JPH0316820A - Suspension device for vehicle - Google Patents

Suspension device for vehicle

Info

Publication number
JPH0316820A
JPH0316820A JP15109489A JP15109489A JPH0316820A JP H0316820 A JPH0316820 A JP H0316820A JP 15109489 A JP15109489 A JP 15109489A JP 15109489 A JP15109489 A JP 15109489A JP H0316820 A JPH0316820 A JP H0316820A
Authority
JP
Japan
Prior art keywords
suspension force
road surface
vehicle
fuzzy
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15109489A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nakanishi
裕之 中西
Daigen Nishi
西 台元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP15109489A priority Critical patent/JPH0316820A/en
Publication of JPH0316820A publication Critical patent/JPH0316820A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To make it possible that the suspension force suits own taste is swiftly and minutely determined by detecting the road surface state in front of a vehicle, and performing fuzzy inference according to the detected car speed and the degree of the set suspension force to determine the suspension force and output to an adjusting means. CONSTITUTION:The road surface state in front of a vehicle front wheel 8 is detected by an ultrasonic sensor 10, and inputted to a road surface state detection part 2 to detect the degree of roughness/fineness of the road surface, and, inputted to a fuzzy controller 4 together with the car speed signal X3 from a car speed detection part 3 and the set suspension force signal X1 of a suspension force setting part 1. The fuzzy controller 4 performs fuzzy inference based on these input signals X1-X3, and the suspension force y is determined and outputted to a suspension force adjusting part 5. The adjusting part 5 increases/ decreases the suspension force of an oil dumper 7 based on this suspension force. With this constitution, the suspension force suits the taste of an occupant can be minutely and swiftly determined.

Description

【発明の詳細な説明】 +a+産業上の利用分野 この発明は、車両の懸架力をファジィ推論により調整す
る懸架装置に関する。
DETAILED DESCRIPTION OF THE INVENTION +a+Field of Industrial Application This invention relates to a suspension system that adjusts the suspension force of a vehicle using fuzzy reasoning.

′(b)従来の技術 車両において車輪を懸架する懸架装置の懸架力は、乗り
心地や走行安定性に大きな影響を与える。路面が平滑な
状態では懸架装置の懸架力が大きいほど走行安定性を高
めることがてき、また、これによって居住性が著しく劣
化することもない。
'(b) Prior Art The suspension force of the suspension system that suspends the wheels of a vehicle has a great effect on ride comfort and running stability. When the road surface is smooth, the greater the suspension force of the suspension system, the greater the driving stability, and this does not significantly deteriorate the comfort of the vehicle.

ところが、凹凸の激しい路面を走行する場合には、懸架
力が大きいと居住性が劣化し、また走行安定性も低下す
る。そこで、超音波センヅなどを用いて車両前方の路面
状況を検出し、この検出結果に基づいて懸架力を増減す
るようにした懸架装置が提案されている。このような懸
架装置では一般に、路面状況の検出データをマイクロコ
ンビュタに入力し、演算処理を行った後その演算結果に
基づいて懸架力を変えるようにしている。
However, when driving on a highly uneven road surface, if the suspension force is large, the comfort deteriorates and the driving stability also deteriorates. Therefore, a suspension system has been proposed in which the road surface condition in front of the vehicle is detected using an ultrasonic sensor or the like, and the suspension force is increased or decreased based on the detection result. Generally, in such a suspension system, detected data of the road surface condition is inputted into a microcomputer, and after arithmetic processing is performed, the suspension force is changed based on the result of the calculation.

{0}発明が解決しようとする課題 しかしながら、上記従来の懸架装置では、路面から車両
に作用する振動の伝播速度に対してマイクロコンピュー
タにおける演算処理時間が長時間となり、その演算結果
が実現されるまでに相当の時間を必要とし、充分な応答
性を得ることができない問題があった。また、演算処理
を高速化するために演算を単純化すると、懸架力を極め
細かく調整することができず、路面状況に最適な懸架力
を得ることができない問題があった。さらに5同様の理
由から路面状況以外の要素、例えば居住性に関する搭乗
者の嗜好を組め合わセて懸架力を調整することができな
い問題があった。
{0}Problems to be Solved by the Invention However, in the above-mentioned conventional suspension system, the calculation processing time in the microcomputer is long due to the propagation speed of vibrations acting on the vehicle from the road surface, and the calculation results are not realized. There was a problem in that it took a considerable amount of time to complete the process and it was not possible to obtain sufficient responsiveness. Furthermore, if the calculation is simplified in order to speed up the calculation process, the suspension force cannot be adjusted extremely finely, and there is a problem in that it is not possible to obtain the optimum suspension force for the road surface condition. Furthermore, for the same reason as No. 5, there is a problem in that the suspension force cannot be adjusted by combining factors other than road surface conditions, such as passenger preference regarding comfort.

この発明の目的は、車両前方の路面状況、車両速度およ
び設定入力された内容に基づいてファジィtttafa
を行い懸架力を決定することにより、懸架力を複数の要
素に基づいて素早くかつ極め細かく決定することができ
るとともに、搭乗者の嗜好に合わせて懸架力を決定でき
る車両の懸架装置を提供することにある。
An object of the present invention is to generate a fuzzy
To provide a suspension system for a vehicle that can quickly and precisely determine the suspension force based on a plurality of factors by determining the suspension force by performing the following steps. It is in.

(d)課題を解決するための手段 この発明の車両の懸架装置は、車両前方の路面状況を検
出する路面状況検出手段と、車両の走行速度を検出する
速度検出手段と、車両の懸架力の程度を設定入力する設
定手段と、車両の懸架力を増減する懸架力調整手段と、
路面状況検出手段と速度検出手段との検出結果および設
定手段の設定値を入力値としてファジィ推論を行い懸架
力調整手段に出力する懸架力を決定するファジィ推論手
段と、力・ら構成したごとを特徴どする。
(d) Means for Solving the Problems The vehicle suspension system of the present invention includes a road surface condition detection means for detecting the road surface condition in front of the vehicle, a speed detection means for detecting the traveling speed of the vehicle, and a vehicle suspension system that detects the vehicle suspension force. a setting means for setting and inputting the degree; a suspension force adjusting means for increasing or decreasing the suspension force of the vehicle;
Fuzzy inference means determines the suspension force to be output to the suspension force adjustment means by performing fuzzy inference using the detection results of the road surface condition detection means and the speed detection means and the setting value of the setting means as input values; What are the characteristics?

(e)作用 この発明においては、路面状況検出手段から入力された
路面状況、速度検出手段から入力された走行速度、およ
び設定手段から入力された懸架力の程度を入力値として
ファジィ推論手段においてファ・′ジイ推論がなされ、
懸架力調整手段に出力する懸架力が決定される。
(e) Effect In this invention, the fuzzy inference means uses the road surface condition input from the road surface condition detection means, the traveling speed input from the speed detection means, and the degree of suspension force input from the setting means as input values.・The inference was made,
The suspension force to be output to the suspension force adjustment means is determined.

ファジィ推論手段は、分知のようにファジィ演算を行・
うファジィ演算部と、確定値演算を行うデファジィファ
イ部とで構成されている。ファジィ演算部は予め定めら
れたファジィルールに従ったメンハシソプ関数発生器を
備え、入力される変数に対1るメンバシソプ値を演算す
るとともに、その結果に基づいて演算した推論値をデフ
ァジィファイ部に対して出力する。このファジィルール
はif(x+  =A and X2=B  −)th
en(y  =Z)の形式で表され、(x+ −^an
d X2=B・・・)は前件部、(y=Z)は後件部と
呼ばれる。
The fuzzy inference means performs fuzzy operations like a
It consists of a fuzzy calculation section and a defuzzification section that performs definite value calculations. The fuzzy calculation section is equipped with a function generator that follows predetermined fuzzy rules, and calculates a member function value for each input variable, and sends an inference value calculated based on the result to the defuzzification section. Output against. This fuzzy rule is if(x+ =A and X2=B -)th
It is expressed in the form en(y = Z), and (x+ −^an
dX2=B...) is called the antecedent part, and (y=Z) is called the consequent part.

第7図は上記のファジィルールに従って推論結果を出力
する公知の手法を説明するための図である。
FIG. 7 is a diagram for explaining a known method of outputting inference results according to the above-mentioned fuzzy rules.

同図(A),  (B)は入力値である前件部の2つの
変数(X+,XZ)に対応するメンバシップ関数を示し
、同図(C)は出力値である後件部に対応するメンバシ
ソプ関数を表す。ここでは前件部のメンバシソプ関数を
2つ示しているが、前件部の変数の種類が増えればメン
バシップ関数もその分増加する。各図において横軸は変
数の値を表し、縦軸はメンハシソプの位置(所属度)を
表すいま、前件部の第1項の変数x1の値がXであると
すると、そのときの所属度は0.5である(同図(A>
参照〉。また、前件部の第2項目の変数x2の値がx 
, Lであるとすると、そのときの所属度は0.3であ
る(同図(B)参照〉。
Figures (A) and (B) show the membership functions corresponding to the two variables (X+, XZ) in the antecedent part, which are input values, and (C) in the figure corresponds to the consequent part, which is the output value. Represents a member sysop function. Here, two membership functions for the antecedent part are shown, but as the types of variables in the antecedent part increase, the number of membership functions will increase accordingly. In each figure, the horizontal axis represents the value of the variable, and the vertical axis represents the position (degree of affiliation) of the menhashisopu. Now, if the value of variable x1 in the first term of the antecedent part is X, then the degree of affiliation at that time. is 0.5 (same figure (A>
reference>. Also, the value of variable x2 in the second item of the antecedent part is x
, L, then the degree of membership is 0.3 (see (B) in the same figure).

このような場合ファジィ演算ではそれぞれの所属度の中
で最も小さな値をとる。すなわち、上記の例では所属度
0.3を選ふ。次にZに対応するメンハシソプ関数を上
記の所属度0.3の所で頭切りを行い、下側の台形部S
の重心位置y′を求める。そしてこのy′を推論結果と
して出力する。
In such a case, the fuzzy operation takes the smallest value among the degrees of membership. That is, in the above example, a degree of affiliation of 0.3 is selected. Next, truncate the Menhasisop function corresponding to Z at the above membership degree of 0.3, and calculate the lower trapezoidal part S.
Find the center of gravity position y'. Then, this y' is output as the inference result.

1つのルールに対しては以上のような推論を行うが、一
般には複数のルールを設定する。この場合には各ルール
毎に第7図(C)に示す推論結果が出力される。そして
各ルール毎に出力された台形部を論理和し、その論理和
した部分(第7図(D)の斜線領域)の重心y〃を論理
の確定値として出力する。このように、第7図(A)お
よび(B)のメンバシソプ関数の横軸に示される入力値
が中間値を取るように出力値が求められる。
The above inference is performed for one rule, but generally multiple rules are set. In this case, the inference results shown in FIG. 7(C) are output for each rule. Then, the trapezoid parts output for each rule are logically summed, and the center of gravity y of the logically summed part (hatched area in FIG. 7(D)) is outputted as a determined logical value. In this way, the output value is determined so that the input value shown on the horizontal axis of the member system function in FIGS. 7(A) and 7(B) takes an intermediate value.

以上の論理手法において前件部に属する所属度の論理積
演算(小さい方の所属度を選ぶ演算)ルールと、後件部
に対する台形部の論理和演算ルールとをmini−ma
yルールと呼び、それぞれ前件部論理積回路および後件
部論理和回路において実行される。
In the above logical method, the logical product operation rule for the degree of belonging belonging to the antecedent part (operation to select the smaller degree of belonging) and the logical sum operation rule for the trapezoidal part for the consequent part are mini-ma
These rules are called y-rules and are executed in the antecedent logical product circuit and the consequent logical sum circuit, respectively.

この発明においては、第6図(D)の重心y〃をゼ、架
力として出力する。
In this invention, the center of gravity y in FIG. 6(D) is output as the suspension force.

(f)実施例 第1図は、この発明の実施例である車両の懸架装置の構
或を示す図である。
(f) Embodiment FIG. 1 is a diagram showing the structure of a vehicle suspension system according to an embodiment of the present invention.

車両6において前輪8の前方の路面状況が超音波セン4
J10により検出される。超音波センサ10の検出結果
は路面状況検出部2に入力され、路面の粗密程度が路面
状況として検出される。なお、路面状況検出手段として
は路面の粗密程度を検出てきるものであれば超音波セン
サ10以外であっても良い。また、前輸8の回転速度は
回転センリ“9により検出される。四転センサ9の検出
結果は車速検出部36こ入力され、車両6の走行速度が
検出される。路面状況検出部2および車速検出部3にお
いて検出された路面状況および走行速度は路面信号x2
1−3よび車速度信号x3としてファジィコン1・ロー
ラ4に入力される。また、車両6の操縦部において図外
のスイソチの操作により車輪を懸架する懸架力を設定入
力することができる。
In the vehicle 6, the road surface condition in front of the front wheels 8 is detected by the ultrasonic sensor 4.
Detected by J10. The detection results of the ultrasonic sensor 10 are input to the road surface condition detection section 2, and the degree of density of the road surface is detected as the road surface condition. Note that the road surface condition detecting means may be any device other than the ultrasonic sensor 10 as long as it can detect the degree of density of the road surface. Further, the rotational speed of the front wheel 8 is detected by the rotation sensor 9. The detection result of the four-wheel rotation sensor 9 is inputted to the vehicle speed detection section 36, and the running speed of the vehicle 6 is detected. The road surface condition and traveling speed detected by the vehicle speed detection unit 3 are road surface signals x2.
1-3 and vehicle speed signal x3 to the fuzzy controller 1 and roller 4. Further, the suspension force for suspending the wheels can be set and input by operating a switch (not shown) in the control section of the vehicle 6.

この設定結果が懸架力設定部1 くこの発明の設定手段
である)から設定信号X,としてファジィコンl・ロー
ラ4に入力される。ファジィコンl・ローラ4はこれら
の入力値X1〜X,に基づいて後述するファジィルール
およびメンバシンプ関数に従ってファジィ推論を行い、
このファジィ推論によって得られた懸架力yを懸架力調
整部5に出力する。懸架力調整部5はファジィコントロ
ーラ4から入力された懸架力yを実現するようにオイル
ダンパ7の懸架力を増減する。
This setting result is input from the suspension force setting section 1 (which is the setting means of the present invention) to the fuzzy control roller 4 as a setting signal X. The fuzzy controller 4 performs fuzzy inference based on these input values X1 to X, according to fuzzy rules and member simplification functions, which will be described later.
The suspension force y obtained by this fuzzy inference is output to the suspension force adjustment section 5. The suspension force adjustment section 5 increases or decreases the suspension force of the oil damper 7 so as to realize the suspension force y input from the fuzzy controller 4.

オイルダンパ7は第2図に示すように、ピス1・ン24
に設けられたオリフィス23に調節部材25を備えてお
り、この調節部材25はモータ22の駆動により変位し
てオリフィス23の開口面積を増減する。従ってモータ
ドライバ2↓に制1卸信号を出力してモーク22を駆動
することにより、オリフィス23の開口面積を増減し、
ピストン24に作用する減衰力すなわち、オイルダンパ
7の懸架力を増滅することができる。
As shown in FIG. 2, the oil damper 7
The orifice 23 provided in the orifice 23 is provided with an adjustment member 25, and the adjustment member 25 is displaced by the drive of the motor 22 to increase or decrease the opening area of the orifice 23. Therefore, by outputting a control signal to the motor driver 2↓ and driving the moke 22, the opening area of the orifice 23 can be increased or decreased.
The damping force acting on the piston 24, that is, the suspension force of the oil damper 7 can be increased or decreased.

第3図は、上記車両の懸架装置の一部を構成するファジ
ィコン1・ローラの構成を示すブロソク図である。
FIG. 3 is a block diagram showing the configuration of the fuzzy controller 1 roller that constitutes a part of the suspension system of the vehicle.

ファジィコン1ヘローラ4はファジィ演算部40とデフ
ァジィファイ部41とを備えている。ファジィ演算部4
0は第5図に示すファジィルールに従ってルール毎の推
論結果Xiを出力する。このファジィ演算部40は各ル
ール毎に設けられており、複数のファジィ演算部40の
推論結果が並列にデファジィファイ部41に出力される
。例えば、第3図において最上部に位置するファジィ演
算部40は、第5図に示すファジィルールのうち、if
(x+  =NS and x. =ZR and X
3 =NL)tl+en (y = NL) に対応する。
The fuzzy controller 1 and the roller 4 include a fuzzy calculation section 40 and a defuzzification section 41. Fuzzy operation section 4
0 outputs the inference result Xi for each rule according to the fuzzy rules shown in FIG. This fuzzy calculation unit 40 is provided for each rule, and the inference results of the plurality of fuzzy calculation units 40 are output in parallel to the defuzzification unit 41. For example, the fuzzy calculation unit 40 located at the top in FIG.
(x+ =NS and x. =ZR and X
3 = NL)tl+en (y = NL).

第4図(A)は、上記ファジィ演算部40の構成を示し
ている。ファジィ演算部40は4個の汎用ノンハシソプ
関数発生器50〜53を有し、このメンバシソブ関数発
生器50〜53のそれぞれには設定値x1とこれに対応
するラベルNS、路面状況X2とこれに対応するラヘル
ZR、車速X3とこれに対応するラベルN L、および
悲架力yに対応するラベルNLが入力される。各メンハ
シソプ関数発生器50〜53はそのラヘルに幻応したメ
ンハシソプ関数を発生する。ずなわら、メンバシソプ関
数発生器50内では第6図(A)に示すNSのメンバシ
ノプ関数が発生し、メンハシノプ関数発生器51内では
第6図(B)に示ずZRのメンバシソプ関数が発生し、
メンハシソプ関数発生器52では第5図(C)に示すN
 Lのメンハシソプ関数が発生する。また、メンハシソ
プ関数発生器53では第6図(D)に示ずNLのメンハ
シソプ関数が発生ずる。これら第6図(A)〜(D)に
示したメンバシソプ関数は、第5図に示したファジィル
ールとともに、車両6によるテスト走行によって経験的
に得られた情報に基づいて予め定められている。
FIG. 4(A) shows the configuration of the fuzzy calculation section 40. The fuzzy calculation unit 40 has four general-purpose non-hashish subfunction generators 50 to 53, and each of the member function generators 50 to 53 has a set value x1 and a label NS corresponding thereto, and a road surface condition X2 and a corresponding label NS. Rahel ZR, vehicle speed X3 and its corresponding label NL, and label NL corresponding to the tragic force y are input. Each of the function generators 50 to 53 generates a function corresponding to the Rahel. Of course, the member synoptic function of NS shown in FIG. 6(A) is generated in the member synoptic function generator 50, and the member synoptic function of ZR, not shown in FIG. 6(B), is generated in the member synoptic function generator 51. ,
In the Menhasisop function generator 52, N shown in FIG.
A Menhasisop function of L is generated. In addition, the menhasisop function generator 53 generates a menhasisop function of NL, which is not shown in FIG. 6(D). The member function functions shown in FIGS. 6(A) to 6(D), together with the fuzzy rules shown in FIG. 5, are predetermined based on information obtained empirically through test runs of the vehicle 6.

メンバシップ関数発生器50〜52の出力、すなわちフ
ァジィルールの前件部の各項の所属度は、前件部論理積
回路54に出力され、前述のminimaxルールのm
iniルールによって小さい方の所属9 { 0 度が選択される。その結果が後件部論理積回路55に送
られる。この後件部論理積回路55では、メンハシソプ
関数発生器53で出力されるメンバシンプ関数に前件部
論理積回路54からの推論結果を当てはめて第7図(C
)に示したような頭切りを行い(論理積をとり)、台形
部を推論結果として出力する。
The outputs of the membership function generators 50 to 52, that is, the degree of membership of each term in the antecedent part of the fuzzy rule, are output to the antecedent part AND circuit 54, and
The smaller affiliation 9 { 0 degrees is selected by the ini rule. The result is sent to the consequent AND circuit 55. The consequent logical product circuit 55 applies the inference result from the antecedent logical product circuit 54 to the member symp function output from the menhashisop function generator 53, and applies the inference result from the antecedent logical product circuit 54 to
), perform the head truncation (take the logical product), and output the trapezoidal part as the inference result.

第4図(B)は、デファジィファイ部41の構戒を示す
図である。同図に示すように、デファジファイ部41は
論理和回B(後件部論理和回路〉60と確定値演算回路
61とで構成される。論理和回路60はmini−ma
xルールのmaxルールを演算する部分であり、各ファ
ジィ演算部40からの台形出力(推論結果)を論理和し
、第7図(D)にハンチングを施したような領域を形成
する。確定値演算回路61はこの領域から重心位置を求
め、懸架力yの確定値を出力する。
FIG. 4(B) is a diagram showing the configuration of the defuzzifier 41. As shown in the figure, the defuzzify unit 41 is composed of a logical sum circuit B (consequent part logical sum circuit) 60 and a definite value calculation circuit 61. The logical sum circuit 60 is a mini-ma
This is the part that calculates the max rule of the x rule, and the trapezoidal outputs (inference results) from each fuzzy calculation unit 40 are logically summed to form a hunting area as shown in FIG. 7(D). The determined value calculation circuit 61 determines the center of gravity position from this area and outputs the determined value of the suspension force y.

以上の構成により、ファジィコントローラ4は懸架力設
定部1において設定入力された設定値X1、路面状況検
出部2において検出された路面状況X’、および車検出
部3において検出された重l x 3に基づいて、第5
図に示すファジィルールおよび第6図(A)〜(D)に
示すメンハシップ関数に従ってファジィ推論を行う。こ
の実施例におけるファジィルールは第5図に明らかなよ
うに、路面状況x2が粗くなるほど、また車速x3が遅
くなるほど懸架力yを小さくするよ・)に定められてお
り、また設定値X,の内容を反映するように設定されて
いる。従ってファジィコントローラ4から出力される懸
架力は設定値x,が小さくされるほど、路面状況x2が
粗くなるほど、また車速x3が低くなるほど減少する。
With the above configuration, the fuzzy controller 4 uses the set value X1 set and input in the suspension force setting section 1, the road surface condition X' detected in the road surface condition detecting section 2, and the weight l x 3 detected in the vehicle detecting section 3. Based on the fifth
Fuzzy inference is performed according to the fuzzy rules shown in the figure and the Menhaship functions shown in FIGS. 6(A) to 6(D). As is clear from Fig. 5, the fuzzy rule in this embodiment is that the rougher the road surface condition x2 and the lower the vehicle speed x3, the smaller the suspension force y. It is set to reflect the content. Therefore, the suspension force output from the fuzzy controller 4 decreases as the set value x becomes smaller, as the road surface condition x2 becomes rougher, and as the vehicle speed x3 decreases.

これに応じて懸架力調整部5はモータ22を駆動し、オ
リフィス23の開口面積を大きくし、オイルダンパ7に
おける減衰力を小さくする。
In response, the suspension force adjustment unit 5 drives the motor 22 to increase the opening area of the orifice 23 and reduce the damping force in the oil damper 7.

このようにしてファジィコンI・ローラ4はテスト走行
により経験的に得られた路面状況および車速と居住性お
よび走行安定性との関係に基づいて懸架力を決定し、さ
らにこの決定において設定値X,として入力された搭乗
者の嗜好を参照するた11 12 め、車両の懸架力を路面状況や走行速度に係わらず、常
に搭乗者が満足できる居住性および走行安定を実現する
ように調整する。
In this way, the Fuzzycon I Roller 4 determines the suspension force based on the relationship between the road surface condition and the vehicle speed, the comfort, and the driving stability obtained empirically through test driving, and furthermore, in this determination, the set value , the suspension force of the vehicle is adjusted so as to always realize comfort and running stability that satisfy the occupant, regardless of road surface conditions or running speed.

(gl発明の効果 この発明によれば、車両前方の路面状況、車両の走行速
度および操縦者の嗜好に合わせて車両の懸架力を素早く
かつ極め細かく調整することができ、路面状況や走行速
度に係わらず、常に搭乗者が満足できる居住性および走
行安定性を実現し得る懸架力に調整できる利点がある。
(Effects of the Invention) According to this invention, the suspension force of the vehicle can be quickly and extremely finely adjusted according to the road surface condition in front of the vehicle, the traveling speed of the vehicle, and the driver's preference. Regardless, there is an advantage in that the suspension force can be adjusted to a level that can always provide comfortable accommodation and running stability that satisfy the occupants.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例である車両の懸架装置の構成
を示す図、第2図は同懸架装置の一部を構或するオイル
ダンバを示す図、第3図は同懸架装置の一部を構成する
ファジィコントローラの構成を示す図、第4図(A)お
よび(B)は同ファジィコントローラのそれぞれファジ
ィ演算部およびデファジィファイ部の構或を示す図、第
5図は同ファジィコントローラにおけるファジィルール
を示す図、第6図(A)〜(D)は同ファジィコントロ
ーラにおけるメンバシソプ関数を表す図である。また、
第7図(A)〜(D)は公知のファジィ推論の手法を説
明する図である。 一懸架力設定部、 一路面状況検出部、 一車速検出部、 一ファジィコントローラ、 一懸架力調整部、 一車両、 一オイルダンパ、 一回転センサ、 〇一超音波センサ(路面状況検出手段)。
Fig. 1 is a diagram showing the configuration of a suspension system for a vehicle that is an embodiment of the present invention, Fig. 2 is a diagram showing an oil damper that constitutes a part of the suspension system, and Fig. 3 is a diagram showing a part of the suspension system. 4(A) and 4(B) are diagrams showing the structure of the fuzzy operation section and defuzzify section, respectively, of the same fuzzy controller, and FIG. 5 is a diagram showing the structure of the fuzzy controller constituting the FIGS. 6(A) to 6(D), which are diagrams showing fuzzy rules, are diagrams representing member functions in the same fuzzy controller. Also,
FIGS. 7(A) to 7(D) are diagrams illustrating a known fuzzy inference method. 1 suspension force setting section, 1 road surface condition detection section, 1 vehicle speed detection section, 1 fuzzy controller, 1 suspension force adjustment section, 1 vehicle, 1 oil damper, 1 rotation sensor, 〇1 ultrasonic sensor (road surface condition detection means).

Claims (1)

【特許請求の範囲】[Claims] (1)車両前方の路面状況を検出する路面状況検出手段
と、車両の走行速度を検出する速度検出手段と、車両の
懸架力の程度を設定入力する設定手段と、車両の懸架力
を増減する懸架力調整手段と、路面状況検出手段と速度
検出手段との検出結果および設定手段の設定値を入力値
としてファジィ推論を行い懸架力調整手段に出力する懸
架力を決定するファジィ推論手段と、から構成したこと
を特徴とする車両の懸架装置。
(1) Road surface condition detection means for detecting the road surface condition in front of the vehicle, speed detection means for detecting the running speed of the vehicle, setting means for setting and inputting the level of suspension force of the vehicle, and increasing or decreasing the suspension force of the vehicle. Suspension force adjustment means; Fuzzy inference means that performs fuzzy inference using the detection results of the road surface condition detection means and the speed detection means and the setting value of the setting means as input values to determine the suspension force to be output to the suspension force adjustment means. A vehicle suspension system characterized by comprising:
JP15109489A 1989-06-14 1989-06-14 Suspension device for vehicle Pending JPH0316820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15109489A JPH0316820A (en) 1989-06-14 1989-06-14 Suspension device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15109489A JPH0316820A (en) 1989-06-14 1989-06-14 Suspension device for vehicle

Publications (1)

Publication Number Publication Date
JPH0316820A true JPH0316820A (en) 1991-01-24

Family

ID=15511205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15109489A Pending JPH0316820A (en) 1989-06-14 1989-06-14 Suspension device for vehicle

Country Status (1)

Country Link
JP (1) JPH0316820A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0556070A2 (en) * 1992-02-14 1993-08-18 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Road surface state determining method and suspension controlling device
US20160347365A1 (en) * 2015-05-28 2016-12-01 Ford Global Technologies, Llc Method and device for supporting a driving maneuver of a motor vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0556070A2 (en) * 1992-02-14 1993-08-18 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Road surface state determining method and suspension controlling device
EP0556070A3 (en) * 1992-02-14 1995-07-19 Mitsubishi Motors Corp
US5539640A (en) * 1992-02-14 1996-07-23 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Road surface condition determining method and suspension controlling device
US20160347365A1 (en) * 2015-05-28 2016-12-01 Ford Global Technologies, Llc Method and device for supporting a driving maneuver of a motor vehicle

Similar Documents

Publication Publication Date Title
JP3010892B2 (en) Vehicle suspension control device
JPH02270619A (en) Shock absorber control device
RU2497692C2 (en) Vehicle suspension adaptive control
JP3446959B2 (en) Signal generation system for open-loop or closed-loop control of a petri dish capable of open-loop or closed-loop control of a motion sequence
KR20050031931A (en) Stability factor deriving method and deriving device of vehicle and control device for vehicle
KR940008979A (en) Vehicle wheel alignment control method and control device
JP2001018623A (en) Method and device for controlling automotive, semiactive suspension
JPH06107032A (en) Control device for vehicle
JPH0648139A (en) Suspension behavior detecting device and suspension control device
JPH04163220A (en) Vehicular suspension device
JP3102230B2 (en) Suspension control device
JPH0316820A (en) Suspension device for vehicle
JPH02225118A (en) Controller for suspension or stabilizer
JPH0740202B2 (en) Adaptive control method
JPH02133215A (en) Shock absorber control device
KR0121133B1 (en) Suspension system
JP3475154B2 (en) Vehicle suspension device
JPH0569718A (en) Suspension control device
KR100716426B1 (en) Method for controlling suspension by using fuzzy logic in cars
JPH05112114A (en) Signal generating device in vehicle
Chen Intelligence application: Elebike fuzzy control part I
JPH05131827A (en) Vehicle suspension control device
JP3078930B2 (en) Suspension control device
JPS58116214A (en) Controller of shock absorber
JPH05131828A (en) Vehicle suspension control device