JPH03168386A - Measuring device of pump discharge flow - Google Patents

Measuring device of pump discharge flow

Info

Publication number
JPH03168386A
JPH03168386A JP30631689A JP30631689A JPH03168386A JP H03168386 A JPH03168386 A JP H03168386A JP 30631689 A JP30631689 A JP 30631689A JP 30631689 A JP30631689 A JP 30631689A JP H03168386 A JPH03168386 A JP H03168386A
Authority
JP
Japan
Prior art keywords
pump
head
curve
discharge
actual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30631689A
Other languages
Japanese (ja)
Inventor
Koji Yasumoto
浩二 安本
Satoshi Yoshida
聡 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP30631689A priority Critical patent/JPH03168386A/en
Publication of JPH03168386A publication Critical patent/JPH03168386A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To improve measurement precision by constituting an actual head operation section, a head curve judgement section, a resistance curve judgement section and a flow operation section which operates pump discharge flow corresponding to a pump running point during actual running in accordance with an actual head and a quadratic equation for a head curve and a resistance curve. CONSTITUTION:An actual head operation circuit 7 calculates actual head Ho in accor dance with a difference between the water level Ha of a pump #1 and the water level Hb of discharge #2 detected by level meters 5, 6. A head curve judgement circuit 8 judges a quadratic equation corresponding to the rotating speed detecting signal of a pump 3 from a quadratic equation for a head curve calculated for every rotating speed. A resistance curve judgement circuit 9 judges a quadratic equation corresponding to a discharge valve opening signal at a current point from a resistance curve calcu lated for every valve opening of a discharge valve 4. On the other hand, a flow opera tion circuit 10 operates the discharge flow of the pump corresponding to a running point at which the head curve and the resistance curve are intersected in accordance with an actual head Ho obtained above and a quadratic equation corresponding to the pump head curve and the resistance curve during actual running.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば雨水ポンプ場のポンプ井と放流井との
間に設備した送水ポンプを実施対象とするポンプ吐出流
量の計測装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pump discharge flow rate measuring device that is used, for example, in a water pump installed between a pump well and a discharge well of a rainwater pumping station.

〔従来の技術〕[Conventional technology]

頭記した雨水ポンプ場では放流管理の面からポンプの放
水流量を自動的に計測する必要がある。
In the rainwater pumping station mentioned above, it is necessary to automatically measure the water discharged by the pump from the viewpoint of discharge management.

一方、ポンプ場でポンプ吐出流量を計測する方式として
、流量計を用いずにポンプ自身の揚程曲線,および吐出
弁を含む送水管路の抵抗曲線からポンプ運転点での吐出
流量を演算によって求めるようにした計測方法が既に実
施されている。
On the other hand, as a method of measuring the pump discharge flow rate at a pumping station, the discharge flow rate at the pump operating point is determined by calculation from the lift curve of the pump itself and the resistance curve of the water supply pipe including the discharge valve, without using a flow meter. The measurement method described above has already been implemented.

この場合に、従来のit計測方式では、ポンプの揚程曲
線1抵抗曲線をあらかしめ折線で近似した一次方程式と
して模擬し、ポンプ井と敢流井との間の水位差.ポンプ
回転数.吐出弁開度の検出値を基にポンプの実揚程,並
びにポンプ回転数,吐出弁開度をパラメータとする揚程
曲線,抵抗曲線を近似した一次方程式を求め、さらにこ
の一次方程式から実運転中のポンプに対する運転点(揚
程曲線と抵抗曲線との交点)の解を演算し、その運転状
態でのポンプ吐出流量を求めるようにしている。
In this case, in the conventional IT measurement method, the head curve and resistance curve of the pump are simulated as a linear equation approximated by a broken line, and the water level difference between the pump well and the flow well is calculated. Pump rotation speed. Based on the detected value of the discharge valve opening, a linear equation is calculated that approximates the actual head of the pump, the head curve and the resistance curve with parameters such as the pump rotation speed and the discharge valve opening. The solution of the operating point for the pump (the intersection of the head curve and the resistance curve) is calculated, and the pump discharge flow rate in that operating state is determined.

〔発明が解決しようとrる課題〕[Problems that the invention attempts to solve]

ところで、前記した従来のポンプ吐出2Affl計測方
弐では、演算処理プログラムが複雑であり、かつ演算に
より求めた2ii1の誤差も大きくなると言った難点が
ある. すなわち、ポンプの揚程特性線,および管路の摩擦損失
水頭(管路内の流速の二乗に比例する)で表される抵抗
線は本来二次曲線であるにも係わらず、これを折線で近
似した一次方程式として模擬するために、一つの曲線を
表すのに多数の一次方程式が必要であることに加え、さ
らにポンプ回転数,吐出弁開度をパラメータとして各回
転数.弁開度に対応した揚程曲線,抵抗曲線を表すには
演算プログラムが膨大となり、流量を求める演算時間も
長くかかる。さらに、曲線を折線近似の一次方程式で模
擬しているために、演算により求めた流量の誤差も大き
くなる。
By the way, the conventional pump discharge 2Affl measurement method 2 described above has the disadvantage that the calculation processing program is complicated and the error of 2ii1 obtained by calculation becomes large. In other words, although the pump head characteristic line and the resistance line represented by the pipe friction head loss (proportional to the square of the flow velocity in the pipe) are originally quadratic curves, they can be approximated by a broken line. In order to simulate this as a linear equation, many linear equations are required to represent one curve, and in addition, each rotation speed is calculated using the pump rotation speed and discharge valve opening as parameters. Expressing the head curve and resistance curve corresponding to the valve opening requires an enormous calculation program, and it takes a long time to calculate the flow rate. Furthermore, since the curve is simulated using a linear equation approximating a broken line, the error in the calculated flow rate also becomes large.

本発明は上記の点にかんがみなされたものであり、プロ
グラムを簡素化して演算時間を短縮するととも、流量の
計測精度の向上化が図れるようにしたポンプ吐出流量の
計測装置を提供することを目的とする. 〔課題を解決するための手段〕 上記課題を解決するために、本発明の計測装置は、ポン
プ井と放流井との間の水位差からポンプの実揚程を算出
する実揚程演算部と、ポンプの揚程曲線.吐出弁を含む
ポンプ送水管路の抵抗曲線をポンプ回転数,吐出弁開度
の検出値に対応した二次方程式として求める揚程曲線判
定部,および抵抗曲線判定部と、前記により得た実揚程
、および揚程曲線,抵抗曲線の二次方程式から実運転中
のポンプ運転点に対応するポンプ吐出流量を演算により
求める流量演算部とで構戒するものとする。
The present invention has been made in consideration of the above points, and an object of the present invention is to provide a pump discharge flow rate measuring device that simplifies the program to shorten calculation time and improves flow rate measurement accuracy. Suppose that [Means for Solving the Problems] In order to solve the above problems, the measuring device of the present invention includes an actual head calculation unit that calculates the actual head of the pump from the water level difference between the pump well and the discharge well; Lifting head curve. a head curve determination unit that determines a resistance curve of a pump water supply pipe including a discharge valve as a quadratic equation corresponding to the detected value of the pump rotation speed and the discharge valve opening; and a resistance curve determination unit; and a flow rate calculation unit that calculates the pump discharge flow rate corresponding to the pump operating point during actual operation from the quadratic equation of the head curve and the resistance curve.

〔作用] ポンプの吐出流量は実揚程.ポンプの回転数吐出弁の弁
開度などの条件で変わボンプの揚程曲線と抵抗曲線との
交点である運転点から求めることかできる.ここで、周
知のようにポンプの揚程曲線はポンプの回転数.ポンプ
が複数台ある場合にはその稼動台数により変わり、また
抵抗曲線は吐出弁開度の条件によって変わる二次曲線で
あり、それぞれを二次方程式として表すことができる.
なお、この二次方程式はポンプの実機試験データと一致
することも確認されている. すなわち、揚程をH.流量をQとして、ポンプの揚程曲
線を表す二次方程式は次記(1)式のようになる. H=AQ” +BQ十C・一・・・・・・−・−・・・
−・− (1)ここで第2図に示したポンプの揚程曲線
について、ポンプ運転領域内で揚程曲線上に定めた3点
のポイントP.(81 ,ロ+)+Pz(L+ Qz)
, Ps(lli,Qs)に対応する次記の二次方程式
を逆行列として解くことにより、前式における定数A,
B,Cを求めることができる。
[Effect] The discharge flow rate of the pump is the actual head. It can be determined from the operating point, which is the intersection of the pump head curve and the resistance curve, depending on conditions such as the pump rotation speed and the opening degree of the discharge valve. Here, as is well known, the head curve of a pump is determined by the number of revolutions of the pump. If there are multiple pumps, the resistance curve changes depending on the number of pumps in operation, and the resistance curve is a quadratic curve that changes depending on the discharge valve opening condition, so each can be expressed as a quadratic equation.
It has also been confirmed that this quadratic equation matches the actual pump test data. In other words, the lifting head is H. The quadratic equation representing the head curve of the pump, where Q is the flow rate, is as shown in equation (1) below. H=AQ” +BQ10C・1・・・・・・−・−・・・
-・- (1) Regarding the head curve of the pump shown in FIG. 2, three points P. (81, lo+)+Pz(L+Qz)
, Ps(lli,Qs) by solving the following quadratic equation as an inverse matrix, the constant A in the previous equation,
B and C can be found.

}It = A Q+” 十B Q+ + CH.=A
Q1+BQt+C H.−AQ,” +BQ.+C 同様にして抵抗曲線を次記の二次方程式を次式で表し、 H − a Q ’ + b Q + c −−−−−
−−−−(2)前記と同し手法で抵抗曲線上に定めた3
点のポイントに対応する二次方程式を逆行列で解くこと
により、前弐の定数a,b,cを求めることができる。
}It = A Q+” 10B Q+ + CH.=A
Q1+BQt+C H. -AQ," +BQ.+C Similarly, the resistance curve can be expressed by the following quadratic equation: H - a Q' + b Q + c -------
-----(2) 3 determined on the resistance curve using the same method as above
By solving the quadratic equation corresponding to the point using an inverse matrix, the constants a, b, and c can be obtained.

したがって、ポンプ場でポンプ井と後段の放水井との水
位検出値から両者間の水位差として求めた実揚程H0と
、ポンプの回転数検出信号を基に判別した実運転中のポ
ンプ揚程曲線に対応する二次方程式((1)弐)と、吐
出弁開度の検出信号を基に判別した抵抗曲線に対応する
二次方程式((2)式)を求めてその定数項に前記の実
湯程H0を加え、さらにこの二つの二次方程式をイコー
ルで結んで式を解けば、実運転中のポンプの運転点に相
応した吐出流IQを次記のようにして求めることができ
る。
Therefore, the actual pump head H0 obtained from the water level difference between the pump well and the downstream discharge well at the pumping station as the difference in water level between the two, and the pump head curve during actual operation determined based on the pump rotation speed detection signal. Find the corresponding quadratic equation ((1) 2) and the quadratic equation ((2) equation) corresponding to the resistance curve determined based on the detection signal of the discharge valve opening, and add the above-mentioned actual hot water to the constant term. By adding the equation H0, connecting these two quadratic equations with equals, and solving the equation, the discharge flow IQ corresponding to the operating point of the pump during actual operation can be determined as follows.

AQ” +BQ+C=aQ” 十bQ+c+H.(A 
  a)Q”  +  (B   b)Q+  (C 
  c   He)ここで、(A−a)丑α (B−b)= β (C   c   He)= γ とおけば、ポンプの吐出流IQは、二次方程式の解の公
式、 Q=(一β±■戸=コrxr)/2α−・−・・(3)
を用いて算出することができる。
AQ” +BQ+C=aQ” 10bQ+c+H. (A
a) Q” + (B b) Q+ (C
c He) Here, if we set (A-a) 丑 α (B-b) = β (C c He) = γ, then the pump discharge flow IQ can be calculated using the formula for solving the quadratic equation, Q = (1 β±■door=ko rxr)/2α−・−・・(3)
It can be calculated using

〔実施例〕〔Example〕

第1図は本発明害施例によるポンプ吐出流量計測装置の
系統図である.図において、lはポンプ井、2は後段の
放流井、3はポンプ井1と放流井2との間に設備したポ
ンプ、4はボンプ3の吐出弁であり、吐出流量計測装置
はポンプ井1に付設した水位計5、放流井2に付設した
水位計6、ボンプ3の実揚程H6を求める実揚程演算回
路7、ボンプ3の揚程曲線判別回路8、ポンプ送水管路
に対する抵抗曲線判別回路9、およびポンプの吐出流量
を求める流量演算回路lOより構威されている.ここで
、実揚程演算回路7は、水位計5.6により検出したポ
ンプ井1の水位Haと放水井2の水位1lbとの水位差
から実揚程H0を算出する.また、揚程曲線判別回B7
は、各回転数ごとに算出した揚程曲線の二次方程弐から
実運転中のボンプ4の回転数検出信号に対応した二次方
程式を判別する。
FIG. 1 is a system diagram of a pump discharge flow rate measuring device according to an embodiment of the present invention. In the figure, l is a pump well, 2 is a downstream discharge well, 3 is a pump installed between pump well 1 and discharge well 2, 4 is a discharge valve of pump 3, and the discharge flow rate measuring device is a pump well 1. A water level gauge 5 attached to the discharge well 2, a water level gauge 6 attached to the discharge well 2, an actual head calculation circuit 7 for calculating the actual head H6 of the pump 3, a head curve discrimination circuit 8 for the pump 3, a resistance curve discrimination circuit 9 for the pump water pipe line , and a flow rate calculation circuit lO for determining the discharge flow rate of the pump. Here, the actual head calculation circuit 7 calculates the actual head H0 from the water level difference between the water level Ha of the pump well 1 and the water level 1 lb of the discharge well 2 detected by the water level gauge 5.6. In addition, head curve discrimination time B7
determines the quadratic equation corresponding to the rotational speed detection signal of the pump 4 during actual operation from the quadratic equation of the head curve calculated for each rotational speed.

さらに、抵抗曲線判別回路8は、吐出弁5の各弁開度ご
とに算出した抵抗曲線からその時点での吐出弁開度信号
をに対応した二次方程弐を判別する.一方、流量演算回
路10は、前記により求めた実揚程H.、および実運転
中のポンプ揚程曲線.抵抗曲線に対応した二次方程式を
基に、先述した(3)式の解の公式により連立二次方程
式の解を演算して揚程曲線と抵抗曲線との交点である運
転点に対応したポンプの吐出流量を求め、その演算結果
を吐出流量の計測値として図示されてない記録計に出力
する. 〔発明の効果〕 本発明によるポンプ吐出流量計測装置は、以上説明した
ように構威されているので、従来のように折線で近似し
た一次方程式も用いて計測する方式と比べて演算プログ
ラムが簡素化され、ポンプ場での任意なポンプ運転条件
に対するポンプ吐出流量を、より高速な演算で精度よく
求めることができる.
Furthermore, the resistance curve discriminating circuit 8 discriminates the quadratic equation corresponding to the discharge valve opening signal at that time point from the resistance curve calculated for each valve opening of the discharge valve 5. On the other hand, the flow rate calculation circuit 10 calculates the actual head H. , and the pump head curve during actual operation. Based on the quadratic equation corresponding to the resistance curve, calculate the solution of the simultaneous quadratic equations using the solution formula of equation (3) mentioned above, and find the pump corresponding to the operating point that is the intersection of the head curve and the resistance curve. The discharge flow rate is determined and the calculation result is output to a recorder (not shown) as a measured value of the discharge flow rate. [Effects of the Invention] Since the pump discharge flow rate measuring device according to the present invention is configured as explained above, the calculation program is simpler than the conventional method of measuring using a linear equation approximated by a broken line. The pump discharge flow rate for arbitrary pump operating conditions at a pumping station can be determined with higher accuracy using faster calculations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例によるポンプ吐出流量計測装置の
系統図、第2図はポンプ揚程曲線の二次方程式を求める
説明図である。図において、l:ポンプ井、2:放流井
、3:ボンプ、4:吐出弁、5.6:水位計、7:実揚
程演算回路、8:揚程曲線判別回路、9:抵抗曲線判別
回路、10:流量演算回路。
FIG. 1 is a system diagram of a pump discharge flow rate measuring device according to an embodiment of the present invention, and FIG. 2 is an explanatory diagram for determining a quadratic equation of a pump head curve. In the figure, l: pump well, 2: discharge well, 3: pump, 4: discharge valve, 5.6: water level gauge, 7: actual head calculation circuit, 8: head curve discrimination circuit, 9: resistance curve discrimination circuit, 10: Flow rate calculation circuit.

Claims (1)

【特許請求の範囲】[Claims] 1)ポンプ場におけるポンプ井と放流井との間に設備し
た送水ポンプに対する吐出流量の計測装置であって、ポ
ンプ井と放流井との間の水位差からポンプの実揚程を算
出する実揚程演算部と、ポンプの揚程曲線、吐出弁を含
むポンプ送水管路の抵抗曲線をポンプ回転数、吐出弁開
度の検出値に対応した二次方程式として求める揚程曲線
判定部、および抵抗曲線判定部と、前記により得た実揚
程、および揚程曲線、抵抗曲線の二次方程式から実運転
中のポンプ運転点に対応するポンプ吐出流量を演算によ
り求める流量演算部とからなることを特徴とするポンプ
吐出流量の計測装置。
1) A device for measuring the discharge flow rate of a water pump installed between a pump well and a discharge well at a pumping station, and an actual head calculation that calculates the actual head of the pump from the water level difference between the pump well and the discharge well. a head curve determination unit that calculates a pump head curve and a resistance curve of a pump water supply pipe line including a discharge valve as a quadratic equation corresponding to detected values of pump rotation speed and discharge valve opening; and a resistance curve determination unit. , a flow rate calculation section which calculates the pump discharge flow rate corresponding to the pump operating point during actual operation from the actual head obtained as described above, and the quadratic equation of the head curve and the resistance curve. measuring device.
JP30631689A 1989-11-24 1989-11-24 Measuring device of pump discharge flow Pending JPH03168386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30631689A JPH03168386A (en) 1989-11-24 1989-11-24 Measuring device of pump discharge flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30631689A JPH03168386A (en) 1989-11-24 1989-11-24 Measuring device of pump discharge flow

Publications (1)

Publication Number Publication Date
JPH03168386A true JPH03168386A (en) 1991-07-22

Family

ID=17955640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30631689A Pending JPH03168386A (en) 1989-11-24 1989-11-24 Measuring device of pump discharge flow

Country Status (1)

Country Link
JP (1) JPH03168386A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999051883A1 (en) * 1998-04-03 1999-10-14 Ebara Corporation Diagnosing system for fluid machinery
JP2007297919A (en) * 2006-04-27 2007-11-15 Matsushita Electric Ind Co Ltd Pump operation supporting system
EP2354556A1 (en) * 2010-02-10 2011-08-10 ABB Oy Method in connection with a pump driven with a frequency converter and a frequency converter
EP2733358A1 (en) 2012-11-15 2014-05-21 ABB Oy Method for approximating the static head downstream of a pump
CN112833031A (en) * 2017-03-10 2021-05-25 Ksb股份有限公司 Method for regulating the rotational speed of a centrifugal pump

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999051883A1 (en) * 1998-04-03 1999-10-14 Ebara Corporation Diagnosing system for fluid machinery
JP3343245B2 (en) * 1998-04-03 2002-11-11 株式会社荏原製作所 Fluid machine diagnostic system
CN1128930C (en) * 1998-04-03 2003-11-26 株式会社荏原制作所 Diagnosing system for fluid machinery
JP2007297919A (en) * 2006-04-27 2007-11-15 Matsushita Electric Ind Co Ltd Pump operation supporting system
EP2354556A1 (en) * 2010-02-10 2011-08-10 ABB Oy Method in connection with a pump driven with a frequency converter and a frequency converter
US9181954B2 (en) 2010-02-10 2015-11-10 Abb Technology Oy Method in connection with a pump driven with a frequency converter and frequency converter
EP2733358A1 (en) 2012-11-15 2014-05-21 ABB Oy Method for approximating the static head downstream of a pump
US9568921B2 (en) 2012-11-15 2017-02-14 Abb Technology Oy Method for approximating a static head of a fluid transfer system
CN112833031A (en) * 2017-03-10 2021-05-25 Ksb股份有限公司 Method for regulating the rotational speed of a centrifugal pump
JP2021101113A (en) * 2017-03-10 2021-07-08 カーエスベー ソシエタス ヨーロピア ウント コンパニー コマンディート ゲゼルシャフト アウフ アクチェンKSB SE & Co. KGaA Method for controlling rotation speed of centrifugal pump

Similar Documents

Publication Publication Date Title
US6591697B2 (en) Method for determining pump flow rates using motor torque measurements
US3564912A (en) Fluid flow measurement system
EP1881304B1 (en) Flow rate measurement device
CA2056929C (en) Flowmeter proving apparatus
US4417474A (en) Densitometer
US4184364A (en) Viscosimeter
JPH03168386A (en) Measuring device of pump discharge flow
Hancke et al. The microprocessor measurement of low values of rotational speed and acceleration
US4996869A (en) System for selecting valid K-factor data points based upon selected criteria
US5965800A (en) Method of calibrating an ultrasonic flow meter
CN110375818A (en) Total temperature range ultrasonic flow rate measuring high-precision low-power consumption compensation method
JP2003228646A (en) River condition simulation method
US4773253A (en) Method and apparatus for measuring fluid density
JPH0914180A (en) Method and device for detecting delivery flow rate of variable speed pump
JPH03145597A (en) Method for determining discharge flow rate of rotary pump
JPS62815A (en) Pump flowmeter
JPH0452518A (en) Measuring apparatus of flow rate
JP3286008B2 (en) Flowmeter
JPH08338802A (en) Rotational viscometer
RU2085904C1 (en) Method for measuring viscosity factor of liquid, gas, and gas-liquid mixture flows
JPS6319831B2 (en)
JPH06213700A (en) Instrument error testing device for flow meter
JPH05290100A (en) Flow meter
JPS634132B2 (en)
JPS58218505A (en) Controller for sluice