ (42) by continuously changing the angle.

(作用) 吸気口(2)側に位置する入口部のネジ満を深m ( 
4 1 )として、そのネジ角を大きくしたことにより
、大排気流量化ひいては大排気速度化が可能となり、又
、排気口(3)側に位置する出口部のネジ溜を浅m (
 4 2 )として・、そのネジ角を小さ<シ、これら
入口及び出口を連続的な溝深さ及びネジ角度でつなげた
ことにより、詩圧縮比の確保と中真空域での排気性能の
確保とが可能となる。
(Function) Thoroughly tighten the thread of the inlet located on the intake port (2) side to a depth of m (
4 1), by increasing the screw angle, it is possible to achieve a large exhaust flow rate and therefore a large exhaust speed, and the screw reservoir at the outlet located on the exhaust port (3) side has been made shallow m (
4) As for 2), the screw angle is small, and by connecting these inlets and outlets with continuous groove depth and screw angle, it is possible to secure a high compression ratio and exhaust performance in the medium vacuum region. becomes possible.

(実施例) 第1図に示すポンプは、上部に設ける吸気口(2)と下
部に設ける排気口(3)との間に、外周部にネジ満(4
)を形成した回転内筒(5)と該内筒(5)の外周面に
回転時に0.1〜0. 2■程度の極小さい隙間(δ)
を空けて近接する内周面をもつ静止外筒(6)を備える
ネジ満型ポンプ要素(7)を配設し、前記回転内筒(5
)をモータ(8)の駆動軸(9)に結合して、例えば3
万回転/分程度の高速回転により、吸気ロフランジ(1
l)に取付ける半導体ウエハチャンバー等の真空引きを
行うようにしたものである。
(Example) The pump shown in FIG.
) is formed on the outer circumferential surface of the inner cylinder (5). Extremely small gap of about 2■ (δ)
A threaded pump element (7) is provided with a stationary outer cylinder (6) having an inner circumferential surface adjacent to the rotating inner cylinder (5).
) to the drive shaft (9) of the motor (8), for example 3
Due to high-speed rotation of approximately 10,000 revolutions per minute, the intake loft flange (1
1) is designed to evacuate the semiconductor wafer chamber, etc. attached to the device.

尚、第1図に示す実施例では、ネジ溝(4)を回転内筒
(5)に形成したが、従来から知られているように、静
止外筒(6)側に形成してもよいのは勿論である。又、
図中、(13)は上下軸受(14)(15)に給油する
潤滑油の油溜め、(16)はオイルピックアップである
In the embodiment shown in FIG. 1, the thread groove (4) is formed on the rotating inner cylinder (5), but it may also be formed on the stationary outer cylinder (6) side, as is conventionally known. Of course. or,
In the figure, (13) is an oil reservoir for lubricating oil that supplies oil to the upper and lower bearings (14) and (15), and (16) is an oil pickup.

以上の構成において、前記ネジ+WC4)の深さ及びネ
ジ角を以下のように設定する。
In the above configuration, the depth and screw angle of the screw +WC4) are set as follows.

まず、大排気流量化すなわち大排気速度化のため、前記
吸気口(2)側に位置する前記ネジ満(4)の入口部を
、前記回転内筒(5)の径の約3分の1以上の深さをも
つ深満(41)に形成する。これは、分子流域と呼ばれ
る高真空域では、気体分子は、中真空域までの粘性流域
にように分子同士が衝突しながら排気されるという作用
を受けるのではなく、ターボ分子ボンブと同様に幾何確
率的に排気されると考えられるため、入口側で分子が飛
び込むための開口面積が十分に確保される必要があるか
らである。尚、この入口部における満深さを大きくすれ
ばするほど、気体分子が飛び込む誼率が高くなり排気流
量を増大できると考えられるが、実際には、主に機械的
強度の点より、上限は2分の1程度以下とし、深溝( 
4 1 )の溝深さは、回転内筒(5)の径の3分の1
〜2分の1程度に設定する。
First, in order to increase the exhaust flow rate, that is, to increase the exhaust speed, the inlet portion of the threaded hole (4) located on the side of the intake port (2) is adjusted to approximately one third of the diameter of the rotating inner cylinder (5). It is formed in a depth (41) having a depth greater than or equal to the depth. This is because in a high vacuum region called the molecular region, gas molecules are not subjected to the action of colliding with each other and being evacuated as in the viscous region up to the medium vacuum region, but are This is because it is considered that the gas is stochastically exhausted, so it is necessary to ensure a sufficient opening area on the inlet side for molecules to jump into. It is thought that the larger the full depth at the inlet, the higher the rate of infiltration of gas molecules and the greater the exhaust flow rate, but in reality, mainly from the point of view of mechanical strength, there is no upper limit. The depth should be about 1/2 or less, and the deep groove (
The groove depth of 4 1) is one third of the diameter of the rotating inner cylinder (5).
Set it to about 1/2.

又、この大排気流量化のため、更に好ましくは、ネジH
I ( 4 )以外のネジ山(40)の部分の幅を、各
構間のもれによる影響がなく且つ強度上許される範囲内
で最小限とし、第2図に示すように、平面的に見たj:
I帽比(ε=溝幅A/(溝幅A十山幅D))は0.8〜
0.95}2度に設定する。
Furthermore, in order to achieve this large exhaust flow rate, it is more preferable that the screw H
The width of the screw thread (40) other than I (4) shall be minimized to the extent that it is not affected by leakage in each structure and is allowed for strength, and as shown in Figure 2, Saw:
I cap ratio (ε=groove width A/(groove width A tenth width D)) is 0.8~
0.95} Set to 2 degrees.

これは、主に入口部での開口面積を増加させるためであ
り、第5図に示すようにυ1気速度はこの溝幅比(ε)
が大きいほど高くなっている。尚、第5図以下第7図に
おいて、縦軸の排気速度は等間隔目盛りで刻み、同縦軸
の圧縮比は対数目盛りで刻んでいる。
This is mainly to increase the opening area at the inlet, and as shown in Figure 5, υ1 air velocity is equal to this groove width ratio (ε).
The larger the value, the higher the value. In FIG. 5 to FIG. 7, the exhaust speed on the vertical axis is marked on a scale at equal intervals, and the compression ratio on the vertical axis is marked on a logarithmic scale.

更に、上記山幅と同様に、大排気流量化のための好まし
い例として、ネジ条数(N)は、第6図に示すネジ条数
に対する特性fill線において、排気速度が高い部分
を選び、第2.3図に示したように4程度と少なくする
Furthermore, as with the above-mentioned mountain width, as a preferable example for increasing the exhaust flow rate, the number of threads (N) is determined by selecting a portion where the pumping speed is high in the characteristic fill line for the number of threads shown in FIG. As shown in Figure 2.3, it should be as low as about 4.

そして、上記深m ( 4 1 )のネジ角(θ1)は
、第7図に示すように、圧縮比でなく排気速度が高い部
分を選んで、θ1=α=35@〜50″の範囲に設定す
る。尚、この第7図のモデルは、入口から出口にかけて
同一のネジ角とした場合のデータである。
Then, the screw angle (θ1) at the depth m (4 1) is set in the range of θ1 = α = 35@~50'' by selecting the part where the pumping speed is high rather than the compression ratio, as shown in Fig. 7. The model shown in Fig. 7 is data when the thread angle is the same from the inlet to the outlet.

次に、高圧縮比の確保と、中真空域での排気性能の確保
のため、前記排気口(3)に近い出口側のネジをつぎの
ように設定する。
Next, in order to ensure a high compression ratio and exhaust performance in a medium vacuum region, the screws on the exit side near the exhaust port (3) are set as follows.

すなわち、第7図に示すように、高圧縮比を確保するた
めには、そのネジ角(θ2)を、入口側で356〜50
’ と大きく設定したのに対して、10’〜15゜と小
さく設定する。更に、中真空域でのIJ『気性能の確保
のため、よく知られた中真空域での粘性ネジ構ボンプ理
論に従って、従来通り、そのd}+t深さを、前記回転
内筒(5)と静止外筒(6)との間の隙間(δ)の3〜
10倍程度の深さをもつ浅i+M ( 4 2 )に形
成する。
That is, as shown in Fig. 7, in order to ensure a high compression ratio, the screw angle (θ2) must be set at 356 to 50 on the inlet side.
' is set large, but it is set small at 10' to 15°. Furthermore, in order to ensure IJ gas performance in the medium vacuum region, the depth d}+t of the rotary inner cylinder (5) is adjusted as usual according to the well-known viscous screw structure pump theory in the medium vacuum region. 3~ of the gap (δ) between and the stationary outer cylinder (6)
It is formed into a shallow i+M (4 2 ) with a depth of about 10 times.

そして、以上のように入口及び出口でそれぞれ設定した
満深さ及びネジ角を結ぶ途中部分は、主として中真空域
までの排気における発熱を抑制するために、急激な形状
変化を避け、滑らかな圧縮を行わせる必要があるため、
途中の満深さは、第1図に示すように、満底部を上下方
向に結ぶ曲線(L)が例えば2次曲線に沿う形状で形成
するのであり、又、その途中のネジ角は、第4図に示す
ように、ネジ満に沿って連続的に角度変化をつけるので
ある。
In addition, in order to suppress the heat generation during exhaust to the medium vacuum region, the intermediate portion connecting the full depth and thread angle set at the inlet and outlet, respectively, as described above, is designed to avoid sudden changes in shape and achieve smooth compression. Because it is necessary to make
As shown in Fig. 1, the full depth in the middle is formed by a curve (L) that connects the full bottom in the vertical direction, for example, in a shape along a quadratic curve, and the thread angle in the middle is As shown in Figure 4, the angle changes continuously along the thread.

以上のネジ満(4)の実際の加工は、ネジ山幅を一定に
してエンドミル等を用いた削切等による。ところで、こ
のようにネジ山幅を一定にしてネジ角の角度変化を付け
れば、出口側での平面的なiN幅比(ε)は、第3図に
示すように、0.4〜0,6程度となり、第5図に示し
たように、出口側での圧縮比向上に自動的に寄与できる
ことになる。
The actual machining of the above screw thread (4) is performed by cutting using an end mill or the like while keeping the thread width constant. By the way, if the thread width is kept constant and the thread angle is changed in this way, the planar iN width ratio (ε) on the exit side will be 0.4 to 0, as shown in Figure 3. 6, which automatically contributes to improving the compression ratio on the outlet side, as shown in FIG.

こうして、以上の構成を備えたポンプの性能評価を行っ
てみると、第8図及び第9図に示すように,中真空域か
ら高真空域にかけて、本発明を適用した機種■■は、満
深さを一定とした機種■や、ネジ角を一定とした機種■
■に対して吸気圧すなわち到達f(空度及び排気速度が
共に優れたものとなっている。
When we evaluated the performance of the pump with the above configuration, we found that, as shown in Figures 8 and 9, the model to which the present invention was applied was fully satisfied in the medium to high vacuum range. Models with constant depth■ and models with constant screw angle■
Compared to (2), the intake pressure, that is, the attained f (airness and exhaust speed are both excellent).

(発明の効果) 以上、本発明によれば、高真空域での大排気速度化と高
圧縮比の確保とを可能にすると共に、中真空域での俳気
住能をも確保でき、中真空域から高真空域にわたる広い
範囲での排気を良好に行うことかできるのである。
(Effects of the Invention) As described above, according to the present invention, it is possible to increase the pumping speed and secure a high compression ratio in the high vacuum region, and also to ensure the air efficiency in the medium vacuum region. It is possible to effectively perform evacuation over a wide range from the vacuum region to the high vacuum region.

又、本発明ポンプでは、ターボ分子ポンプのような動翼
を持たないため、加工が容易で、異物混入や大気突入等
の87撃にも強く、又、特に中真空域で翼が抵抗となる
ことがないため、発熱も低減できるのである。
In addition, the pump of the present invention does not have moving blades like a turbo-molecular pump, so it is easy to process, and is resistant to foreign matter contamination and air entry, and the blades act as resistance, especially in medium vacuum regions. As a result, heat generation can also be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明真空ポンプの縦断面図、第2図は回転内
筒の上面図、第3図は同内筒の下面図、第4図はネジi
IISの展開図、第5図はネジ山幅の影響を表す特性図
、第6図はネジ条数の影響を表す特性図、第7図はネジ
角の影響を表す特性図、第8図は性能を評価する排気特
性図、第9図は同性能を評価する圧縮特姓図である。 (2)・・・・吸気口 (3)・・・・排気口 (4)・・・・ネジ溝 (5)・・・・回転内筒 (6)・・・・静止外筒 (7)・・・・ネジiR型ポンプ要素 (4 1)・・・・深溝 (42)・・・・浅溝 第1図 13 l6 15 第2図 第3図 第4図 第5図 溝幅ぶし(εノー ネジ条軟《N》一 第7図 3ジ角r演】= 第8図 回f云軟(Hzl9
Fig. 1 is a longitudinal sectional view of the vacuum pump of the present invention, Fig. 2 is a top view of the rotating inner cylinder, Fig. 3 is a bottom view of the inner cylinder, and Fig. 4 is a screw i.
Developed diagram of IIS, Figure 5 is a characteristic diagram showing the influence of thread width, Figure 6 is a characteristic diagram showing the influence of thread number, Figure 7 is a characteristic diagram showing the influence of thread angle, and Figure 8 is a characteristic diagram showing the influence of thread thread number. FIG. 9 is an exhaust characteristic diagram for evaluating the performance, and FIG. 9 is a compression characteristic diagram for evaluating the same performance. (2)...Intake port (3)...Exhaust port (4)...Thread groove (5)...Rotating inner cylinder (6)...Stationary outer cylinder (7) ...Screw iR type pump element (4 1) ... Deep groove (42) ... Shallow groove Fig. 1 13 l6 15 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Groove width (ε No-thread thread soft《N》1 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 1)吸気口(2)と排気口(3)との間に、回転内筒(
5)と静止外筒(6)を備え、一方にネジ溝(4)を形
成したネジ溝型ポンプ要素(7)を配設した真空ポンプ
において、前記吸気口(2)側に位置する前記ネジ溝(
4)の入口部を、前記回転内筒(5)の径の約3分の1
以上の深さをもつ深溝(41)に形成して、該深溝(4
1)と前記ネジ溝(4)における前記排気口(3)側の
浅溝(42)との間を、連続した曲線に沿う溝深さ形状
に形成すると共に、前記深溝(41)のネジ角を大きく
、前記浅溝(42)のネジ角を小さくして、これら深溝
(41)と浅溝(42)との間を連続的な角度変化で連
結したことを特徴とする真空ポンプ。
1) A rotating inner cylinder (
5) and a stationary outer cylinder (6), the vacuum pump is provided with a thread groove type pump element (7) having a thread groove (4) formed on one side, the screw located on the side of the intake port (2). groove(
4), the inlet portion of the rotating inner cylinder (5) is approximately one third of the diameter
A deep groove (41) having a depth of
1) and the shallow groove (42) on the exhaust port (3) side of the thread groove (4) is formed into a groove depth shape that follows a continuous curve, and the thread angle of the deep groove (41) is A vacuum pump characterized in that the thread angle of the shallow groove (42) is made small, and the deep groove (41) and the shallow groove (42) are connected by continuously changing the angle.
JP1305148A 1989-11-24 1989-11-24 Vacuum pump Expired - Fee Related JPH0692799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1305148A JPH0692799B2 (en) 1989-11-24 1989-11-24 Vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1305148A JPH0692799B2 (en) 1989-11-24 1989-11-24 Vacuum pump

Publications (2)

Publication Number Publication Date
JPH03168388A true JPH03168388A (en) 1991-07-22
JPH0692799B2 JPH0692799B2 (en) 1994-11-16

Family

ID=17941654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1305148A Expired - Fee Related JPH0692799B2 (en) 1989-11-24 1989-11-24 Vacuum pump

Country Status (1)

Country Link
JP (1) JPH0692799B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000077405A (en) * 1999-05-24 2000-12-26 다카키도시요시 Screw groove type vacuum pump, complex vacuum pump and vacuum pump system
JP2001182685A (en) * 1999-11-19 2001-07-06 Boc Group Plc:The Improved vacuum pump
JP2008531912A (en) * 2005-02-25 2008-08-14 エドワーズ リミテッド Vacuum pump
CN105324578A (en) * 2013-07-05 2016-02-10 埃地沃兹日本有限公司 Vacuum pump

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248587A (en) * 1999-12-28 2001-09-14 Kashiyama Kogyo Kk Composite vacuum pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0081890B1 (en) * 1981-12-14 1985-10-09 Ultra-Centrifuge Nederland N.V. High-vacuum molecular pump
JPH02149798A (en) * 1988-10-10 1990-06-08 Leybold Ag Pump stage for high vacuum pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0081890B1 (en) * 1981-12-14 1985-10-09 Ultra-Centrifuge Nederland N.V. High-vacuum molecular pump
JPH02149798A (en) * 1988-10-10 1990-06-08 Leybold Ag Pump stage for high vacuum pump

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000077405A (en) * 1999-05-24 2000-12-26 다카키도시요시 Screw groove type vacuum pump, complex vacuum pump and vacuum pump system
JP2001182685A (en) * 1999-11-19 2001-07-06 Boc Group Plc:The Improved vacuum pump
JP2008531912A (en) * 2005-02-25 2008-08-14 エドワーズ リミテッド Vacuum pump
CN105324578A (en) * 2013-07-05 2016-02-10 埃地沃兹日本有限公司 Vacuum pump
CN105324578B (en) * 2013-07-05 2018-05-15 埃地沃兹日本有限公司 Vacuum pump
US10260509B2 (en) 2013-07-05 2019-04-16 Edwards Japan Limited Vacuum pump

Also Published As

Publication number Publication date
JPH0692799B2 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
US4668160A (en) Vacuum pump
US20030129053A1 (en) Vacuum pump
JPH03168388A (en) Vacuum pump
JP5445143B2 (en) Turbo molecular pump
US8105013B2 (en) Vacuum pump
EP1846659B1 (en) Baffle configurations for molecular drag vacuum pumps
WO2015045748A1 (en) Thread groove pump mechanism, vacuum pump using this thread groove pump mechanism, and rotor, outer-circumferential stator, and inner-circumferential stator used in this thread screw pump mechanism
KR101340975B1 (en) Dry pump
JPH0227194A (en) Vacuum pump
JPS63147990A (en) Combination vacuum pump
JP2016166594A (en) Vacuum pump
US20230042886A1 (en) Vacuum pump, vacuum pump set for evacuating a semiconductor processing chamber and method of evacuating a semiconductor processing chamber
JP2501275Y2 (en) Jegbaan type vacuum pump
US4708586A (en) Thread groove type vacuum pump
JPS6355396A (en) Turbo vacuum pump
JP2587506B2 (en) Vacuum pump
US6315517B1 (en) Vacuum pump
JPH09275663A (en) External fan-type rotary machine
JPH02136595A (en) Vacuum pump
JP2000110771A (en) Turbo molecular pump
JPH0778399B2 (en) Screw groove type vacuum pump
EP1348871A1 (en) Low flow centrifugal pump with increased suction height
JP2003028090A (en) Molecular pump and vacuum pumping device
JPH04362294A (en) Screw type vacuum pump
JPH04148099A (en) Siegbahn type vacuum pump

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081116

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees