JPH03167503A - Reflecting mirror - Google Patents

Reflecting mirror

Info

Publication number
JPH03167503A
JPH03167503A JP30879089A JP30879089A JPH03167503A JP H03167503 A JPH03167503 A JP H03167503A JP 30879089 A JP30879089 A JP 30879089A JP 30879089 A JP30879089 A JP 30879089A JP H03167503 A JPH03167503 A JP H03167503A
Authority
JP
Japan
Prior art keywords
film
film thickness
optical
color
optical film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30879089A
Other languages
Japanese (ja)
Inventor
Masanobu Wakumoto
和久本 正信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP30879089A priority Critical patent/JPH03167503A/en
Publication of JPH03167503A publication Critical patent/JPH03167503A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve a color temperature without changing a color tone by constituting the boundary layer of two film groups having different reflected wavelength of an intermediate optical film having different film thickness from the film thickness of the optical film of either of the film groups. CONSTITUTION:The film group 10 consisting by laminating the optical films 11 whose film thickness is thin and the film group 20 consisting by laminating the optical film 21 whose film thickness is thick are formed on a base material 30 so that they are laminated through the intermediate optical film 40. Then, the film thickness of the film 40 is different from the respective optical film thickness of both film groups 10 and 20. Thus, a part of the yellow green component is eliminated from reflected light and the reflected light is adjusted by the natural color tone without lowering the color temperature.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、色調を変化させることなく色温度を向上さ
せることのできた反射鏡に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a reflecting mirror that can improve color temperature without changing color tone.

〔従来の技術〕[Conventional technology]

反射鏡は、種々の分野で用いられているが、その用途の
一つに照明用途がある。照明ランプにおいては、その殆
どが、ミニハロゲンランプなどの白熱電球が用いられる
ため、その反射鏡に対しては、一般的に、下記二つのこ
とが要請される。
Reflecting mirrors are used in various fields, one of which is lighting. Since most lighting lamps use incandescent light bulbs such as mini halogen lamps, the following two requirements are generally required of the reflecting mirrors.

(1)  赤外線のカソト (2)色温度の上昇 (1)は熱の放射を減少させるためであり、(2)は白
熱電球の赤色成分が強すぎるのを修正するためである。
(1) Increasing the infrared rays (2) Increasing the color temperature (1) is to reduce heat radiation, and (2) is to correct the excessively strong red component of incandescent bulbs.

色温度の上昇は、反射鏡の反射特性を長波長域で、つま
り赤色近辺で少し低下させて、反射光から赤色威分を出
来るだけ取り除くようにすれば、簡単に達成出来る。具
体例をあげれば、標準的なミニハロゲンランプは、色温
度が2800゜k前後であるが、これをスポットライト
などの照明用途に用いる場合には、選択反射特性を持つ
反射鏡を採択して、発光成分から赤色戒分を多少除去す
ることにより、その色温度を3050゜k位に上げて用
いるようにするのである。
Increasing the color temperature can be easily achieved by slightly lowering the reflection characteristics of the reflector in the long wavelength range, that is, in the vicinity of red, to remove as much of the red color as possible from the reflected light. To give a specific example, a standard mini halogen lamp has a color temperature of around 2800°K, but when using it for lighting applications such as spotlights, a reflector with selective reflection characteristics is used. By removing some of the red color from the luminescent component, the color temperature can be raised to about 3050°K for use.

しかし、この方法によれば、白熱電球の発光戊分から赤
色威分がかなり除かれる結果、その他の色の戒分が相対
的に強くなり、色のバランスに変化が起きる。すなわち
、上記その他の色の中で反射光色に一番大きく作用する
色は、黄緑系の色である。黄緑系の色は、白熱電球から
比較的たくさん放射されるばかりでなく、目の比視感度
も高いからである。そして、前述のように、赤色戒分が
多少除かれて、その他の色の戒分が相対的に強くなった
ときに、その他の色の中で黄緑系の色が最も大きく作用
するようになる結果、反射鏡からの反射光色が、一般人
の感覚からすれば、全般に黄緑感の強いものとなるので
ある。
However, according to this method, a large amount of red color is removed from the light emitted by the incandescent light bulb, and as a result, the color balance of other colors becomes relatively strong, causing a change in the color balance. That is, among the other colors mentioned above, the color that has the greatest effect on the reflected light color is a yellow-green color. This is because yellow-green colors not only emit relatively large amounts of light from incandescent light bulbs, but also have a high relative luminous sensitivity of the eye. As mentioned above, when the red precept is removed to some extent and the precepts of other colors become relatively stronger, yellow-green colors will have the greatest effect among the other colors. As a result, the color of the light reflected from the reflecting mirror generally has a strong yellowish-green feel to the general public's perception.

近時、反射鏡の鏡面を光学多層膜で構成することが一般
的になって来ている。その理由の一つは、この方法によ
れば鏡面の反射特性に選択性を持たせることが容易であ
ることである。そこで、この方法で鏡面を構威する際に
、光学多層膜の層構戒に工夫を加えて、鏡面に対し、前
記問題を生じないような選択反射特性を持たせるように
することが考えられる。
Recently, it has become common to configure the mirror surface of a reflecting mirror with an optical multilayer film. One of the reasons for this is that, according to this method, it is easy to impart selectivity to the reflection characteristics of the mirror surface. Therefore, when constructing a mirror surface using this method, it may be possible to add some ingenuity to the layer structure of the optical multilayer film so that the mirror surface has selective reflection characteristics that will not cause the above problem. .

発明者は、このような観点から種々工夫する過程で、つ
ぎのように考えた。
The inventor came up with the following idea in the process of making various improvements from this point of view.

色温度は、完全黒体の放射をx−y色度図上にプロソト
したものを基準にして決定されているため、完全黒体で
はない物質については、色温度だけでは色を指定するこ
とができない。つまり、同じ色温度でも異なった色の光
が存在するのである白熱電球は、タングステンフィラメ
ントを使用しており、その放射戒分は比較的、黒体放射
威分に近く、その放射曲線は完全黒体放射曲線に近いと
ころに位置する。しかし、これから赤色或分を除去して
色温度を上げたものの放射曲線は、y値が増大する傾向
を示し、完全黒体放射曲線から見て、より上の方に離れ
る。その結果、目視では黄緑傾向の発色を示すことにな
るのである。
Color temperature is determined based on the radiation of a perfect black body plotted on an x-y chromaticity diagram, so for substances that are not a perfect black body, it is not possible to specify the color by color temperature alone. Can not. In other words, different colors of light exist even with the same color temperature.Incandescent light bulbs use a tungsten filament, and their radiation curve is relatively close to that of a black body, and their radiation curve is completely black. It is located close to the body radiation curve. However, the radiation curve obtained by removing some of the red color and raising the color temperature shows a tendency for the y value to increase, moving further away from the complete black body radiation curve. As a result, when visually observed, it exhibits a yellowish-green color.

そこで、前記問題を解決するためには、y値を上げない
で色温度を上げるようにすれば良い。このことは、選択
反射を行う際に、赤色成分を除くだけでなく、その他の
色成分の中で最も作用の強い黄緑色或分もいくらか除去
することにすれば、達戒できる。
Therefore, in order to solve the above problem, it is sufficient to increase the color temperature without increasing the y value. This can be achieved by not only removing the red component when performing selective reflection, but also removing some of the yellow-green color that has the strongest effect among the other color components.

照明用途などに通常用いられている反射鏡では、必要な
反射帯域幅を得るために、比較的短波長よりの帯域を反
射する何層かの光学膜群と、比較的長波長よりの帯域を
反射する何層かの光学膜群を積み重ねたfI6にしてい
る。そして、通常の膜設計では、両群の帯域幅が途切れ
なく連続するようにして可視域の大半をカハーするよう
にしている。たとえば、第4図に示すように、膜厚の薄
い光学膜11を重ね合わせてなる膜群10と、膜厚の厚
い光学MJ21を重ね合わせてなる膜群20とを、直接
重ね合わせるようにして、基材30上に形成することに
より、2波長構戒の反射鏡としているのである。
In order to obtain the necessary reflection bandwidth, reflective mirrors commonly used for lighting applications have a group of optical films that reflect relatively short wavelength bands and a group of optical films that reflect relatively long wavelength bands. The fI6 is made by stacking several layers of reflective optical films. In a typical membrane design, the bandwidths of both groups are seamlessly continuous to cover most of the visible range. For example, as shown in FIG. 4, a film group 10 formed by overlapping thin optical films 11 and a film group 20 formed by overlapping thick optical MJs 21 are directly overlapped. , is formed on the base material 30, thereby making it a two-wavelength reflecting mirror.

この2波長構成の反射鏡では、前記黄緑色戊分の反射帯
域は、全反射帯域のちょうど中央部近辺に位置する。従
来採用されている色成分の除去方法は、除去しようとす
る色戒分の反射帯域を空白にして反射の谷を作る手法で
あるから、この従来方法によるとすれば、前記黄緑色成
分の除去は、2波長反射帯域を互いに隔てるようにして
、両帯域間に反射の谷を作ることで達賎出来る。つまり
、両反射帯域を、反射の谷を作るために、不連続にする
のである。このように、2波長の膜群1020を互いに
隔てるようにすると、両群の切れ目のところに反射率が
低下する域ができる。この反射低下域を黄緑色付近の適
当な波長域に設定すると、黄緑色の反射率が低下して黄
緑色感のない暖か味のある光色を得ることができるので
ある。
In this two-wavelength reflecting mirror, the yellow-green component reflection band is located exactly near the center of the total reflection band. The conventional color component removal method is to create a reflection valley by blanking the reflection band of the color component to be removed, so if this conventional method is used, the yellow-green component can be removed This can be achieved by separating the two wavelength reflection bands from each other and creating a reflection valley between the two bands. In other words, both reflection bands are made discontinuous to create a reflection valley. When the film groups 1020 of two wavelengths are separated from each other in this way, a region where the reflectance decreases is created at the break between the two groups. By setting this reduced reflection range to an appropriate wavelength range around yellow-green, the reflectance of yellow-green is reduced, making it possible to obtain a warm light color without a yellow-green appearance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、この従来方法によって黄緑色感を除去するよう
にすると、黄緑色の反射率は低下するが、同時に色温度
も低下すると言う問題が生しる,,すなわち、2波長膜
群の間に、空間を設けるようにすると、長波長側の反射
帯域がより長波長側にシフトするために、赤色威分の反
射が増大するようになるからである。
However, if this conventional method is used to remove the yellow-green color, the reflectance of the yellow-green color decreases, but at the same time, the color temperature also decreases. In other words, between the two wavelength film groups, This is because if a space is provided, the reflection band on the longer wavelength side shifts to the longer wavelength side, so that the reflection of red color increases.

この発明は、このような事情に鑑みて、2波長構戒の光
学多NB’Aからなる鏡面の反射鏡において、色温度を
向上させた上で、しかも、黄緑色系統に偏しない反射光
を得ようとするものである。
In view of these circumstances, the present invention has been developed to improve the color temperature of a specular reflector made of an optical multi-band NB'A with a two-wavelength structure, and to emit reflected light that is not biased towards yellow-green. That's what you're trying to get.

〔課題を解決するための手段〕[Means to solve the problem]

この発明にかかる反射鏡は、上記課題を解決するため、
屈折率の異なる光学多層膜で鏡面が構成されている反射
鏡であって、前記光学多層膜が、膜厚の薄い光学膜が多
層重ね合わされてなる膜群と、膜厚の厚い光学膜が多層
重ね合わされてなる膜群と、これら両群の各光学膜の膜
厚のいずれとも異なる膜厚を有する中間光学膜とからな
ることを特徴とする。
In order to solve the above problems, the reflecting mirror according to the present invention has the following features:
A reflecting mirror whose mirror surface is composed of optical multilayer films having different refractive indexes, the optical multilayer film comprising a film group consisting of a multilayer stack of thin optical films and a multilayer of thick optical films. It is characterized by comprising a film group formed by overlapping each other, and an intermediate optical film having a film thickness different from the film thickness of each of the optical films of both groups.

すなわち、この発明にかかる反射鏡は、たとえば、第1
図に示すように、膜厚の薄い光学膜l1を重ね合わせて
なる膜群lOと、膜厚の厚い光学膜21を重ね合わせて
なる膜群20とが、中間光学膜40を介して重ね合わさ
れるようにして、基材30上に形威され、この中間光学
膜40の膜厚が両膜群10,20の各光学膜厚のいずれ
とも異なるようになっているのである。
That is, the reflecting mirror according to the present invention, for example,
As shown in the figure, a film group lO formed by overlapping thin optical films l1 and a film group 20 formed by overlapping thick optical films 21 are overlapped with an intermediate optical film 40 interposed therebetween. The intermediate optical film 40 is formed on the base material 30 in such a manner that the film thickness of the intermediate optical film 40 is different from each of the optical film thicknesses of both film groups 10 and 20.

中間光学膜は、全欣厚が増大しないかぎり、複数層で構
戒されても良い。
The intermediate optical film may be composed of multiple layers as long as the total thickness does not increase.

この発明では、上記中間光学膜の膜厚を下記0′)〜(
工)の条件に合うように設定するのが良い。下記条件に
合わない膜厚では、反射率の低下が起きにくいか、分光
特性に乱れが生じる傾向があるからである。
In this invention, the thickness of the intermediate optical film is set as follows: 0') to (
It is best to set the settings to suit the conditions of This is because if the film thickness does not meet the following conditions, the reflectance is unlikely to decrease or the spectral characteristics tend to be disturbed.

佇)股厚が小さい方の群の光学膜厚の1. 5倍〜2.
5倍。
1. Optical film thickness of the group with smaller crotch thickness. 5 times ~ 2.
5 times.

(イ)膜厚が小さい方の群の光学膜厚の0.3倍〜0.
7倍。
(b) The film thickness is 0.3 to 0.3 times the optical film thickness of the smaller group.
7 times.

(ウ)膜厚が大きい方の群の光学膜厚の1.5倍〜2.
5倍。
(c) 1.5 to 2 times the optical film thickness of the larger group.
5 times.

(工)膜厚が大きい方の群の光学膜厚の0. 3倍〜0
. 7倍。
(Engineering) The optical film thickness of the group with the larger film thickness is 0. 3 times ~ 0
.. 7 times.

なお、これらの条件を選ぶにあたっては、中間光学膜4
0の膜厚を、膜厚が小さい方の膜群10の各層の光学膜
厚の1.5倍〜2.5倍にする(条件(l))ときには
、膜厚が大きい方の膜群20の各光学膜厚と同じになら
ないようにする必要があり、また、膜厚が大きい方の膜
群20の各層の光学膜厚の0. 3倍〜0. 7倍にす
る(条件(4))ときにも、光学膜厚が小さい方の膜群
10の各層の光学膜厚と同じになってしまうことがない
ようにする必要があることは、言うまでもない。
Note that when selecting these conditions, the intermediate optical film 4
When the film thickness of 0 is made 1.5 to 2.5 times the optical film thickness of each layer of the film group 10 with the smaller film thickness (condition (l)), the film thickness of the film group 20 with the larger film thickness It is necessary to make sure that the optical film thickness is not the same as each optical film thickness of each layer of the film group 20 with the larger film thickness. 3 times ~ 0. Needless to say, even when increasing the thickness by seven times (condition (4)), it is necessary to ensure that the optical film thickness does not become the same as the optical film thickness of each layer of the smaller film group 10. .

〔作   用〕[For production]

この発明では、異なった反射波長を持つ2つの膜群の境
界層を、どちらの群の光学膜の膜厚とも異なる膜厚を有
する中間光学膜で構成しているので、この中間光学膜の
部分で黄緑色近辺の反射率が低下し、黄緑色成分の一部
を除去することが出来る。すなわち、中間光学1t!i
!40を設けない第4図の反射鏡では、第2図Bで示す
ような反射特性であるのに対し、この発明にかかる反射
鏡は、同図Aで示すように、反射帯域の中央部aで特有
の反射率低下を示す反射特性を有するのである。これに
より、黄緑色成分がいくらか除去されるようになるので
、反射光の黄緑感が低減される。しかも、この中間光学
膜は、前記従来手法によるとした際に、この部位に設け
られる切れ目間隔に比較して極めて薄いため、この中間
光学膜を挿入したことによっては、長波長域のより長波
長側へのシフトが起きない。そのため、赤色成分の反射
が増えることはなく、色温度の低下が起きないのである
In this invention, since the boundary layer between two film groups having different reflection wavelengths is constituted by an intermediate optical film having a film thickness different from that of the optical films of either group, a portion of this intermediate optical film is The reflectance in the vicinity of yellow-green is reduced, and part of the yellow-green component can be removed. That is, intermediate optics 1t! i
! The reflector shown in FIG. 4, which is not provided with 40, has the reflection characteristics as shown in FIG. It has a reflection characteristic that shows a specific decrease in reflectance. This removes some of the yellow-green component, thereby reducing the yellow-green appearance of the reflected light. Moreover, this intermediate optical film is extremely thin compared to the gap between the cuts provided in this part when using the conventional method, so inserting this intermediate optical film can cause the long wavelength range to be longer. No side shift occurs. Therefore, the reflection of the red component does not increase, and the color temperature does not decrease.

〔実 施 例〕〔Example〕

以下に、この発明の実施例を説明するが、この発明は、
これらの実施例に限定されるものではない。
Examples of the present invention will be described below.
The present invention is not limited to these examples.

一実施例工 通常のスボソト照明用としてl5層構成の反射鏡を真空
蒸着法により、作製した。すなわち、第3図にみるよう
に、口径70ミリのガラス製パラボラ型基材l上に、7
層の長波長側反射膜群と、INの中間光学膜(境界層)
と、7眉の短波長側反射膜群を形成して、鏡面2とした
。その際、2波長膜群間には1.35倍の膜厚差をっけ
、境界層たる8層目の中間光学膜厚は長波長側の各層の
膜厚の0. 5倍となるようにした。
Example 1 A reflecting mirror having a 15-layer structure was fabricated by a vacuum evaporation method for ordinary subsoto illumination. That is, as shown in Fig. 3, 70 mm was placed on a glass parabolic base l with a diameter of 70 mm.
Long wavelength side reflective film group of layer and intermediate optical film (boundary layer) of IN
A mirror surface 2 was formed by forming a group of 7 short-wavelength reflective films. At that time, a film thickness difference of 1.35 times is set between the two wavelength film groups, and the intermediate optical film thickness of the eighth layer, which is the boundary layer, is 0.5 times the film thickness of each layer on the long wavelength side. It was made to be 5 times more.

蒸着時には光電式膜厚計で蒸着膜厚の制仰を行った。基
材上に形威された膜は、曲面状であるため、厳密には、
正確な測定結果とは言えないが、ほぼ、長波長側で各層
176nm、境界屓で88nm、短波長側で各層130
nmであった。
During the deposition, the thickness of the deposited film was controlled using a photoelectric film thickness meter. Since the film formed on the base material has a curved shape, strictly speaking,
Although the measurement results cannot be said to be accurate, each layer is approximately 176 nm on the long wavelength side, 88 nm on the boundary, and 130 nm on each layer on the short wavelength side.
It was nm.

比較のため、境界層の膜厚を長波長側の膜厚と同じにし
た反射鏡、つまり、従来の2波長構威にした反射鏡も作
威した。
For comparison, we also created a reflector in which the thickness of the boundary layer was the same as that on the longer wavelength side, that is, a reflector with a conventional two-wavelength structure.

このようにして得られた反射鏡に7 5Wミニハロゲン
ランプを装着して、反射特性の評価を行ったところ、実
施例の反射鏡の色温度は3060’kであり、x−y色
度はXが0.433、yが0.403であった。他方、
比較例の反射鏡の色温度は3050゜kであり、x−y
色度はXが0.437、yが0.410であった。
When a 75W mini halogen lamp was attached to the reflector thus obtained and the reflection characteristics were evaluated, the color temperature of the reflector of the example was 3060'K, and the x-y chromaticity was X was 0.433 and y was 0.403. On the other hand,
The color temperature of the reflective mirror of the comparative example is 3050°K, and the x-y
The chromaticity was 0.437 for X and 0.410 for y.

目視評価においては、実施例は、比較例に比べて、明ら
かに黄緑感が少なく、自然な発色となっていた。無作為
に抽出した20人の評1所者中、17人が自然な感しで
好ましいと評価した。
In the visual evaluation, the examples had clearly less yellow-green appearance than the comparative examples, and had a natural color development. Of the 20 randomly selected reviewers, 17 rated it as favorable due to its natural feel.

実施例2− 2波長膜群間には1.38倍の膜厚差をつけ、境界層た
る8層目の光学膜厚は長波長側の各層の膜厚の2倍とな
るようにした以外は、実施例1と同様に作製した。膜厚
測定結果は、ほぼ、長波長側で各層180nm、境界屓
で360nm、短波長側で各屓130nmであった。
Example 2 - Except that a film thickness difference of 1.38 times was provided between the two wavelength film groups, and the optical film thickness of the eighth layer, which was the boundary layer, was twice the film thickness of each layer on the long wavelength side. was produced in the same manner as in Example 1. The film thickness measurement results were approximately 180 nm for each layer on the long wavelength side, 360 nm for each layer on the boundary edge, and 130 nm for each layer on the short wavelength side.

これに対して、実施例1と同様の評価を行ったところ、
色温度は3100゜kであり、x−y色度は、Xが0.
 4 2 9、yが0.400であった。また、目視評
価においては、実施例1で用いた比較例に比べて明らか
に黄緑感が少なく、全般に色が自然かつ鮮やかにみえた
。無作為に抽出した20人の評価者中、16人が自然な
感しで好ましいと評価した。
On the other hand, when the same evaluation as in Example 1 was performed,
The color temperature is 3100°K, and the x-y chromaticity is when X is 0.
4 2 9, y was 0.400. Furthermore, in visual evaluation, the yellow-green appearance was clearly less than that of the comparative example used in Example 1, and the colors generally appeared natural and vivid. Of the 20 randomly selected evaluators, 16 rated it as favorable because of its natural feel.

〔発明の効果〕〔Effect of the invention〕

この発明にかかる反射鏡は、前記構成よりなるため、色
温度を低下させることなく、反射光から黄緑色底分の一
部を除去し、自然な色調にm整できている。また、反射
特性を、2波長膜群間の膜厚比や、境界層の膜厚の設定
によって、微妙に異ならせることが出来るから、必要に
応じた、JaJな選択特性を発揮できる。
Since the reflecting mirror according to the present invention has the above-mentioned configuration, it is possible to remove a portion of the yellow-green base from the reflected light without lowering the color temperature, and to adjust the color tone to a natural color tone. Further, since the reflection characteristics can be made slightly different by setting the film thickness ratio between the two wavelength film groups and the film thickness of the boundary layer, JaJ selection characteristics can be exhibited as required.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の実施例を示す断面図、第2図は、
この発明にかかる反射鏡の反射特性と従来の反射鏡の反
射特性を対比して示すグラフ、第3図は、反射鏡の半断
面図、第4図は、従来の反射鏡を示す断面図である。
FIG. 1 is a sectional view showing an embodiment of the invention, and FIG. 2 is a sectional view showing an embodiment of the invention.
A graph showing a comparison between the reflection characteristics of the reflector according to the present invention and the reflection characteristics of a conventional reflector, FIG. 3 is a half-sectional view of the reflector, and FIG. 4 is a cross-sectional view of the conventional reflector. be.

Claims (1)

【特許請求の範囲】[Claims] 1 屈折率の異なる光学多層膜で鏡面が構成されている
反射鏡であって、前記光学多層膜が、膜厚の薄い光学膜
が多層重ね合わされてなる膜群と、膜厚の厚い光学膜が
多層重ね合わされてなる膜群と、これら両群の各光学膜
の膜厚のいずれとも異なる膜厚を有する中間光学膜とか
らなることを特徴とする反射鏡。
1. A reflecting mirror whose mirror surface is composed of optical multilayer films having different refractive indexes, the optical multilayer film comprising a film group formed by stacking multiple thin optical films and a thick optical film. A reflecting mirror comprising a film group formed by stacking multiple layers, and an intermediate optical film having a film thickness different from the film thickness of each optical film in both groups.
JP30879089A 1989-11-27 1989-11-27 Reflecting mirror Pending JPH03167503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30879089A JPH03167503A (en) 1989-11-27 1989-11-27 Reflecting mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30879089A JPH03167503A (en) 1989-11-27 1989-11-27 Reflecting mirror

Publications (1)

Publication Number Publication Date
JPH03167503A true JPH03167503A (en) 1991-07-19

Family

ID=17985341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30879089A Pending JPH03167503A (en) 1989-11-27 1989-11-27 Reflecting mirror

Country Status (1)

Country Link
JP (1) JPH03167503A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651267A (en) * 1992-07-31 1994-02-25 Victor Co Of Japan Ltd Projection liquid crystal display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651267A (en) * 1992-07-31 1994-02-25 Victor Co Of Japan Ltd Projection liquid crystal display

Similar Documents

Publication Publication Date Title
US5200855A (en) Absorbing dichroic filters
JP2719367B2 (en) Multi-layer surface reflector
US4839553A (en) Reflector lamp having complementary dichroic filters on the reflector and lens for emitting colored light
US4955705A (en) Multi-layered back reflecting mirror
JP2509922B2 (en) Multi-layered surface reflector
US4366407A (en) Incandescent lamp with selective color filter
US20010043033A1 (en) Incandescent lamp
US5285362A (en) Discharge lamp having interference filter
JPS61263002A (en) Lighting unit
US6530678B1 (en) Lightning unit
JPH03167503A (en) Reflecting mirror
US20080036351A1 (en) Incandescent Lamp With an Absorption and Interference Filter
JPH03105849A (en) Lamp
JP3590014B2 (en) Yellow lamp
JPH0296110A (en) Color adjusting device
JP2842721B2 (en) Neodymium color floodlight multilayer reflector
JPH01251503A (en) Lighting device
JPS6275402A (en) Projection type multilayer film reflector
JP3295026B2 (en) Infrared reflective coating and lamp using the same
JPH02120802A (en) Surface reflecting mirror made of multilayered film
JP2001013320A (en) Optical multilayer interference film and yellow electric lump
JP3928499B2 (en) High color temperature incandescent bulb for automobile
JP2948949B2 (en) Incandescent light bulb
JPH05129006A (en) Tungsten halogen lamp
JPH04349339A (en) Colored electric bulb