JPH03167905A - Circular polarized wave primary radiator - Google Patents

Circular polarized wave primary radiator

Info

Publication number
JPH03167905A
JPH03167905A JP30734889A JP30734889A JPH03167905A JP H03167905 A JPH03167905 A JP H03167905A JP 30734889 A JP30734889 A JP 30734889A JP 30734889 A JP30734889 A JP 30734889A JP H03167905 A JPH03167905 A JP H03167905A
Authority
JP
Japan
Prior art keywords
circularly polarized
polarized wave
wave generating
generating section
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30734889A
Other languages
Japanese (ja)
Inventor
Katsumi Sudo
勝美 須藤
Mitsugi Tanaka
貢 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP30734889A priority Critical patent/JPH03167905A/en
Publication of JPH03167905A publication Critical patent/JPH03167905A/en
Pending legal-status Critical Current

Links

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Waveguide Aerials (AREA)

Abstract

PURPOSE:To prevent the deterioration in the voltage standing wave ratio(VSWR) characteristic and in the circularly polarized wave ratio characteristic and to reduce the cost by forming a tilt part inclined toward the adjacent part to the end to either or both the front end part and the rear end part of a circularly polarized wave generating section in a circularly polarized wave primary radiator. CONSTITUTION:A couple of flat faces 12, 13 and a couple of concentric circular-arc faces 14 and 15 opposite to each other in parallel are formed for the inner circumferential faces of a circularly polarized wave generating section 11. When inner outer both circumferential faces of the circularly polarized wave generating section 11 have a taper, the tapered angle of the circularly polarized wave generating section 11 with respect to the axial line is selected to be 1-several degrees. The tilt part, even one tilt part in existence, avoids the production of rapid discontinuous point in the relative relation between the horn part 1 and the circularly polarized wave generating section 11 or between the circularly polarized wave generating section 11 and a circular- rectangular conversion section 21 by the production of the tilt part. Thus, the VSWR characteristic and the circularly polarized wave rate characteristic are not deteriorated, the manufacture is simplified to reduce the cost and to attain mass-production.

Description

【発明の詳細な説明】 r産業上の利用分野』 本発明は円偏波一次放射器の改良に関するものである。[Detailed description of the invention] r Industrial application field” The present invention relates to improvements in circularly polarized primary radiators.

『従来の技術』 放送衛星(BS衛星)の電波を受信するとき、放送衛星
から地上への送信電力は、円偏波により励振されるのが
一般であり、かかる円偏波を感度よく受信するには、円
偏波を励振するためのアンテナ系が必要となる。
``Prior art'' When receiving radio waves from a broadcasting satellite (BS satellite), the power transmitted from the broadcasting satellite to the ground is generally excited by circularly polarized waves, and such circularly polarized waves are received with high sensitivity. requires an antenna system to excite circularly polarized waves.

衛星放送受信アンテナの一次放射器、すなわち円偏波一
次放射器は、大別して、ホーン部、円偏波発生部、円形
一矩形変換部により構成されており、その円偏波発生部
は、TE口モードを伝送するための円形導波管において
、互いに直交した二つの直線偏波の位相を90″ずらせ
ることにより、円偏波を発生させるようにしてる. より具体的には、円偏波発生部内に誘電体板、金属片、
ネジポストなど、適当な挿入部材を固定することにより
、円偏波発生部の断面内における直交二軸を伝わる電界
の位相差が90°となるようにしている。
The primary radiator of a satellite broadcasting antenna, that is, the circularly polarized primary radiator, is roughly divided into a horn section, a circularly polarized wave generating section, and a circular-to-rectangular converting section. In a circular waveguide for transmitting the mouth mode, circularly polarized waves are generated by shifting the phases of two mutually orthogonal linearly polarized waves by 90''.More specifically, circularly polarized waves There are dielectric plates, metal pieces,
By fixing a suitable insertion member such as a screw post, the phase difference between the electric fields transmitted along two orthogonal axes in the cross section of the circularly polarized wave generating section is set to 90°.

しかし、これら技術は、円偏波率一周波数(f)特性、
定在波比(VSWR)一周波数(f)特性の調整作業、
円形導波管内に挿入部材を固定するための作業などが必
要となり、その結果、円偏波発生部の組立、調整に手数
がかかりすぎ、これがコストアップ要因になる. しかも、個々の円偏波発生部ごとに上記諸特性を調整し
なければならないから、量産にも適していない。
However, these techniques have circular polarization coefficient-frequency (f) characteristics,
Adjustment of standing wave ratio (VSWR) and frequency (f) characteristics,
Work is required to fix the insertion member inside the circular waveguide, and as a result, it takes too much time to assemble and adjust the circularly polarized wave generator, which increases costs. Moreover, since the above-mentioned characteristics must be adjusted for each individual circularly polarized wave generating section, it is not suitable for mass production.

これに対処するため、第5図、第6図に示す円偏波発生
部が提案されている。
To deal with this, a circularly polarized wave generator shown in FIGS. 5 and 6 has been proposed.

以下.第5図、第6図の技術内容について述べる. 第5図、第6図に示す円偏波発生部l1は,導波管構造
からなる. かかる円偏波発生部11の内周面は、互いに対面して平
行する一対の平坦面12、!3と、これら平坦面l2、
13間にわたる一対の同心状の円弧面14. 15とで
形成されている. 第6図において、円偏波発生部1lの断面中心を通り互
いに直交する二軸をそれぞれE×、E,とした場合、一
対の平坦面12、l3は、その直交三軸Ex,Eyに対
して45°の勾配を有する. さらに、!s5図、第6図において、円偏波発生部l1
の断面における長軸の寸法をd、短軸の寸法をW、円偏
波発生部11の長さを文とした場合、上記長軸を伝わる
電界と、上記短軸を伝わる電界との位相差δが、一次放
射器の出力端において9Q’となるように、円偏波発生
部11の長軸寸法d.′fi軸寸法W、長さ文がそれぞ
れ設定されている.一般に、上述した位相差δは、下記
(1)式により求められる. δ(rad)= 2vr((1/λgS)  −(1/
入gL))?・・・(1)入gS:短軸を伝わる電界の
管内波長(m■)入gL:長軸を伝わる電界の管内波長
(ms)見:円偏波発生部の長さ 入gS、入gLは下記(2)〜(5)式の通りである.
八gS(am)=λ/r 1−(入/入cs)2 ・−
 −− ・− (2)入as(am)=  2π/Kc
S  ・・・・・・・・・・・・・◆(3)入gL(鳳
鵬)=λ/r 1−(入/入cL)2・・・・・・(4
)入cL(m鵬)=  2π/KcL  ・・・・・・
・・・・・・・・(5)入:自由空間波長 KcS:短軸方向の固有値 KcL:長軸方向の固有値 したがって、上述した(1)式より、円偏波発生部l1
の長軸寸法d、短軸寸法W、長さ文がそれぞれ得られ、
具体的一例として、d*19a+s(曲率半径8++u
s)、w=18+sm . Jls41wmのようにな
る.かかる円偏波発生部11は、既述の通り,一次放射
器におけるホーン部と円形一矩形円変換部との間に介在
され、一次放射器のこれら各部は、たとえば、ダイカス
+4形法により一体威形される.この際、円偏波発生部
l1の各寸法を管理することにより、所定の円偏波率一
周波数特性、定在波比一周波数特性を確保することがで
きる.しかも、円偏波発生部11は、製造が簡単である
ばかりか、面倒な部材の調整や固定なしに、所定の特性
を確保することができ、一次放射器のコストダウン、量
産性をもはかることができる.r発明が解決しようとす
る課題』 上述したように、第5図、第6図に示した円偏波発生部
11は、その先行技術の問題点を解消した点で望ましい
といえる. しかし、この円偏波発生部1lは、ホーン部と円形一矩
形変換部との間にあって、両平坦面l2、13の軸方向
の両端部が急激な不連続点(段差)を形成するので、イ
ンピーダンスの大きな変化により反射波が増加し、VS
WR特性、円偏波率特性などを劣化させる. 本発明はこのような技術的課題に鑑み、VSWR特性,
円偏波率特性の劣化をきたすことのない、しかも,製造
が簡単な円偏波一次放射器を提供しようとするものであ
る. r課題を解決するための手段1 本発明は所期の目的を達威するため、ホーン部と円形一
矩形変換部との間に円偏波発生部が設けられた導波管構
造からなり,円偏波発生部の内周面が、互いに対面する
一対の平坦面と,これら平坦面間にわたる一対の円弧面
とで形成されており、円偏波発生部の断面中心を通る直
交二軸をそれぞれE., E,とした場合、上記一対の
平坦面が上記直交二軸Ex. Eyに対して45°の勾
配を有し、円偏波発生部断面の長軸を伝わる電界と、円
偏波発生部断面の短軸を伝わる電界との位相差が、放射
出力端において90°となる円偏波一次放射器において
、上記円偏波発生部の平坦面における軸方向の端部には
、その端部との隣接部に向けて傾斜する傾斜部が形成さ
れていることを特徴とする.r作用』 本発明における円偏波発生部の場合、円偏波発生部の内
周面を形成している一対の平坦面、一対の同心円弧面が
、所定の条件を満足させるので、円偏波を発生させるこ
とができる. しかも,円偏波発生部の平坦面における軸方向の端部,
すなわち、円偏波発生部の前端部、後端部のいずれか一
方または両方に、その端部との隣接部に向けて傾斜する
傾斜部が形成されているから、かかる傾斜部が形成され
た分だけ、円偏波発生部とホーン部、円形一矩形変換部
との相対関係において急激な不連続点(段差)が生じな
い.その結果、インピーダンスの大きな変化とか、これ
に起因した反射波の増加が殆どなく、VSWR特性、円
偏波率特性が劣化しない。
below. The technical content shown in Figures 5 and 6 will be described below. The circularly polarized wave generating section l1 shown in FIGS. 5 and 6 has a waveguide structure. The inner peripheral surface of the circularly polarized wave generating section 11 includes a pair of flat surfaces 12 facing each other and parallel to each other. 3 and these flat surfaces l2,
A pair of concentric circular arc surfaces extending between 13 and 14. It is formed by 15. In FIG. 6, if two axes that pass through the center of the cross-section of the circularly polarized wave generator 1l and are orthogonal to each other are Ex and E, respectively, then the pair of flat surfaces 12 and l3 are relative to the three orthogonal axes Ex and Ey. It has a slope of 45°. moreover,! In Figure s5 and Figure 6, the circularly polarized wave generating section l1
If the dimension of the long axis in the cross section is d, the dimension of the short axis is W, and the length of the circularly polarized wave generating section 11 is d, then the phase difference between the electric field transmitted along the long axis and the electric field transmitted along the short axis is The long axis dimension d. 'fi axis dimension W and length statement are set respectively. Generally, the above-mentioned phase difference δ is determined by the following equation (1). δ(rad) = 2vr((1/λgS) −(1/
Enter gL))? ...(1) Input gS: Inner wavelength of the electric field transmitted along the short axis (m) Input gL: Inner wavelength of the electric field transmitted along the long axis (ms) View: Length of the circularly polarized wave generating section Input gS, Input gL are as shown in equations (2) to (5) below.
8gS(am)=λ/r 1-(in/in cs)2 ・-
−− ・− (2) Input as (am) = 2π/Kc
S ・・・・・・・・・・・・◆(3) Entering gL (Hoho) = λ/r 1-(Entering/Entering cL) 2......(4
) input cL (mpeng) = 2π/KcL ・・・・・・
...... (5) Input: Free space wavelength KcS: Eigenvalue in the short axis direction KcL: Eigenvalue in the long axis direction Therefore, from the above equation (1), the circularly polarized wave generating part l1
The major axis dimension d, minor axis dimension W, and length statement are obtained, respectively.
As a specific example, d*19a+s (curvature radius 8++u
s), w=18+sm. It will look like Jls41wm. As described above, this circularly polarized wave generating section 11 is interposed between the horn section and the circular-to-rectangular-circular converting section in the primary radiator, and these parts of the primary radiator are integrated by, for example, the die cast + 4 type method. It is dignified. At this time, by controlling each dimension of the circularly polarized wave generating section l1, it is possible to ensure a predetermined circular polarization factor-frequency characteristic and standing wave ratio-frequency characteristic. Moreover, the circularly polarized wave generating section 11 is not only easy to manufacture, but also can maintain predetermined characteristics without the need for troublesome adjustment or fixing of components, thereby reducing the cost of the primary radiator and increasing mass productivity. be able to. Problems to be Solved by the Invention As mentioned above, the circularly polarized wave generating section 11 shown in FIGS. 5 and 6 is desirable in that it solves the problems of the prior art. However, this circularly polarized wave generating part 1l is located between the horn part and the circular-to-rectangular converting part, and both ends of the flat surfaces l2 and 13 in the axial direction form a sharp discontinuity point (step). A large change in impedance increases reflected waves, causing VS
Deteriorates WR characteristics, circular polarization characteristics, etc. In view of such technical issues, the present invention has been developed to improve the VSWR characteristics,
The objective is to provide a circularly polarized primary radiator that does not cause deterioration of the circular polarization characteristics and is easy to manufacture. Means for Solving Problems 1 In order to achieve the intended purpose, the present invention comprises a waveguide structure in which a circularly polarized wave generating section is provided between a horn section and a circular-to-rectangular converting section, The inner circumferential surface of the circularly polarized wave generating section is formed by a pair of flat surfaces facing each other and a pair of circular arc surfaces extending between these flat surfaces, and two orthogonal axes passing through the center of the cross section of the circularly polarized wave generating section are formed. Each E. , E, the pair of flat surfaces are aligned with the orthogonal two axes Ex. It has a slope of 45° with respect to Ey, and the phase difference between the electric field that propagates along the long axis of the cross section of the circularly polarized wave generator and the electric field that travels along the short axis of the cross section of the circularly polarized wave generator is 90° at the radiation output end. The circularly polarized primary radiator is characterized in that an axial end of the flat surface of the circularly polarized wave generating section is formed with an inclined part that slopes toward a part adjacent to the end. Suppose that In the case of the circularly polarized wave generating section according to the present invention, the pair of flat surfaces and the pair of concentric arcuate surfaces that form the inner peripheral surface of the circularly polarized wave generating section satisfy the predetermined conditions, so that the circularly polarized wave generating section It can generate waves. Moreover, the axial end of the flat surface of the circularly polarized wave generating section,
In other words, since an inclined part is formed at one or both of the front end and the rear end of the circularly polarized wave generating section and is inclined toward the part adjacent to the end, such an inclined part is formed. As a result, no sharp discontinuities (steps) occur in the relative relationship between the circularly polarized wave generating part, the horn part, and the circular-to-rectangular converting part. As a result, there is almost no large change in impedance or an increase in reflected waves caused by this, and the VSWR characteristics and circular polarization characteristics do not deteriorate.

しかも、ホーン部、円偏波発生部、円形一矩形変換部の
各部は、たとえば、ダイカスト戒形法により簡単に製造
することができ、したがって、次放射器のコストダウン
をはかることができ、量産も可能となる。
Moreover, each part of the horn part, the circularly polarized wave generating part, and the circular-to-rectangular converting part can be easily manufactured by, for example, the die-casting method, which makes it possible to reduce the cost of the next radiator and mass-produce it. is also possible.

l実 施 例』 本発明に係る円偏波一次放射器を図示の実施例基づいて
説明する。
Embodiment 1 A circularly polarized primary radiator according to the present invention will be described based on the illustrated embodiment.

第1図〜第4図において、円偏波一次放射器はホーン部
1と円偏波発生部11と円形一矩形変換部21とを備え
た導波管構造からなり、ホーン部1と円形一矩形変換部
21との間に円偏波発生部1lが介在されている. ホーン部1は、その使用目的に応じて公知ないし周知の
形状が採用され、たとえば、図示のコニカルタイプ以外
に、フレア付のコルゲートタイプなども採用される. 図示例のタイプのホーン部1は、一例として、最大内径
30履1φ、最小内径19mmφ、長さ16.5mmで
ある。
1 to 4, the circularly polarized primary radiator has a waveguide structure including a horn section 1, a circularly polarized wave generating section 11, and a circular-to-rectangular converting section 21. A circularly polarized wave generator 1l is interposed between the rectangular converter 21 and the rectangular converter 21. The horn portion 1 may have a publicly known or well-known shape depending on its intended use; for example, in addition to the conical type shown, a corrugated type with a flare may also be used. The horn portion 1 of the type illustrated has, for example, a maximum inner diameter of 30 mm, a minimum inner diameter of 19 mm, and a length of 16.5 mm.

円偏波発生部l1は、前記第5図、第6図のものと基本
的に同じであり、円偏波発生部11の内周面は、互いに
対面して平行する一対の平坦面12、13と、これら平
坦面12、13間にわたる一対の同心状の円弧面l4、
15とで形成されている.円偏波発生部11の内周面、
外周面は、第1図の左から右に向けて径が次第に小さく
なったもの、すなわち、テーパを有するものが例示され
ているが、当該円偏波発生部l1については、その内周
面または外周面のみが上記のテーパを有するものでもよ
く、あるいは、その内外両周面ともテーバのないもので
もよい. 円偏波発生部11の内外両周面がテーバを有するとき、
円偏波発生部11の軸心線に対するこれらのテーパ角度
(勾配)は1度〜数度であり、具体的一例として、内周
面のテーバ角度は2.1度、外周面のテーバ角度は1.
3度にそれぞれ設定される.円偏波発生部11の一対の
平坦面12、13は、第4図に示す直交二軸Ex, E
yに対して45°の勾配を有するほか、前記第5図、第
6図で述べたと同様、円偏波発生部断面の長軸を伝わる
電界と短軸を伝わる電界との位相差δが、一次放射器の
出力端において80°となるように、d,w,1などが
設定されている. より具体的には、前端側のd *19mm(曲率半径9
.5+o+)、前端側のw−16ms+ .後端側のd
−17mm(曲率半径8.5mm)、後端側のw−14
.51I1.文=41nである. 円形一矩形変換部21は円筒形からなる。
The circularly polarized wave generating section l1 is basically the same as that shown in FIGS. 5 and 6, and the inner peripheral surface of the circularly polarized wave generating section 11 includes a pair of parallel flat surfaces 12 facing each other, 13, a pair of concentric arcuate surfaces l4 spanning between these flat surfaces 12 and 13,
It is formed by 15. the inner circumferential surface of the circularly polarized wave generating section 11;
The outer circumferential surface is exemplified as having a diameter that gradually decreases from left to right in FIG. 1, that is, having a taper. Only the outer circumferential surface may have the above-mentioned taper, or both the inner and outer circumferential surfaces may have no taper. When both the inner and outer circumferential surfaces of the circularly polarized wave generating section 11 have tapered surfaces,
These taper angles (gradients) with respect to the axis of the circularly polarized wave generator 11 range from 1 degree to several degrees, and as a specific example, the Taber angle of the inner peripheral surface is 2.1 degrees, and the Taber angle of the outer peripheral surface is 2.1 degrees. 1.
Each is set in 3 degrees. A pair of flat surfaces 12 and 13 of the circularly polarized wave generator 11 are arranged along two orthogonal axes Ex and E shown in FIG.
In addition to having a slope of 45° with respect to y, as described in FIGS. 5 and 6 above, the phase difference δ between the electric field transmitted along the long axis and the electric field transmitted along the short axis of the cross section of the circularly polarized wave generating section is d, w, 1, etc. are set so that the angle is 80° at the output end of the primary radiator. More specifically, the front end side d *19mm (curvature radius 9
.. 5+o+), w-16ms+ on the front end side. d on the rear end side
-17mm (curvature radius 8.5mm), rear end side w-14
.. 51I1. Sentence = 41n. The circular-to-rectangular conversion section 21 has a cylindrical shape.

円形一矩形変換部21において、その長手力向の中間部
におけるE,軸方向の下部周壁には、BSコンバータを
結合するための結合窓22が開口されており、その後端
部内には、吸収体23とショート板24とが十字型に組
み合わされて装着されている.円形一矩形変換部21は
、内径が一定である円筒形と、第1図の左から右に向け
て径が次第に大きくなるテーパ円筒形との二通りがある
In the circular-to-rectangular converting section 21, a coupling window 22 for coupling the BS converter is opened in the lower peripheral wall in the E and axial direction at the middle part in the longitudinal force direction, and an absorber is provided in the rear end part. 23 and a short plate 24 are combined and attached in a cross shape. The circular-to-rectangular conversion section 21 has two types: a cylindrical shape with a constant inner diameter, and a tapered cylindrical shape with a diameter gradually increasing from left to right in FIG.

図示例では、円形一矩形変換部21としてテーパ円筒形
が採用されている. この場合、円形一矩形変換部21の最小内径(左端) 
14.5mmφ、最大内径(右端) 20.5mmφ、
長さ45smである. 上記において、円偏波発生部1lの両平坦面12,13
における軸方向の端部、すなわち,両平坦面12、13
の前端部、後端部には、第2図、第3図に示すごとく、
該各端部との隣接部(ホーン部l、円形一矩形変換部2
1)に向けて傾斜する複数の傾斜部31. 32、33
、34が形成されている.この傾斜部は、たとえ、一つ
であっても、当該傾斜部が形成された分だけ、ホーン部
1と円偏波発生部11.あるいは、円偏波発生部11と
円形一短形変換部21との相対関係において急激な不連
続点(段差)が生じるのを解消する. したがって、傾斜部は、再平坦面12. 13の前端部
、後端部において一つ以上設けられるが、望まし態様は
,両平坦面12. 13の前端部,後端部すべてに傾斜
部が設けられることである. 未発明に係る円偏波一次放射器の場合、ホーン部l、円
偏波発生部IL円形一矩形変換部21は、たとえば、ダ
イカスト或形法により簡易に或形することができる. か〈て、戒形された円偏波一次放射器は、衛星放送受信
アンテナ用一次放射器として、十分実用に供する. つぎに、本発明の具体例とその比較例につき、VSWR
特性と円偏波率とを測定した結果を第7図、第8図に示
す. 具体例のものの仕様は、既述の数値に基づくものであり
,比較例のもは、具体例と同じ仕様であるが、傾斜部を
もたない. 第7図、第8図を参照して明らかなように、本発明の具
体例は、VSWR特性,円偏波率とも、その比較例より
も上回っており、かかる結果からして傾斜部の有効性を
確認することができた.r発明の効果J 以上説明した通り、本発明は、所定の円偏波一次放射器
において、日偏波発生部の平坦部における軸方向の端部
に傾斜部が形成されているから、VSWR特性、円偏波
率特性が低下せず、その製造の簡易性をして、コストダ
ウン、量産などをはかることができる.
In the illustrated example, a tapered cylindrical shape is adopted as the circular-to-rectangular conversion section 21. In this case, the minimum inner diameter (left end) of the circular-to-rectangular conversion section 21
14.5mmφ, maximum inner diameter (right end) 20.5mmφ,
The length is 45sm. In the above, both flat surfaces 12 and 13 of the circularly polarized wave generating section 1l
, i.e., both flat surfaces 12 and 13
As shown in FIGS. 2 and 3, the front and rear ends of the
Adjacent parts to each end (horn part l, circular to rectangular conversion part 2
1) a plurality of inclined parts 31. 32, 33
, 34 are formed. Even if there is only one sloped portion, the horn portion 1 and the circularly polarized wave generating portion 11 . Alternatively, the occurrence of abrupt discontinuities (steps) in the relative relationship between the circularly polarized wave generator 11 and the circular rectangular converter 21 is eliminated. Therefore, the sloped portion is re-flattened to the surface 12. One or more flat surfaces are provided at the front end and rear end of the 12. The front and rear ends of 13 are all provided with sloped parts. In the case of the uninvented circularly polarized primary radiator, the horn section l, the circularly polarized wave generating section IL, and the circular-to-rectangular converting section 21 can be easily shaped by, for example, a die-casting method. Thus, the shaped circularly polarized primary radiator can be put to practical use as a primary radiator for satellite broadcasting antennas. Next, regarding specific examples of the present invention and comparative examples thereof, VSWR
Figures 7 and 8 show the results of measuring the characteristics and circular polarization coefficient. The specifications of the specific example are based on the numerical values already mentioned, and the comparative example has the same specifications as the specific example, but does not have an inclined part. As is clear with reference to FIGS. 7 and 8, the specific example of the present invention has better VSWR characteristics and circular polarization than the comparative example, and these results indicate that the slope portion is effective. I was able to confirm the gender. r Effects of the Invention J As explained above, the present invention has a VSWR characteristic because in a predetermined circularly polarized primary radiator, an inclined part is formed at the axial end of the flat part of the solar polarized wave generating part. , the circular polarization characteristics do not deteriorate, and the manufacturing process is simple, allowing cost reduction and mass production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る円偏波一次放射器の一実施例を示
した斜視図、第2図は第1図■一■線の断面図、第3図
は第1図m−■線の断面図、第4図は第1図ff−IV
線の断面図、第5図、第6図は本発明の先行技術に係る
円偏波発生部を示した斜視図と断面図、第7図は本発明
の具体例、比較例のVSIIR特性を示した図、第8図
は本発明の具体例、比較例の円偏波率を示した図である
.l・・・・・・ホーン郁 11・・・・・・円偏波発生部 12・・・・・・平坦面 13・・・・・・平坦面 14・・・・・・円弧面 l5・・・・・・円弧面 21・・・・・・円形一矩形変換部 22・・・・・・結合窓 23・・・・・・吸収体 24・・・・・・ショート板 3】・・・・・・傾斜部 32・・・・・・傾斜部 33・・・・・・傾斜部 34・・・・・・傾斜部
Fig. 1 is a perspective view showing an embodiment of a circularly polarized primary radiator according to the present invention, Fig. 2 is a sectional view taken along the line ■--■ in Fig. 1, and Fig. 3 is a cross-sectional view taken along the line m--■ in Fig. 1. A sectional view of FIG. 4 is a cross-sectional view of FIG. 1 ff-IV
5 and 6 are perspective views and sectional views showing a circularly polarized wave generating section according to the prior art of the present invention, and FIG. 7 shows VSIIR characteristics of a specific example of the present invention and a comparative example. The figure shown in FIG. 8 is a diagram showing the circular polarization coefficient of a specific example of the present invention and a comparative example. l...Horn 11...Circularly polarized wave generating section 12...Flat surface 13...Flat surface 14...Circular surface l5. . . . Arc surface 21 . . . Circular-to-rectangular conversion section 22 . . . Combination window 23 . . . Absorber 24 . . . Short plate 3] ... Slanted part 32 ... Slanted part 33 ... Slanted part 34 ... Slanted part

Claims (1)

【特許請求の範囲】[Claims]  ホーン部と円形−矩形変換部との間に円偏波発生部が
設けられた導波管構造からなり、円偏波発生部の内周面
が、互いに対面する一対の平坦面と、これら平坦面間に
わたる一対の円弧面とで形成されており、円偏波発生部
の断面中心を通る直交二軸をそれぞれE_x、E_yと
した場合、上記一対の平坦面が上記直交二軸E_x、E
_yに対して45°の勾配を有し、円偏波発生部断面の
長軸を伝わる電界と、円偏波発生部断面の短軸を伝わる
電界との位相差が、放射出力端において90°となる円
偏波一次放射器において、上記円偏波発生部の平坦部に
おける軸方向の端部には、その端部との隣接部に向けて
傾斜する傾斜部が形成されていることを特徴とする円偏
波一次放射器。
It consists of a waveguide structure in which a circularly polarized wave generating section is provided between a horn section and a circular-rectangular converting section, and the inner circumferential surface of the circularly polarized wave generating section is formed by a pair of flat surfaces facing each other and a pair of flat surfaces facing each other. If the orthogonal two axes passing through the cross-sectional center of the circularly polarized wave generating section are E_x and E_y, respectively, then the pair of flat surfaces are formed by the orthogonal two axes E_x and E.
It has a slope of 45° with respect to _y, and the phase difference between the electric field transmitted along the long axis of the cross section of the circularly polarized wave generator and the electric field transmitted along the short axis of the cross section of the circularly polarized wave generator is 90° at the radiation output end. The circularly polarized primary radiator is characterized in that an axial end of the flat part of the circularly polarized wave generating section is formed with an inclined part that slopes toward a part adjacent to the end. A circularly polarized primary radiator.
JP30734889A 1989-11-27 1989-11-27 Circular polarized wave primary radiator Pending JPH03167905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30734889A JPH03167905A (en) 1989-11-27 1989-11-27 Circular polarized wave primary radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30734889A JPH03167905A (en) 1989-11-27 1989-11-27 Circular polarized wave primary radiator

Publications (1)

Publication Number Publication Date
JPH03167905A true JPH03167905A (en) 1991-07-19

Family

ID=17968027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30734889A Pending JPH03167905A (en) 1989-11-27 1989-11-27 Circular polarized wave primary radiator

Country Status (1)

Country Link
JP (1) JPH03167905A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001043219A1 (en) * 1999-12-10 2001-06-14 Mitsubishi Denki Kabushiki Kaisha Generator of circularly polarized wave
JP2004043931A (en) * 2002-07-15 2004-02-12 National Astronomical Observatory Of Japan Corrugated horn and its manufacturing process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001043219A1 (en) * 1999-12-10 2001-06-14 Mitsubishi Denki Kabushiki Kaisha Generator of circularly polarized wave
US6664866B2 (en) 1999-12-10 2003-12-16 Mitsubishi Denki Kabushiki Kaisha Generator of circularly polarized wave
JP2004043931A (en) * 2002-07-15 2004-02-12 National Astronomical Observatory Of Japan Corrugated horn and its manufacturing process
JP4491189B2 (en) * 2002-07-15 2010-06-30 大学共同利用機関法人自然科学研究機構 Corrugated horn manufacturing method and corrugated horn

Similar Documents

Publication Publication Date Title
US10468773B2 (en) Integrated single-piece antenna feed and components
US4141015A (en) Conical horn antenna having a mode generator
JP3195923B2 (en) Circularly polarized dielectric antenna
EP0616385A1 (en) High-gain, waveguide-fed antenna having controllable higher order mode phasing
US6005528A (en) Dual band feed with integrated mode transducer
US4356495A (en) Corrugated antenna feedhorn with elliptical aperture
US6097264A (en) Broad band quad ridged polarizer
JPH03167905A (en) Circular polarized wave primary radiator
US6642901B2 (en) Horn antenna apparatus
Sung et al. Wideband corrugated feedhorns, for radar, communications, radiometry and quasi-optics
JPH01265701A (en) Circularly polarized wave generating part for primary radiator for satellite broadcast reception antenna
JPH03131101A (en) Circularly polarized wave generating section of primary radiator for satellite broadcast reception antenna
JP2508330B2 (en) Circular polarization / linear polarization converter
US4507665A (en) Primary source with frequency re-utilization
Palvig et al. Metasurface waveguides applied to matched feeds for reflector antennas
US3694911A (en) Waveguide process
JPH1032401A (en) Circularly polarized wave primary radiator
JP3805948B2 (en) Primary radiator
JPH0732324B2 (en) Multimode horn antenna
JPH0716126B2 (en) Circular polarization horn
JP2002252519A (en) Primary radiator
JPS5941613Y2 (en) Primary radiator for reflector antenna
JPS6126308A (en) Slot array antenna
JPH0543525Y2 (en)
JPS61142805A (en) Corrugated horn